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Abstract—Named Entity Recognition (NER) is a fundamental
task in Natural Language Processing (NLP), but it remains more
challenging in Chinese due to the particularity and complex-
ity of Chinese. Traditional Chinese Named Entity Recognition
(Chinese NER) methods require cumbersome feature engineering
and domain-specific knowledge to achieve high performance. In
this paper, we propose a simple yet effective neural network
framework for Chinese NER, named A-NER. A-NER is the first
Bidirectional Gated Recurrent Unit - Conditional Random Field
(BiGRU-CRF) model that combines self-attention mechanism
with multi-embeddings technology. It can extract richer linguistic
information of characters from different granularities (e.g., radi-
cal, character, word) and find the correlations between characters
in the sequence. Moreover, A-NER does not rely on any external
resources and hand-crafted features. The experimental results
show that our model outperforms (or approaches) existing state-
of-the-art methods on different domain datasets.

I. INTRODUCTION

As a basic task in NLP, NER has drawn constant research
attention for a few decades. Formally, NER aims to locate
and classify named entities in text into predefined categories,
such as person (PER), organization (ORG), location (LOC),
geopolitical entity (GPE). NER is the first step in many NLP
tasks, e.g., information extraction, knowledge graph. Today,
NER for corpus texts from different sources will lead to more
promising downstream applications.

Most related research treats NER as a sequence labeling
task. Traditional methods for English NER mostly are linear
statistical models, including Hidden Markov Model (HMM)
and Conditional Random Field (CRF) [9], which require large
amounts of knowledge (e.g., orthographic features, gazetteers).
With the rapid development of deep learning, neural networks
outperform popular statistical algorithms. Recurrent Neural
Network (RNN), together with its variants such as Long Short-
Term Memory (LSTM) [7] and Gated Recurrent Unit [3], have
shown great success in modeling sequential data. Existing
methods [10], [12] for English NER achieve state-of-the-art
performance by using LSTM-CRF models and incorporating
character information into word representations. Although the
RNN-based models can handle long-distance dependencies,
they tend to be biased towards the most recent inputs in the
sequence. The work [15] applies self-attention to semantic
role labeling task to draw structural information and global
dependencies of long sentences.

Compared with English NER, Chinese NER is more chal-
lenging. Chinese has many more complicated properties than
English, such as the lack of natural delimiters, complex
composition forms and nesting definitions, unavailable conven-
tional linguistic features, and so on. Besides, the same radical
usually implies similar semantics and usage since Chinese is
hieroglyphic. Some work based on LSTM-CRF [5], [19] or
GRU-CRF [17] models attempts to address these challenges.
But these methods either depend on carefully designed features
and external resources or perform unsatisfactorily, making
them difficult to adapt to new domains.

In this paper, to solve the above problems, we investigate
a BiGRU-CRF model combining self-attention and multi-
embeddings technologies, named A-NER. For an input sen-
tence, in order to use background knowledge, we use pre-
trained embeddings on a large corpus to initialize character
and word embeddings, and radical embeddings are randomly
initialized. The multi-embeddings layer captures the semantic
information of characters from different granularities, ranging
from radical-, character- to word-level. It consists of three
parts: (i) a Convolutional Neural Network (CNN) that encodes
radical composition information of each character into its
radical-level embedding; (ii) to utilize the order of a sequence,
we add positional encoding to character embedding to get
character-level embedding; (iii) a Convolutional Gated Re-
current Unit (GRU-Conv) network that generates word-level
embedding to learn higher-level features based on the context
of words. Then, these embeddings are concatenated and fed
to the self-attention layer to produce the final character rep-
resentation. The self-attention mechanism can automatically
focus on specific characters related to Chinese NER and find
the correlations between characters. Finally, the BiGRU-CRF
network takes the final character representations as input to
perform sequence label prediction.

This paper makes the following contributions:
• We present a novel BiGRU-CRF framework for Chi-

nese NER based on self-attention and multi-embeddings,
which can learn richer semantic features about characters
and capture structural information of sequences.

