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1 Preliminaries

Let B(t) = B(t;w); t � 0; w 2 
 and eN (dz; dt) = N (dz; dt) � v(dz)dt be one-
dimensional Brownian motion and an independent compensated poisson random
measure, respectively, on a �ltered probability space (
;F ; fFgt�0 ; P ) satisfy-
ing the usual conditions we consider a continuous-time, �nie-state, observable
Markov chain f� (t) /t � 0g. fFgt�0 is a right-continuous, P -completed �ltra-
tion to wich all of the processes de�ned below, including the Markov chain the
Brownian motions, and the poisson random measures, are adapted. Following
the convention of Elliott, Aggoun, and Moore, we identify the state space of the
chain with a �nite state space S = fe1; :::; eDg ;where D 2 N; ei 2 RD; and jthe
component of ei is the Kronecker delta �ij for each i; j = 1; 2; :::; D: the state
space S is called a canonical state space and its use faciliates the mathematics.
We suppose that the chain is homogeneous and irreducible. To specify

statistical or probabilistic properties of the chain �: we de�ne the generator
� = f�ij 1 � i � j � Dg of the chain under P . this is also called the rate ma-
trix, or the Q-matrix. Here, for each i; j = 1; 2; ::; D, �ij is the constant transi-
tion intensity of the chain from state ei to state ej at time t: Note that �ij � 0

for i 6= j and
DX
j=1

�ij = 0; so �ii � 0: In what follows for each i; j = 1; 2; ::; D

which i 6= j; we suppose that �ij > 0; so �ii < 0:
Elliott, Aggoun, and Moore obtained the following semimartingale dynamics

for the chain � :

� (t) = � (0) +

tZ
0

�T� (u) du+M (t)
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where fM (t) n t � 0g is an RD-valued,
�
fFgt�0 ; P

�
-martingale and yT de-

notes the transpose of a matrixe (or, in particular, a victor) :
To model the controlled state process, we �rst need to introduce a set of

Markov jump martingales associated with the chain �: Here we follow the results
of Elliott and Elliott, Aggoun, and Moore.
For each i; j = 1; 2; ::; D; wich i 6= j, and t 2 [0;1[ let J ij (t) be the number

of jumps from state ei to state ej up to time t. Then

J ij (t) =
X
0�s�t

h� (s�) ; eiih� (s) ; eji

=
X
0�s�t

h� (s�) ; eiih� (s)� � (s�) ; eji

=

tZ
0

h� (s�) ; eiihd� (s) ; eji

=

tZ
0

h� (s�) ; eiih�T� (s) ; ejids+
tZ
0

h� (s�) ; eiihdM (s) ; ejids

= �ij

tZ
0

h� (s�) ; eiids+mij (t) ;

where mij = fmij (t) nt 2 �g with mij (t) =

tZ
0

h� (s�) ; eiihdM (s) ; eji is an�
fFgt�0 ; P

�
-martingale, the mij�s are called the basie martingales associated

with the chain �:
Now, for each �ned j = 1; 2; ::; D; let �j (t) be the number of jumps into

state ej up to time t:
Then

�j (t) =
DX

i=1; i 6=j
J ij (t)

=
X

�ij
i=1; i 6=j

tZ
0

h� (s) ; eiids+ e�j (t) ;
where e�j (t) = DX

mij (t)
i=1; i 6=j

and, for each j = 1; 2; ::; D; e�j (t) = ne�j (t) nt 2 �o
is a an

�
fFtgt�0 ; P

�
-martingale.
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Write for each j = 1; 2; :::; D

�j (t) =
DX
�ij

i=1; i 6=j

tZ
0

h� (s) ; eiids (1)

Then for each j = 1; 2; ::; D,e�j (t) = �j (t)� �j (t) (2)

is an
�
fFgt�0 ; P

�
-martingale.

