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Abstract. Wildfires are one of the disasters that are difficult to detect
early and cause significant damage to human life, ecological systems, and
infrastructure. There have been several research attempts to detect wild-
fires based on convolutional neural networks (CNNs) in video surveillance
systems. However, most of these methods only focus on flame detection,
thus they are still not sufficient to prevent loss of life and reduce economic
and material damage. To tackle this issue, we present a deep learning-
based method for detecting wildfires at an early stage by identifying
flames and smokes at once. To realize the proposed idea, a large dataset
for wildfire is acquired from the web. A light-weight yet powerful archi-
tecture is adopted to balance efficiency and accuracy. And focal loss is
utilized to deal with the imbalance issue between classes. Experimental
results demonstrate the effectiveness of the proposed method and val-
idate its suitability for early wildfire detection in a video surveillance
system.

Keywords: Early wildfire detection · video surveillance · deep learning.

1 Introduction

Wildfire is a global problem causing devastating damage every year [24]. Accord-
ing to the National Interagency Fire Center (NIFC), 46,706 wildfires occurred
between January 1 and November 22, 2019, burning about 4.6 million acres [8].
However, existing fire detection studies focused on flame detection can only work
after the fire has spread over a large area. And it makes the control of the fire
difficult or sometimes impossible to stop in time. As a result, wildfires can cause
catastrophic damage to the atmosphere and the environment. Another problem
caused by wildfires is a long-term disaster, such as impacts on local weather
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patterns, global warming, and extinction of rare species of the flora and fauna.
Therefore, developing an effective method to detect wildfire at an early stage is
very important.

Most early studies attempted to explorer color, texture, shape, and motion
features for fire detection. For instance, Chen et al. [1] proposed a decision rule-
assisted fire detection method that examines the dynamic behavior and irregu-
larity of flame in both RGB and HSI color spaces. Later works considered ma-
chine learning-based classification approaches such as support vector machine
(SVM) [11] or neural networks [2, 26]. Chenebert et al. [2] presented a shal-
low neural network classifier using the color-texture feature. Recently, Foggia
et al. [4] introduced a multi-expert framework that combines shape, color, and
motion properties.

Thanks to the recent advances of deep learning, further developments based
on the CNNs now perform more robustly compared to earlier works. For in-
stance, Sharma et al [19] used well-known CNN architectures such as VGG16 [20]
and ResNet [6]. And Muhammad et al. [14] adopted other architectures like
AlexNet [12] and Inception [21] architectures to detect flame more efficiently
and robustly. There was also an attempts to design dedicated architectures for
fire detection. Namozov and Cho [15] presented a VGG16 based novel deep con-
volutional neural network, and an effective training strategy on a limited number
of images by increasing the number of training images using a Generative Ad-
versarial Networks (GAN) [5] and data augmentation techniques. Meanwhile,
Jadon et al. [9] proposed a light-weight neural network that ensures real-time
inference on low-powered devices such as Raspberry Pi.

In this work, we present a method for detecting wildfires at the early stage
using deep CNNs. Due to the lack of data that meets the scale and diversity, we
collect a large dataset including smokes, flames, etc. Also, we use a light-weight
yet powerful architecture to balances efficiency and accuracy. And, to overcome
the class imbalance issues, we also use Focal loss [13]. Finally, our experiments
demonstrate that the effectiveness of the proposed method and suitability for
early wildfire detection in a video surveillance system.

The rest of the paper is organized as follows. The next section describes the
collection of dataset for detecting wildfires at an early stage. In Section 3, we
present our method for early wildfire detection in surveillance video. Experimen-
tal results and discussion are given in Section 4. Conclusion and future work are
given in Section 5.

2 Dataset Collection

Since the dataset previously used for fire detection only considers flame or smoke,
there exists a potential to cause many errors in real-world video surveillance
environments. Another problem is that the scale and diversity of the datasets
previously used for wildfire detection are limited, which is insufficient to train
deep CNNs. To address this issue, we collect a large set of data containing initial
smoke or flame on the rural areas for early wildfire detection. Also, to take



Early Wildfire Detection Using Convolutional Neural Network 3

complexities and ambiguities on real-world video surveillance environment into
consideration when collecting data for wildfire, we include not only smokes and
flames but also subjects having visual similarities such as clouds, fogs, snows,
waves, waterfalls, etc. More specifically, in order to detect wildfire in an early
stage, we first separated flame or smoke-like things having particles and others
like solid, however, there are a variety of things like clouds, fog, waterfalls, waves,
snow, and flock of birds, which has a flame or smoke-like feature, so it was
a necessity to distinguish between them. Moreover, since fires can occur not
only natural objects such as mountains adjacent to the coast, lakesides but also
man-made structures such as ski slope, town border (rural), all of these places
should be considered. Therefore, we summarized the dataset into three groups:
solid (rural), smoke or flame, and smoke-like objects having particles. Then we
categorized the dataset into six classes such as cloud, snow, rural, fire, wave, and
waterfall. Further details to determine the dataset categories are discussed later.