• A-NER is a simple, effective, and end-to-end model that
can be easily applied to other tasks derived from NER.

• A-NER does not need feature engineering and external
resources, which achieves remarkable performance.



The rest of this paper is organized as follows. Section II
introduces the related work. Section III describes our model
for Chinese NER. Section IV presents the experimental setup
and results. Section V concludes this paper.

II. RELATED WORK

After the concept of NER was proposed at Message Under-
standing Conference-6, people have done a lot of research.
In recent years, several neural network architectures have
been proposed for English NER. Collobert et al. [4] designed
a CNN-CRF model that requires little feature engineering,
reaching competitive results to the best statistical models. To
extract word-level information, Huang et al. [8] first applied
an LSTM-CRF network by using carefully designed spelling
features. Lample et al. [10] and Ma and Hovy [12] presented
two models similar to the work [8]. The former added an
LSTM to automatically model the character-level spelling
information of words, while the latter used a CNN.

Some work solves the challenges of Chinese NER. The
statistical models [2], [18], [20] leveraged rich hand-crafted
features. Peng and Dredze [13] explored a joint LSTM-CRF
model that trains the positional character embedding and word
embedding. E and Xiang [6] exploited character-word mixed
embeddings. Inspired by the work [10], Dong et al. [5] used
an LSTM to introduce radical-level spelling features. Self-
attention was applied by Cao et al. [1] to adversarial transfer
learning to improve model performance. Peng and Dredze [14]
combined Chinese Word Segmentation with NER. A lattice-
structured LSTM was proposed by Zhang and Yang [19],
which leverages external lexicon data. Recently, Xu et al. [17]
utilized multiple embeddings on GRU-CRF for NER without
considering the radical composition features and interactions
of characters in the sequence.

Different from existing work, A-NER is the first BiGRU-
CRF model for Chinese NER by utilizing self-attention mech-
anism and multi-embeddings technology. It can effectively
extract linguistic information of characters in the sequence and
find their correlations, thereby improving the performance of
the NER task.

III. MODEL ARCHITECTURE

In this section, we describe the model in detail. The main
architecture of A-NER is shown in Fig. 1.

Overall, it can be divided into four parts: multi-embeddings
layer, self-attention layer, BiGRU encoding layer, and CRF
decoding layer.

A. Multi-Embeddings Layer

The multi-embeddings layer is responsible for more abun-
dantly extracting semantic features of each character in the
sequence from different granularities. For the i-th character,
we concatenate radical-, character- and word-level embeddings
to form the final character representation xi. It is constructed
as xi = [xr;xc;xw], where xr ∈ Rdr , xc ∈ Rdc , and
xw ∈ Rdw are radical-, character-, and word-level embed-
dings, respectively.
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Fig. 1. Overall model architecture of A-NER. For an input sentence, we
first use the multi-embeddings layer to obtain radical-, character- and word-
level embeddings. These embeddings are concatenated to form the final
representations of characters. Then, the final representations are fed to the
self-attention layer to capture the correlations between characters. The output
of the self-attention layer is used as the input of the BiGRU layer to learn
contextual features. Finally, the CRF layer predicts the tag sequence.

1) Radical-Level Embedding: In Chinese linguistics, each
character is semantically meaningful, thanks to its pictographic
root from ancient Chinese. Intuitively, each Chinese character
can be decomposed into smaller and primitive radicals, which
contain inherent characteristics and linguistic information
about the character itself. For example, the characters “江”
and “汗” share the same radical “氵” that is a variant of
Chinese character “水”, indicating that they both have the
meanings related to water. Meanwhile, other radicals “工” and
“干” show their different spelling characteristics and semantic
information. Therefore, the radical sequences of characters are
useful to reflect their features in vector space.