We now introduce a Markov regime-switching Poisson random measures. Let
R+ = [0;+1[ be the time index set and (R+;B (R+)) be a measurable space.
Where B (R+) is the Borel �-�eld generated by the open subsets of R+.
Let R0 = Rn f0g and B0 the Borel �-�eld generated by open subset O of

R0 whose closure O does not contain the point 0. In what follows, suppose
N (dz; dt), is independent Poisson random measure on (R+ � R0;B (R+)� B0)
under P: Assume that the Poisson random measures N (dz; dt) has the following
compensator :

�� (dz; dt) = ��(t�) (dznt) � (dt) = h� (t�) ; � (dznt)i� (dt) ; (3)

where � (dt) is a �-�nite measures on R+ and

� (dznt) = (�e1 (dznt) ; �e2 (dznt) ; ::; �eD (dznt))
T 2 RD

is a fuction of time t:Let us observe that for each j = 1; 2; ::; D; �ej (dznt) =
�j (dznt) is the conditional Lévy density of jump sizes of the random measures

N (dz; dt) at time t when � (t�) = ej and satis�es
Z
R0

min
�
1; z2

�
�j (dznt) <1.

In what follows, we shall consider only the case where � (dznt) is a function of
z, that is,

� (dznt) = � (dz)
Furthermore we assume that � (dt) = dt and writeeN� (dz; dt) := N� (dz; dt)� v� (dz) dt; (4)

be the compensated Markov regime-switching Poisson random measure.
We now introduce the state process X = fX (l) nl 2 [0;1[g : Suppose that

we are given a set U � R and a control process u (t) = u (t; w) : [0;1[�
! U .
We also require that fu (t; w) nt 2 [0;1[g is Ft-predictable and has right limits.
Let X (t) = X(u) (t) be a controlled Markov regime-switching jumps-di¤usion
in R described by the stochastic di¤erential equation

dX (t) = b (t;X (t) ; u (t) ; � (t) ; w) dt+ � (t;X (t) ; u (t) ; � (t) ; w) dB (t)

+

Z
R0

� (t;X (t) ; u (t) ; � (t) ; z; w) fN� (dz; dt)
+ (t;X (t) ; u (t) ; � (t) ; w) de� (t) 0 � t � 1 (5)

X (0) = x0 2 R:
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Here b : [0;1[ � R � U � S�
! R; � : [0;1[ � R � U � S�
! R; � :
[0;1[�R�U �S � R0�
! R and  : [0;1[�R�U �S�
! R; eN� (dz; dt)
is one-dimentional Markov regime-switching random measures de�nied by (4)e� (t) = �e�1; ::; e�D� whith e�j (t) ; j = 1; 2; ::; D; de�ned by (2) : In what follows,
we consider the process fX (t) nt 2 [0;1[g as the solution of (5) associated with
the control process fu (t) nt 2 [0;1[g :
Let �t � Ft be a given sub�ltration, representing the information avialable

to the controller at time t, t � 0:
The control process u (t) assumed to be f�tgt�0 predictable and with value

in a convexe set U � R: Let A� be our family of �t-predictable controls. Let R
denote the set of functions r : [0;1[� R0 ! R such thatZ

R0

j� (t; x; u; ei; z) r (t; z)j �i (dz) <1

for all t; x:
Let f : [0;1[ � R � U � S�
! R be adapted with respect to fFtgt�0 an

assume that

E

241Z
0

(
jf (t;X (t) ; u (t) ; � (t) ; w)j+

����@f@x ((t;X (t) ; u (t) ; � (t) ; w))
����2
)
dt

35 <1
for all u 2 A�:
Then we de�ne

J (x; ei; u) = Ex;ei

241Z
0

f (t;X (t) ; u (t) ; � (t) ; w) dt

35
to be our performance functional, we study the probleme to �nd u� 2 A�

such that
J (x�; ei; u

�) = Sup
u2A�

J (x; ei; u) : (6)