Rest of this section, we present a multi-stage strategy to collect a large early
wildfire detection dataset including: how candidate images were collected; and
how the dataset was cleaned up both automatically and manually. Table 1 sum-
marizes each stages and corresponding statistics. Individual stages are discussed
in detail in the following paragraphs.

Table 1. Dataset statistics after each stage of processing.

Stage Description # images

1 Automatic image crawling 152,996
2 Automatic and manual cleanup 16,410
3 Final patch and class labeling 14,741

2.1 Automatic Image Crawling

Images could be easily collected from an image search site. An image crawl-
ing tool helps to collect images automatically from such sites. Here the image
crawling tools were very useful, and most tools supported common image search
engines such as Google, Bing, and Baidu. With such a tool, all we have to do is
finding proper keywords. An image crawling tool collects only several hundred
images for each keyword. Therefore a lot of keywords are required. For instance,
keywords such as bushfire, forest fire, wildfire, etc. were selected for the ‘fire’
class. To obtain more images, we used keywords from various languages, in-
cluding English, Korean, Chinese, and Japanese. A total of 101 keywords were
selected for all classes and finally 152,996 images were collected.

2.2 Automatic and Manual Cleanup

Although a large number of images were collected at the first stage, most of
the images were not related to our problem. For example, most images from the
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Fig. 1. Examples of images for test set. From the left, each column shows images
corresponding to cloud, snow, rural, fire, wave, and waterfall.

keyword ‘wave’ were related to hair-style. Therefore it is required for removing
irrelevant images manually. After removal, only 18,929 images were left alive.

Another problem was exact or near duplication between images. It has been
observed that exact duplication due to the same images being found at different
locations, or near duplications caused by geometric transformations such as mir-
ror, rotation, cropping, or color adjustments and JPEG artifacts. Most image
duplicates can be removed automatically with a duplicate removing tool, and
finally, only 16,410 images were survived.

At this point, two types of issues may still remain; first, some images are
too small to use; and second, some classes have an insufficient number of images
compared to others. Thus, we filtered out all images having a smaller resolution
than 300 × 300 pixels. And classes with fewer than 200 images were discarded.
In addition, some classes like ‘fog’ that are difficult to distinguish from others
were removed. As a result, a total of 13,051 images of six classes remained.
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2.3 Final Patch and Class Labeling

In this stage, part of the image was manually labeled with a specific class. To this
end, we used the image labeling tool. One image can have one or more patches,
and patches can be mapped into different classes even if they are obtained from
the same image. All patches cropped from images are resized with a regular size
of 512 × 512 pixels. Finally, our dataset consists of a total of 14,504 patches in
six classes including cloud, snow, rural, fire, wave, and waterfall.

Table 2 summarizes the number of images in each class. Figure 1 shows
examples of images for each class of clouds, snows, rural, fires, waves, waterfalls.
The ‘rural’ class contains images of mountains, seas, lakes, rivers, etc. And the
‘fire’ class consists of images of the flame and smoke in rural areas.

Table 2. Dataset statistics summary.

Class Cloud Snow Rural Fire Wave Waterfall Total

# images 2,503 605 6,832 1,901 1,888 1,012 14,741

3 Proposed Framework

In this section, we will describe the selection of network architecture suitable for
a video surveillance systems, and present our training strategy in detail.

3.1 Network Architecture Selection

Current state of the art CNN models, such as AlexNet [12], VGG16 [20], In-
ception [21], and ResNet [6] have been adjusted and demonstrated promising
performance in numerous computer vision issues and applications, such as ob-
ject detection, image segmentation, super-resolution, and classification. However,
these deep CNN models are not suitable for real-time wildfire detection in a video
surveillance system due to their computational costs and resource requirements.