We design a CNN to extract local context features of radical
sequences of characters so that the radical-level embeddings
are sensitive to the spelling of characters. The radical com-
positions of Chinese characters are obtained from the online
Xinhua Dictionary1. Fig. 2 illustrates the process of obtaining
the radical-level embedding xr of a character. For the radical
sequence R = (r1, r2, . . . , rl) of each Chinese character,
where l is the number of radicals, we perform convolution
and max-pooling operations:

xr = Maxp
(
Conv(R )

)
(1)

where xr ∈ Rdr . Using it not only allows us to get radical
composition information about characters but also generalizes
the model performance when some characters rarely or never
appear.

1http://tool.httpcn.com/Zi/.
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Fig. 2. The convolutional neural network for extracting radical-level context
features of each Chinese character. Take the character “朝” as an example. It
can be decomposed into four radicals: “十”, “日”, “十” and “月”. Then, these
initial radical embeddings are fed to CNN to obtain radical-level embedding
of the character “朝”.

2) Character-Level Embedding: Characters are the basic
units in Chinese that can express clear meanings. Every
sentence or word is composed of characters, so it is necessary
to exploit the rich semantics inherent in characters. Moreover,
the order of characters in a sentence is critical, while random
characters are meaningless. To take advantage of the order
of the sequence, we add ”positional encodings” [16] to the
character embeddings to inject some information about the
relative or absolute position of the characters in the sequence.

For an input character sequence C = (c1, c2, . . . , cn),
where ci ∈ Rdp is the raw character embedding, n is the
sequence length. We use sine and cosine functions of different
frequencies to directly construct the positional encoding with
the same dimension dp:

PE2k(pos) = sin
(
pos/100002k/dp

)
(2)

PE2k+1(pos) = cos
(
pos/100002k/dp

)
(3)

where pos is the position and k is the dimension. That is,
each dimension of the positional encoding corresponds to a
sinusoid.

We choose the sinusoidal version because it may allow the
model to extrapolate to longer sequences. Compared with the
learned positional embeddings, it does not introduce additional
parameters and produces almost the same results. Then, we
concatenate the positional encoding to the raw character
embedding as a character-level embedding: xc = [ci;PEi],
where xc ∈ Rdc , dc = 2dp.

3) Word-Level Embedding: Word is a higher-level rep-
resentation of Chinese characters, embodying the linguistic
characteristics and logical rules of a sentence. However, a
word may contain multiple characters. To align each word
and character, we copy the word by the number of characters
that make up it. For example, in the word “中国”, “中” and

“国” are aligned with the same raw word embedding of “中
国”, which reflects their common context and usage scenarios.

To capture the linguistic information contained in the word
sequences and reduce the word segmentation errors, we use
a GRU-Conv network. It is composed of a bidirectional GRU
layer and a convolution layer. First, the raw word embedding
wi is fed to the BiGRU layer:

M = BiGRU(w1,w2, . . . ,wn) (4)

The BiGRU can learn long-distance dependencies between
words. Then, the convolution layer takes the output M as input
to extract local context features:

N = Conv(M ) (5)

Finally, a word-level embedding is represented as xw = Ni,
where xw ∈ Rdw .

B. Self-Attention Layer

Traditional embedding representation methods don’t con-
sider the correlations between characters, resulting in the
information in the input sequence is not fully utilized. To solve
this problem, we use a self-attention mechanism [16] to extract
lexical features and semantic information deeply. This mech-
anism can automatically focus on specific characters that play
an important role in Chinese NER and find the relationships
within a sequence while ignoring useless information.

As the model processes each character (e.g., each position
in the sequence), self-attention allows it to focus on other
positions in the input sequence for clues that can help lead to a
better encoding for this character. In other words, it combines
the “understanding” of other relevant characters into the one
we’re currently processing.

