Demonstration of Differential Circuit (DiffC)-PUF Addressing and Readout Platform

Alexander Scholz, Lukas Zimmermann, Axel Sikora, Mehdi Tahooori and Jasmin Aghassi-Hagmann

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

October 1, 2019
Demonstration of Differential Circuit (DiffC)-PUF Addressing and Readout Platform

Alexander Scholz1,5, Lukas Zimmermann1,5, Axel Sikora1, Mehdi B. Tahoori6 and Jasmin Aghassi-Hagmann1,5

1Institute for Applied Research, Offenburg University of Applied Sciences, Germany
1Institute of Reliable Embedded Systems and Communication Electronics, Offenburg University of Applied Sciences, Germany
5Institute of Nanotechnology, Karlsruhe Institute of Technology, Germany
6Chair of Dependable Nano Computing, Karlsruhe Institute of Technology, Germany

1 Hardware Demo Objectives
This Demo presents a complete platform for a discrete board-level analog PUF including the addressing and readout in both hardware and software infrastructures. The Differential Circuit (DiffC)-PUF is assembled using discrete components, as shown in Figure 1. With the current setup, 28-bit PUF responses can be generated. The used approach allows non-linear bit width scaling with physical expansion. The DiffC-PUF platform enables access to a reliable PUF in a full board-level SoC system including software for security analysis in R&D settings.

2 Introduction
A Physical Unclonable Function (PUF) describes a hardware-based security primitive that can be utilized for authentication, identification and secure key generation [1][2][3]. As proposed in literature, analog PUFs, exploiting transistor mismatch, are usually complex and costly prototype ICs [4][5]. Unfortunately, this limits the direct physical access for the research community. With the herein demonstrated DiffC-PUF, which exploits variation mismatch in the manner of analog PUF circuits, the community can get full access to a reliable PUF in a real hardware system.

3 Attack Model
Not applicable

4 Experimental Results
The entire DiffC-PUF evaluation platform consists of the DiffC-PUF (highlighted with green background on Figure 1) and a commercial, off the shelf microcontroller (EFM32 Leopard Gecko development board) for PC communication, challenge generation and response readout. The DiffC-PUF’s control logic, for addressing and readout routing and the DiffC-PUF core, as intrinsic variability source, are custom PCB designs. The DiffC-PUF core is designed such that single core entities are detachable, allowing interchangeability of core circuits for large-scale characterization.

Figure 1: DiffC-PUF evaluation platform with microcontroller (left) and the DiffC-PUF (highlighted with green background), consisting of the control logic and the detachable DiffC-PUF core.
The system is tested with regards to PUF metrics such as reliability and uniqueness. Furthermore, each DiffC-PUF response was read out over 125 cycles to observe bit errors.

5 Key Observations and Outcomes
The experimental results of the fabricated DiffC-PUF core instances show an average reliability of 99.20% and a uniqueness value of 48.84%. The interchangeability of DiffC-PUF cores can be seen in the demonstration.

6 List of Equipment
To power the platform, we used two power supplies of the type HP E3631A. The communication interface between the PC and microcontroller is controlled via Python script.

7 References