Let us de�ne the Hamiltonian H : [0;1[�R�U �S � R�R�R�R! R
by

H (t; x; u; ei; p; q; r; s) = f (t; x; u; ei; w) + pb (t; x; u; ei; w) + q� (t; x; u; ei; w)

+

Z
R0

� (t; x; u; ei; z; w) r (t; z) �i (dz) (7)

+
DX
j=1

j (t; x; u; ei; w) sj (t)�ij :

For natational convenience we will in the rest paper subpress w from from
the natation. The adjoint equation in the unknown Ft-predictable processes
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(p (t) ; q (t) ; r (t; z) ; s (t)) is the following backward stochastic di¤erential equa-
tion (BSDE)

dp (t) = �@H
@x

(t;X (t) ; u (t) ; � (t) ; p (t) ; q (t) ; r (t; :) ; s (t)) dt

+q (t) dB (t) +

Z
R0

r (t; z) eN� (dz; dt) + s (t) de� (t) ; t � 0: (8)

In the �nite horizon case (replacing1 by a �nite terminal time T in J (x; ei; u)
above) the adjoint variable p (t) would have the speci�ed terminal value
p (T ) = 0:
In the in�nite horizon case it is natural to guess that the corresponding

terminal condition would be
lim
t!1

p (t) = 0:

However, this turns out to be incorrect : the terminal condition must be
replaced by a limite inequality. See Theorems 1 and 4 this illustrates that the
in�nite horizon case requires new technique, and it cannot be deduced from the
�nite horizon case.
LATEX

2 Optimal control with partial information and
in�nite horizon

Now, let up get back to the probleme of maximizing the performance functional

J (x; ei; u) = Ex;ei

241Z
0

f (t;X (t) ; u (t) ; � (t)) dt

35 :
Where X (t) is of the from (5). Our aim is to �nd a u� 2 A� such that

J (x�; ei; u
�) = Sup

u2A�

J (x; ei; u) ;

where u (t) is our predictable control adapted to sub�ltration �t � Ft; with
value in a set U � R:
Let H be the Hamiltonian de�ned by (7) and p the solution to the adjoint

equation (8) : Then we have the following maximum principle.

Theorem 1 (Su¢ cient In�nite Horizon Maximum Principle) Let u� 2
A� and let (p� (t) ; q� (t) ; r� (t; z) ; s� (t)) be an associated solution to Eq (8).
Assume that for all u 2 A� the following terminal condition holds :

0 � E
h
lim
t!1

[p� (t) (X (t)�X� (t))]
i
<1: (9)
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Moreover, assume that H (t; x; u; ei; p� (t) ; q� (t) ; r� (t; :) ; s� (t)) is concave
in x and u and

E [H (t;X� (t) ; u� (t) ; � (t) ; p� (t) ; q� (t) ; r� (t; :) ; s� (t)) n"t] (10)

= max
u2U

E [H (t;X� (t) ; u; � (t) ; p� (t) ; q� (t) ; r� (t; :) ; s� (t)) n"t] :

In addition we assume that for all T =1;

E

2641Z
0

(X� (t)�Xu (t))
2

8><>:(q�)2 (t) +
Z
R0

(r�)
2
(t; z) �� (dz) +

DX
j=1

�
s�j
�2
(t)�j (t)

9>=>; dt
375 <1;

(11)
and

E

2641Z
0

(p�)
2
(t)

8><>:(� (t)� �� (t))2 +
Z
R0

(� (t; z)� �� (t; z))2 �� (dz) +
DX
j=1

�
j � �j

�2
�j (t)

9>=>; dt
375 <1

(12)

E

"���� @@uH (t;X� (t) ; u� (t) ; � (t) ; p� (t) ; q� (t) ; r� (t; :) ; s� (t))

����2
#
<1; (13)

and that

E

241Z
0

jH (t;X (t) ; u (t) ; � (t) ; p� (t) ; q� (t) ; r� (t; :) ; s� (t))j

35 <1 (14)

for all u:
Then we have that u� (t) is optimal.