Recently, Tan and Le introduced EfficientNet [23]. They systematically stud-
ied the impact of scaling different dimensions of the model and presented a
family of models called EfficientNet which improve overall performance while
balancing all dimensions of the network – width, depth, and image resolution.
Surprisingly, these models offer significant gains for speed and resource efficiency.
Especially, their baseline model, EfficientNet-B0, allows real-time inference on
a low-powered device such as Raspberry Pi. Thus we adopt EfficientNet-B0
as our baseline network architecture. Table 3 illustrates EfficientNet-B0 as our
baseline network structure. The mobile inverted bottleneck convolution called
MBConv [17, 22] is the main building block for EfficientNet. In EfficientNet’s
MBConv, direct shortcuts between the bottlenecks that connect much fewer
channels compared to the expansion layer of the residual block [6] and combined
depthwise separable convolution effectively reduce computation by a factor of
spatial resolution, and squeeze-and-excitation optimization [7] was also added.
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Table 3. Network architecture: EfficientNet-B0 [23].

Stage Operator Input resolution Output channels # Layers

1 Conv(3x3) 224× 224 32 1
2 MBConv(3x3) 112× 112 16 1
3 MBConv(3x3) 112× 112 24 2
4 MBConv(5x5) 56× 56 40 2
5 MBConv(3x3) 28× 28 80 3
6 MBConv(5x5) 14× 14 112 3
7 MBConv(5x5) 14× 14 192 4
8 MBConv(3x3) 7× 7 320 1
9 Conv(1x1) & Pooling & FC 7× 7 1280 1

3.2 Class Imbalance

The fire detection dataset has an inherent imbalance due to its rarity. Such class
imbalance causes two problems: Training is inefficient as most samples are non-
fire that contribute no useful learning signal; The non-fire samples can overwhelm
training and lead to degenerate models.

To address the inherent class imbalance issue, we use Focal loss [13]. The
focal loss is designed to resolve the class imbalance problem by weighting the
contribution of easy example smaller even if their number is large. As a result,
it focuses on training a sparse set of hard examples.

The original focal loss for binary classification defined as:

FL(pt) = −(1− pt)γ log(pt), (1)

where

pt =

{
p if y = 1

1− p otherwise,
(2)

and p ∈ [0, 1] is model’s estimated probability for the class with label y = 1.
Based on this, we can rewrite the multi-class form as:

FL(pt) = −
C∑
i=1

(1− pt(i))γ log(pt(i)), (3)

and

pt(i) =

{
p if y = i

1− p otherwise,
(4)

where C is the number of classes. The focusing parameter γ was set to 2.0 in
our experiment.

3.3 Training

We used a 7 : 1 : 2 split between the training, validation and test sets. And strat-
ified sampling was used to partitioning the dataset so that each set had evenly
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balanced classes. In order to increase the diversity in our train dataset, we used
image augmentations such as random cropping, resizing, and flipping. Random
cropping produces a patch having a random size ∈ [0.08, 1.0] and random aspect
ratio ∈ [3/4, 4/3] of the original image. This patch is resized to 224 × 224 and
finally flipped horizontally at random.

We train and fine-tuned ImageNet [3] pre-trained neural network model using
a transfer learning strategy. Instead of fine-tuning only the last layer of the neural
network, we trained all the layers using different learning rates. The learning rate
for pre-trained convolutional layers was set to a factor of 0.1 than of the last
dense layers. For regularization, we used dropout between convolutional layers
and dense layers with probability of 0.2.

Our model was trained using the Adam optimizer [10] with β1 0.9 and β2
0.99; weight decay 1e-4; initial learning rate 0.001. The learning rate was decayed
by a factor of 0.1 every 30 epochs. The batch size and total epochs were set to
256 and 90, respectively.

3.4 Implementation Details

The proposed method was implemented with PyTorch [16]. And the neural net-
work trained and evaluated on a workstation equipped with Intel Core i7-6950X
3.0 GHz CPU, 128 GB memory, and two NVIDIA GeForce GTX 1080 GPUs.

4 Experimental Results and Discussion

In this section, we will first evaluate our model on multi-class classification and
binary wildfire detection. Additionally, we also describe how to extend patch
classification to frame-level detection.

4.1 Multi-class Classification

The primary multi-class classification accuracies on the validation and test sets
are 99.46% and 98.58%, respectively. Figure 2 draws the normalized confusion
matrix for each class. As can be seen in Figure 2, the model trained achieved
higher and balanced accuracy for individual classes. This means that focal loss
effectively alleviated class imbalance by increasing loss contribution from hard
examples.