For the output X = (x1,x2, . . . ,xn) of the multi-
embeddings layer, the vector-matrix X is mapped to queries
Q, keys K and values V matrices by individually multiplying
the trained weight matrices WQ, WK , WV . Then the Q,
K, V are fed to the scaled dot-product attention function to
generate the output matrix X′ as:

Attention(Q,K,V) = softmax
(QKT

√
dk

)
V (6)

where dk is the dimension of K.
The first step is to calculate the relevance scores between

characters by computing the dot products of the query with
all keys, determining how much focus to other characters in
the sentence when we encode a character. And it divides the
scores by

√
dk, which results in more stable gradients. Then a

softmax is applied to get the weights on the values, meaning
how much each character will be expressed at this position.
Finally, we sum up the weighted value vectors to generate the
self-attention output.

C. BiGRU Layer

After obtaining the relevance of characters by the self-
attention layer, we use a BiGRU layer to learn contextual
features and long-distance dependencies in the sequence. For



an input sequence X′ = (x′1,x
′
2, . . . ,x

′
n), it returns a

context sequence H = (h1,h2, . . . ,hn).
The BiGRU layer consists of a forward GRU network and a

backward GRU network. They are two distinct networks with
different parameters. The forward GRU computes a represen-
tation

−→
ht of the left context of the sequence at every character

t. Similarly, the backward GRU computes the right context
representation

←−
ht from the opposite direction. The context

representation of the character is formed by concatenating its
left and right context representations, ht = [

−→
ht;
←−
ht].

D. CRF Layer

Although the hidden context vector ht can be directly made
independent tagging decisions for each output yt, there are
strong dependencies across output labels because of grammar
rules (e.g., I-ORG cannot follow B-PER). For NER, it is
beneficial to consider the correlations between labels in neigh-
borhoods and jointly decode the best chain of labels. CRF [9]
is a probability graph model that follows the Markov property,
which focuses on the sentence level rather than decoding the
tag separately. It has been shown that CRF can produce higher
tagging accuracy in general. Therefore, we model them jointly
using a CRF.

Given a generic sentence X = (x1,x2, . . . ,xn), the score
of prediction sequence y = (y1, y2, . . . , yn) is defined as:

s(X,y) =

n∑
i=0

Ayi,yi+1 +

n∑
i=1

Pi,yi (7)

where P is the matrix of scores output by the BiGRU, and
Pi,yi represents the score of the tag yi of the ith character.
A is a matrix of transition scores produced by the CRF, and
Ayi,yi+1

represents the transition score from tag yi to tag yi+1.
Then, a softmax over all possible tag sequences YX yields a
probability for the sequence y:

p(y|X) =
es(X,y)∑

y′∈YX
es(X,y′)

(8)

During training, the log-probability of the correct tag sequence
is maximized. While decoding, we predict the optimal label
sequence with the maximum score given by:

y∗ = argmax
y′∈YX

s(X,y′) (9)

We only model bigram interactions between outputs and adopt
the Viterbi algorithm during decoding.

IV. EXPERIMENTS

In this section, we show the details of our experimental
datasets, settings, and results.

A. Experimental Setup

Datasets. We evaluate our model on two datasets. For the
social domain, we use a standard Weibo NER dataset [13] with
a lot of irregular spoken usage, which includes both named
and nominal mentions. For the news domain, we experiment
on a formal MSRA News dataset [11], which only has named