Remark 2 Note that, since p (t) has the economic interpretation as the mar-
ginal value of the resource (alternatively the shawow price if representingon out-
side resource), the requirement

0 � E
h
lim
t!1

[p� (t) (X (t)�X� (t))]
i
<1;

has the economic interpretation that if the marginal value is positive at
in�nity we want to have as little resources left as possible.

Remark 3 The requirement in the �nite horizon case that p (T ) = 0 does not
translate into lim

T!1
p (T ) = 0 as was shown in the deterministic case in Halkin

(1974 ):

Proof. Let I1 := E

241Z
0

ff (t;X (t) ; u (t) ; � (t))� f (t;X� (t) ; u� (t) ; � (t))g dt

35 =
J (x; ei; u)� J (x�; ei; u�) :
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Then I1 = I11 � I12 � I13 � I14 � I15 , where

I11 : = E

241Z
0

(H (s;X (s) ; u (s) ; � (s) ; p� (s) ; q� (s) ; r� (s; :) ; s� (s))

�H (s;X� (s) ; u� (s) ; � (s) ; p� (s) ; q� (s) ; r� (s; :) ; s� (s))) ds] ;

I12 := E

241Z
0

p� (s) (b (s;X (s) ; u (s) ; � (s))� b� (s;X� (s) ; u� (s) ; � (s))) ds

35 ;

I13 := E

241Z
0

q� (s) (� (s;X (s) ; u (s) ; � (s))� �� (s;X� (s) ; u� (s) ; � (s))) ds

35 ;

I14 := E

2641Z
0

Z
R0

(� (s;X (s) ; u (s) ; � (s) ; z)� �� (s;X� (s) ; u� (s) ; � (s) ; z)) r� (s; z) ��(s) (dz) ds

375 ;

I15 := E

241Z
0

DX
j=1

�
j (s;X (s) ; u (s) ; � (s))� �j (s;X� (s) ; u� (s) ; � (s))

�
s�j (s)�j (s) ds

35 :
Write

Ht;X;u;�;p�;q�;r�;s� := H (t;X (t) ; u (t) ; � (t) ; p
� (t) ; q� (t) ; r� (t; :) ; s� (t)) ;

and similar for other combinations. We have from concavity that

Ht;X;u;�;p�;q�;r�;s� �Ht;X�;u�;�;p�;q�;r�;s� (15)

� @

@x
H (t;X� (t) ; u� (t) ; � (t) ; p� (t) ; q� (t) ; r� (t; :) ; s� (t)) (X (t)�X� (t))

+
@

@u
H (t;X� (t) ; u� (t) ; � (t) ; p� (t) ; q� (t) ; r� (t; :) ; s� (t)) (u (t)� u� (t))

Then we have from (10),(13) and that u (t) is adapted to �t;

0 � @

@u
E
h
Ht;X�;u;�;p�;q�;r�;s���t

i
u=u�(t)

(u (t)� u� (t)) (16)

=
@

@u
E
h
Ht;X�;u�;�;p�;q�;r�;s� (u (t)� u

� (t))��t
i
:
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Combining (8), (11), (15) and (16), we get

I11 � E

241Z
0

@

@x
Ht;X�;u�;�;p�;q�;r�;s� (X (s)�X

� (s)) ds

35 = E
241Z
0

dp� (s) (X (s)�X� (s))

35
: = �J1:

From (9) ; (11), and Ito�s formula (for simplicity let �s;X;u;�;z := � (s;X (s) ; u (s) ; � (s) ; z)
and js;X;u;� := 

j (s;X (s) ; u (s) ; � (s))), we have that

0 � E
h
lim
t!1

[p� (t) (X (t)�X� (t))]
i

E

241Z
0

p� (s) (bs;X;u;� � bs;X�;u�;�) ds

+

1Z
0

p� (s) (� (s;X (s) ; u (s) ; � (s))� �� (s;X� (s) ; u� (s) ; � (s))) dB (s)