4.2 Binary Projection

For the binary wildfire detection, we projected multi-class classification into
binary classification, either fire or non-fire. The validation set is composed of
190 fire images and 1,284 non-fire images, so a total of 1,474 images. And the
test set consists of 381 positive images and 2,570 negative images, so 2,951 images
in total.
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Fig. 2. Confusion matrix on test set.

To determine either fire or non-fire, a cut-off threshold obtained from receiver
operating characteristic (ROC) analysis in the validation set is adopted. The
details of finding the optimum cut-off point will be discussed next subsection.

Table 4 shows evaluation statistics for validation and test sets. We have
used six different metrics (accuracy, precision, recall, F1-score, FPR, and FNR)
in order to present a complete and reliable analysis. The FPR and FNR denote
false positive rate and false negative rate, respectively. As can be seen in Table 4,
the results obtained for each metric is encouraging. It is also noted that the
result gives balanced FPR and FNR since the cut-off threshold adopted from
the Youden’s index.

To investigate the effectiveness of the binary projection, we also compared
binary fire vs non-fire classifier. The ‘binary’ and ‘multi-proj.’ represent simple
binary classification and multi-class classification with binary projection, respec-
tively. As shown in the test set metrics, although binary classification gives better
validation set performance, however, our binary projection following the multi-
class classification provided better generalization performance.
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Table 4. Evaluation statistics on validation and test sets(%)

Method Split Accuracy Precision Recall F1-score FPR FNR

binary
Val. 99.53 96.92 99.47 98.18 0.47 0.53
Test 98.78 93.89 96.85 95.35 0.93 3.15

mult-proj.
Val. 99.32 95.45 99.47 97.42 0.70 0.53
Test 99.05 96.57 96.06 96.32 0.51 3.94

4.3 Optimal Cut-off Selection

The optimal cut-off point can be found from Youden’s J statistic (also known
as Youden’s index) [25]. The index is defined for all points of a ROC curve, and
the maximum value of the index is known as a good criterion for choosing the
optimum cut-off point when a diagnostic test provides a numeric result [18].

Figure 3 illustrates the ROC curve and Youden’s J statistic on the validation
set. We used a threshold corresponding to the maximum value of the index from
the ROC curve of the validation set as the cut-off value.
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Fig. 3. Receiver operating characteristic curve (a) and Youden’s J statistic on valida-
tion set (b). The red dot on (b) denotes the optimal cut-off threshold point for the
validation set.

4.4 Patch Classification to Frame-Level Detection

Conventional CNNs only take a fixed-sized image patch, for instance, 224 ×
224, as an input. In order to accept variable-sized images as input, therefore,
additional modification is required. Inspired by Class Activation Map [27], thus,
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we modified the last two layers of the trained model to handling the arbitrary
size inputs.

In order to keep all responses from previous layers, first we removed the adap-
tive average pooling layer. Then we performed the following processes to handle
arbitrary-sized tensor in the dense layer First, (B,C,H,W ) tensor generated as
result of the average pooling layer is reshaped to (B,C,H ×W ). Then, the last
two axes of the tensor are swapped and reshaped as (B×H×W,C). Finally, the
dense layer is applied to (B ×H ×W, 6) tensor and then, the output tensor is
reshaped into (B,H,W, 6). Here B, C, H, and W denote the batch size, channel,
height, and width for feature map. Since the last dense layer reduces the number
of the channel for the feature map to 6, the result tensor only has 6 channels.

4.5 Qualitative Wildfire Detection Results on Unseen Data

Figure 4 illustrates the frame-level wildfire detection results using Class Activa-
tion Map [27]. Note that the response for each input is normalized by subtracting
the optimal cut-off threshold and then divided by the response range obtained
from the validation set. As can be seen in the first and second rows of Figure 4,
the trained model successfully detected the initial smoke and flame of wildfire.

5 Conclusions

In this work, we present an efficient and accurate CNN based early wildfire detec-
tion methods for video surveillance system. To realize our method, we collect a
large dataset for early wildfire detection under the consideration of ambiguity in
the real-world video surveillance environments. By adopting an efficient network
architecture and sophisticate training strategy, we demonstrate that the learned
model not only encouraging in performance in terms of accuracy, precision, re-
call, and F1-score but also suitable for a video surveillance system. As future
work, we plan to improve the performance of the model even a more diverse
dataset. Furthermore, we plan to extend our work to early wildfire detection
and localization as well.
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