Table I. Statistics of Corpus Datasets

Dataset Type Train Dev Test

Weibo
Sentence 1.4k 0.27k 0.27k

Char 73.8k 14.5k 14.8k
Entity 1.89k 0.39k 0.42k

MSRA
Sentence 46.4k - 4.4k

Char 2169.9k - 172.6k
Entity 74.8k - 6.2k

entities. The two corpora have been separately divided into
training, development, and test sets, as shown in Table I.
Pretrained Embeddings. Following the related work [6],
[13], [17], we use the Jieba toolkit for word segmentation.
Character embeddings and word embeddings are initialized
with pre-trained embeddings provided by Tencent AI Lab 2.
Moreover, we get radical compositions of Chinese characters
from the online Xinhua Dictionary. These radical embeddings
and out-of-vocabulary words are all randomly initialized with
a uniform distribution. We will fine-tune these initial embed-
dings, modifying them during the gradient update by back-
propagation.
Parameter Settings. Parameter optimization is performed
with a standard “Adam” algorithm. All embeddings have the
same dimension, where dr = dp = dw = 200. We set the
hidden state size of GRU to 150. For CNN, we use 200 filters
with window size 3. To mitigate overfitting, we apply the
dropout method and early stopping to regularize our model.
We fix the dropout rate at 0.5 for all dropout layers (e.g., CNN,
BiGRU).
Evaluation Metrics. In this paper, we use the IOB (Inside,
Outside, Beginning) tagging scheme. Standard precision (P),
recall (R), and F1-score (F1) are used as evaluation metrics.
Early stopping is applied in each experiment based on the
loss of the development set. We run five experiments on each
dataset and count the average precision, recall, and F1-score.

B. Experimental Results

This section presents the experimental results and discusses
their implications.

1) Weibo Dataset: The results on the Weibo dataset are
shown in Table II. Obviously, our proposed method achieves
state-of-the-state performance. Compared with the best base-
line [17], A-NER improves 2.97% in precision, 2.13% in
recall, and 2.93% in F1-score, respectively. The reasons are
as follows: (i) the multi-embeddings layer makes full use of
semantic information from radical-, character- and word-level;
(ii) the self-attention mechanism can effectively capture the
correlations between characters. Through the above ways, we
obtain richer semantic features and structural information of
characters in sentences.

In the second part of Table II, we give the results of our
baseline (i.e., A-NER removes the self-attention layer) and

2https://ai.tencent.com/ailab/nlp/embedding.html.



Table II. Weibo NER Results

Models P R F1
Peng and Dredze (2015) [13] 63.84 29.45 40.38
Peng and Dredze (2016) [14] 61.64 38.55 47.43

E and Xiang (2017) [6] 65.29 39.71 49.47
Cao et al. (2018) [1] 55.72 50.68 53.08

Zhang and Yang (2018) [19] 53.04 62.25 58.79
Xu et al. (2019) [17] 75.17 64.39 68.93

Baseline 76.03 64.87 70.01
A-NER 78.14 66.52 71.86

A-NER. We observe that the self-attention mechanism can
effectively improve the model performance.

2) MSRA Dataset: Table III shows the experimental results
on the MSRA dataset. The existing state-of-the-art system [19]
investigates a lattice-structured LSTM model to incorporate
lexicon information into the neural network. Their model
achieves the precision of 93.57%, recall of 92.79%, and F1-
score of 93.18%. However, it uses external lexicon data, so the
quality of the lexicon will affect the performance of Chinese
NER due to some noise words.

Table III. MSRA NER Results

Models P R F1
Chen et al. (2006) [2] 91.22 81.71 86.20

Zhang et al. (2006) [18] 92.20 90.18 91.18
Zhou et al. (2013) [20] 91.86 88.75 90.28
Dong et al. (2016) [5] 91.28 90.62 90.95

Zhang and Yang (2018) [19] 93.57 92.79 93.18
Xu et al. (2019) [17] 91.57 91.33 91.45

Baseline 92.34 91.87 92.10
A-NER 93.28 92.16 92.71

Our model performs slightly worse than the lattice-
structured LSTM but outperforms all other methods. A-NER’s
precision, recall, and F1-score are 93.28%, 92.16%, and
92.71%, respectively. The reason is that A-NER may suffer
from insufficient learning ability on such huge datasets since
it is relatively simple. In general, A-NER is very effective and
robust, which reaches a competitive result without any external
resources and carefully designed features.

V. CONCLUSION

In this paper, we propose a BiGRU-CRF framework that
combines self-attention with multi-embeddings to solve the
challenges encountered by Chinese NER. For an input se-
quence, A-NER can extract semantic information about char-
acters from multiple granularities and learn the correlations
between characters. Therefore, our model obtains richer lin-
guistic information than previous work and dose not require
large amounts of task-specific knowledge. The proposed model
is evaluated on different datasets and achieves state-of-the-art
or competitive performance.
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