+

1Z
0

Z
R0

p� (s) (� (s;X (s) ; u (s) ; � (s) ; z)� �� (s;X� (s) ; u� (s) ; � (s) ; z)) eN� (ds; dz)
+

1Z
0

p� (s) ( (s;X (s) ; u (s) ; � (s))� � (s;X� (s) ; u� (s) ; � (s))) de� (t) + 1Z
0

(X (s)�X� (s))

�
�
� @

@x
H� (s;X� (s) ; u� (s) ; � (s) ; p� (s) ; q� (s) ; r� (s; :) ; s� (s))

�
ds

+

1Z
0

q� (s) (X (s)�X� (s)) dB (s) +

1Z
0

Z
R0

r� (s; z) (X (s)�X� (s)) eN� (ds; dz)
+

1Z
0

s� (s) (X (s)�X� (s)) de� (t)
+

1Z
0

q� (s) (� (s;X (s) ; u (s) ; � (s))� �� (s;X� (s) ; u� (s) ; � (s))) ds

+

1Z
0

Z
R0

r� (s; z) (� (s;X (s) ; u (s) ; � (s) ; z)� �� (s;X� (s) ; u� (s) ; � (s) ; z)) v�(s) (dz) ds

+

1Z
0

DX
j=1

s�j (s)
�
j (s;X (s) ; u (s) ; � (s))� �j (s;X� (s) ; u� (s) ; � (s))

�
�j (s) ds

35 :
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From (11) and (12) ; we have that

E

241Z
0

p� (s) (b (s;X (s) ; u (s) ; � (s))� b (s;X� (s) ; u� (s) ; � (s))) ds+

1Z
0

(X (s)�X� (s))

�
�
� @

@x
H� (s;X� (s) ; u� (s) ; � (s) ; p� (s) ; q� (s) ; r� (s; :) ; s� (s))

�
ds

+

1Z
0

q� (s) (� (s;X (s) ; u (s) ; � (s))� �� (s;X� (s) ; u� (s) ; � (s))) ds

+

1Z
0

Z
R0

r� (s; z) (� (s;X (s) ; u (s) ; � (s) ; z)� �� (s;X� (s) ; u� (s) ; � (s) ; z)) v�(s) (dz) ds

+

1Z
0

DX
j=1

s�j (s)
�
j (s;X (s) ; u (s) ; � (s))� �j (s;X� (s) ; u� (s) ; � (s))

�
�j (s) ds

35
= I11;2 + J

1
1 + I11;3 + I

1
1;4 + I

1
1;5:

Finally, combining the above we get

J (x; ei; u)� J (x�; ei; u�) � I11 � I12 � I13 � I14 � I15
� �J11 � I12 � I13 � I14 � I15
� 0:

This holds for all u 2 A�; so the proof is complete.

2.1 Necessary Maximum Principle

To answer the question: if u� is optimal does it satisfy

E [H (t; X� (t) ; u� (t) ; � (t) ; p� (t) ; q� (t) ; r� (t; :) ; s� (t)) =�t]
= max

u2U
E [H (t; X� (t) ; u; � (t) ; p� (t) ; q� (t) ; r� (t; :) ; s� (t)) =�t]

(17)

we assume the following:

A1 For all t0, h such that 0 � t0 � t0+h � 1 and all bounded �t0-measurable
random variables �; the control process � (t) de�ned by

� (t) = �1[t0;t0+h] (t) ;

belongs to A�: Here

1[t0;t0+h] (t) =

�
1 if t 2 [t0; t0 + h]
0 otherwise.
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A2 For all u 2 A� and all � 2 A� bounded, there exists � > 0 such that

u+ �� 2 A" for all � 2 [��; �] :

A3 The derivative process

" (t) :=
d

d�
Xu+�� (t)

����
�=0

exists and belongs to L2 (m� P ) ; where m denotes the Lebesgue measure on
R:

d" (t) =

�
@b

@x
(t) " (t) +

@b

@u
(t)� (t)

�
dt+

�
@�

@x
(t) " (t) +

@�

@u
(t)� (t)

�
dB (t)

+

Z
R0

�
@�

@x
(t; z) " (t) +

@�

@u
(t; z)� (t)

� eN� (dt; dz)
+

�
@

@x
(t) " (t) +

@

@u
(t)� (t)

�
de� (t) ;

where, for simplicity of notation, we de�ne

@b

@x
(t) :=

@b

@x
(t; X (t) ; � (t) ; u (t)) :

Note that
" (t) = 0:

A4 Assume that f satis�es a Lipschitz condition of the form

jf (x1; u1; �1)� f (x2; u2; �2)j � C (t) (jx1 � x2j+ ju1 � u2j+ j�1 � �2j) ;

for any t; xi; ui; �i; i = 1; 2:

We can then give an answer to the question.

Theorem 4 (Partial Information Necessary Maximum Principle) .
Suppose u� 2 A� is a local maximum for J (u) meaning that for all bounded

� 2 A� there exists a � > 0 such that u� + �� 2 A� for all � 2 (��; �) and
h (�) := J (u� + ��) ; � 2 (��; �)
is maximal at � = 0: Let (p� (t) ; q� (t) ; r� (t; z) ; s� (t)) be the solution to

the (linear) adjoint equation

dp� (t) = �@H
@x

(t; X� (t) ; u� (t) ; � (t) ; p� (t) ; q� (t) ; r� (t; :) ; s� (t)) dt

+q� (t) dB (t) +

Z
R0

r� (z; t) eN� (dz; dt) + s� (t) de� (t) :
10



Moreover assume that if "� (t) = "(u
�;�) (t), with corresponding coe¢ cients

��t ; �
�
t ; &

�
t;z; '

�
t ;

where

�2t =

�
@b

t;X;u;�

@x

�2
"2 (t) +

�
@b

t;X;u;�

@u

�2
�2 (t)

�2t =

�
@�

t;X;u;�

@x

�2
"2 (t) +

�
@�

t;X;u;�

@u

�2
�2 (t)

&2t;z =

�
@�

t;X;u;z;�

@x

�2
" (t) +

�
@�

t;X;u;z;�

@u

�2
�2 (t)

'2t =

�
@

t;X;u;�

@x

�2
"2 (t) +

�
@

t;X;u;�

@u

�2
�2 (t)

lim
t!1

E [p� (t) "� (t)] = 0; (18)

E

241Z
0

C (t) (1 + j"� (t)j) dt

35 <1; (19)

E

2641Z
0

("� (t))
2

8><>:(q�)2 (t) +
Z
R0

(r� (t; z))
2
v� (dz) +

DX
j=1

�
j
�2
(t)�j (t)

9>=>; dt
375 <1
(20)

where � (t) = (�1 (t) ; ::; �D (t))
T
; v� (dz) =

�
v�(t�) (dz) ; ::; v�(t�) (dz)

�T
;

and2641Z
0

(p� (t))
2

264(��)2 (t; X� (t) ; � (t) ; u� (t)) +

Z
R0

(&�)
2
(t; X� (t) ; � (t) ; u� (t) ; z) v� (dz)

+
DX
j=1

�
'j�
�2
(t; X� (t) ; � (t) ; u� (t))�j (t)

35 dt
35 <1;

(21)
for all T <1: Then u� is a stationary point for E [H n �] in the sense that

for all t � 0;

E

�
@

@u
H (t; X� (t) ; ei; u

�; p� (t) ; q� (t) ; r� (t; :) ; s� (t)) n �t
�
= 0: (22)

Proof. For simplicity we consider only the 1-dimentional case. First note that

11



by A3, A4 and (19) we have that

0 =
@

@�
J (u� + ��)

����
�=0

=
@

@�
E

241Z
0

f
�
t; Xu�+�� (t) ; u� (t) + ��; � (t)

�
dt

35������
�=0

= lim
�!0

1

�
E

241Z
0

n
f
�
t; Xu�+�� (t) ; u� (t) + ��; � (t)

�
� f

�
t; Xu� (t) ; u� (t) ; � (t)

�o
dt

35
= E

241Z
0

�
@f

@x

�
t; Xu� (t) ; u� (t) ; � (t)

�
"� (t) +

@f

@u

�
t; Xu� (t) ; u� (t) ; � (t)

�
� (t)

�
dt

35 :
(23)

We Know by the de�nition of H that

@f

@x
(t) =

@H

@x
(t)� @b

@x
(t) p (t)�@�

@x
(t) q (t)�

Z
R0

@�

@x
(t; z) r (t; z) v� (dz)�

DX
j=1

@j

@x
(t) sj (t)�j (t)

(24)
and the same for @f

@u (t) :
Applying the Itô to p� (t) "� (t) ; we obtain by (18), A2, (20) and (21)

0 = lim
t!1

E
h�
p (t)

�
" (t)

i
E

241Z
0

p� (t)

�
@b

@x
(t) "� (t) +

@b

@u
(t)� (t)

�
dt+

1Z
0

"� (t)

�
�@H

�

@x

�
dt

+

1Z
0

q� (t)

�
@�

@x
(t) "� (t) +

@�

@u
(t)� (t)

�
dt

+

1Z
0

Z
R0

r� (t; z)

�
@�

@x
(t; z) "� (t) +

@�

@u
(t; z)� (t)

�
v� (dz) dt

+

1Z
0

DX
j=1

s�j (t)

�
@j

@x
(t) "� (t) + +

@j

@u
(t)� (t)�j (t)

�
dt

35

12



= E

2641Z
0

"� (t)

8><>: @b@x (t) p� (t) + @�@x (t) q� (t) +
Z
R0

@�

@x
(t; z) r� (t; z) v (dz)

+
DX
j=1

sj (t)
@j

@x
(t)�j (t)�

@H�

@x

9=; dt+
1Z
0

� (t)

�
@b

@u
(t) p� (t) +

@�

@u
(t) q� (t)

Z
R0

@�

@x
(t; z) r� (t; z) v (dz) +

DX
j=1

sj (t)
@j

@x
(t)�j (t)

9>=>; dt
375

= E

241Z
0

"� (t)

�
�@f
@x
(t)

�
dt+

1Z
0

� (t)

�
@H�

@u
(t)� @f

@u
(t)

�
dt

35
= �E

241Z
0

�
@f

@x
(t) "� (t) +

@f

@u
(t)� (t)

�
dt

35+ E
241Z
0

@H�

@u
(t)� (t) dt

35
= � d

d�
J (u� + ��)j�=0 + E

241Z
0

@H�

@u
(t)� (t) dt

35
Therefore

E

0@1Z
0

@H�

@u
(t)� (t) dt

1A =
d

d�
J (u� + ��)j�=0

Now apply this to
� (t) = �1[t0;t0+h] (t) ;

where � is bounded and �t0-measurable, 0 � t0 � t0 + h � 1. Then if (23)
holds we get

E

0@t0+hZ
t0

@

@u
H� (t; X�

t ; ei; u
�
t ; p

�
t ; q

�
t ; r

� (t; :) ; s�t ) dt:�

1A = 0:

Di¤erentiating with respect to h at h = 0, we have

E

�
@

@u
H� �t0; X�

t0 ; ei; u
�
t0 ; p

�
t0 ; q

�
t0 ; r

� (t0; :) ; s
�
t0

�
�

�
= 0:

This holds for all �t0-measurable � and hence we obtain that

E

�
@

@u
H� (t0) n �t0

�
= 0:

Which proves the theorem.
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