
EasyChair Preprint
№ 3434

Object Detection Using Deep Learning

Mukul Bhardwaj

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 18, 2020

 1

 Object Detection Using Deep Learning
Mukul Bhardwaj

Bhardwaj.mukul1998@gmail.com

Galgotias University, Uttar Pradesh 203201, India

Abstract

Today computer is one the important part in one's life almost everyone is using a computer

whether that is a pc or a smart-phone. Digital technology has seen a large boom in past two

decades which is resulted in an increase in the power of modern computer devices even modern

smartphones are capable of performing over billion operations per second with this increase on

performance, usage of these devices has also increased rapidly which is resulted in an increase

in the amount of data. With this increase in power of modern pcs concepts like Deep Learning

has also seen a boom with the involvement of deep learning concepts object detection in real-

time become a reality using deep learning we can detect the object very quickly and with higher

accuracy.

 Keywords: Deep Learning; CNN; Pooling; Flattening; Full Connection; Object Detection

1. Introduction

 Pre deep learning era concepts like sliding

window, selective search, cascade classifier

was used these were basically based on

handcrafted features these models were not

that accurate and also not that fast to detect

and classify an object.

So, with the evolution of deep learning the

detection and classification become more and

more accurate and the detection becomes

very fast. In deep learning Convolutional

Neural Network [1] is a subclass which is

mainly used in the working with visual

aspects or features. Convolutional Neural

Network extracts features from the image to

identify the object.

Features like edge, corner, region of interest

and interest points. To identify these features;

feature detectors like canny which is used to

detect edges, SUSAN is used for edge and

corner detection, grey-level blobs is used for

blob or region of interest detection.

So, to summaries to identity the features we

apply different detector or filters to obtain

certain features, these features are stored in

mailto:Bhardwaj.mukul1998@gmail.com

 2

feature vector which is used in further

calculation or detection and then

classification.

In this paper, we will discuss these concepts

in details and we will get a better

understanding of the Convolutional Neural

Network and how it really works. Also, we

will learn about the concepts like

convoluting, pooling, flattening which are the

basics of CNN.

2. Object Detection Model

For building CNN model, we need to

understand certain components [2] which are
to be followed

• Convolution
• Pooling
• Flattening
• Full Connection

2.1 Convolution

In mathematical terms convolution is a
function, which is used to find the
relation, that is how the shape or pixel
behave on modifying the other pixel.

Mathematical formula of Convolution is

Basically, inside convolution 3 steps are
getting performed

A. Input
We know that image is an array.
Black and white image is a 2D
array whereas RGB image is a 3D
array

B. Feature
Feature Detector is a filter which
we apply on the input and perform
elementary multiplication
operation pixel by pixel this
allows us to obtain feature from
the input image like if we apply
canny, we get all the edges. It is
also an array of any dimension

C. Feature Map
Feature Map or Activation Map,
contains all the values or all the
feature from the image after
applying the filter or the filters or
the feature detector.

2.2 Pooling

Pooling is nothing but the
identification of a particular feature
with spatial features. This helps the

Figure 1 [6] Simple Graphical Representation of CNN
Figure 2 [6] How filter is applied and feature maps are created to

form Convolution Layer

Equation 1 Mathematical formula for Convolution

 3

convolutional neural network to
identify that feature irrespective of
the location of that feature in the
particular position.
There is a different type of Pooling
like Max Pooling, Mean Pooling,
Sum Pooling.
We have discussed about pooling so
many of you will about “How does
Pooling work?"
The Conceptual thing is we select n
x n pixel from the image and
considering the type of pooling, the
model selects the value and discards
the other values.
Since we have used Max pooling in
the project just to select the max
value pixel since max value
represent the most dominating
feature, below image, shows how the
max-pooling works.

In the figure 3 we have selected a 2 x 2
matrix and selecting the maximum value
from the box like from highlighted box in
feature map since ‘4’ is the maximum
value so we have selected ‘4’ and since
we have selected the maximum value
irrespective of the position of the feature,
so will always get that feature resulting in
the removal of the distortion both spatial
and textural distortion.
We can say that pooling thus reduces the
size of the feature map which results in a
reduced number of nodes which reduces

the complexity and that too without
losing any vital feature.
Pooling also removes the problem of
overfitting problem: a problem where our
model learns too many features and
resulting in reducing the accuracy of the
model.

2.3 Flattening
Flattening is nothing but putting all the
values from pooled feature map into one
single vector

So, with flattening there is a question that
“why there is no loss of spatial structure
with flattening” as in this step all the
features are mapped into single vector we
are not adding or removing any sort of
feature values we are just flattening them.
High values in the feature map represent
spatial features and since we have applied
max pooling, we kept all these features
and flattening just puts these features into
a single layer or column-like structure as
shown in Figure 4, thus we are keeping
all the features.
Without Convolution and Pooling, if we
apply Flattening, we won't get any
information about the other pixels.

2.4 Full Connection

Full Connection is adding artificial neural
network to our convolutional neural
network. The whole purpose of involving
ANN is to combine the feature to get

Figure 3 [6] Max pooling: selecting the maximum value from

the n x n matrix

Figure 4 [6] Flattening the Pooled feature map

 4

prediction and classification and also data
is combined into a wide variety of
attribute which makes CNN more capable
of prediction and classification of the
object in an image which is the whole
purpose of the CNN.
There are basically 3 layers in Full
Connection as shown in Figure 5: Input
Layer, Full Connection layer (ANN),
Output layer.
Vectors which are generated form
flattening serves as the input layer, these
inputs pass through full connection layer
where all the prediction and classification
is done and the output/outputs are passed
to the output layer.

3. Implementation

We have used the model knowledge to
create our own CNN model for the object
detection. Keras Framework is used which
uses TensorFlow at the backend.
The model will accept the image as an input
and we need to create to folders one for
validation and other for testing. Generally,
we divide the data in such a way that about
80% images are for training and 20% images
are for testing for example if we are using
10000 images then 8000 images for training
and 2000 for testing. This ratio is not
mandatory, but for the better performance
and testing, we follow this ratio.

In this we see the steps to build the model
using the CNN knowledge that we have
discussed we see how the convolutional layer
is created, how is pooling, flattening, and full
connection using python code.
The first step is to check the format of the
image, here we are just checking whether
RGB format is coming first or not.
Initialization of CNN is done using
"Sequential()” [3] prior using this make sure
that Keras library is called.
Post initialization convolutional layer is
created using Conv2d() [3] function in
conv2d() we need to provide the filter,
kernel_size and input_shape, an activation
function is also required I have used ReLU,
[4] to remove the linearity from the model.
ReLU [4] removes all the negative values and
replaces them with zero

for max pooling add(MaxPooling2d()) [3]is
used in this function we need to provide the
pool_size.
Below is the code which is used to initialize
the CNN and creating a convolutional layer
and also calling activation function.

“#Initializing CNN
model = Sequential()
#Convolutional Layer
model.add(Conv2D(32,(2, 2), input_shape =
input_shape))
model.add(Activation('relu'))
#Pooling
model.add(MaxPooling2D(pool_size=(2,2))
)”

we can add multiple convolutional layers in
order to extend the accuracy.
Flattening can be done using Flatten() [3].
For full connection Dense() [3] is used for
adding hidden layer in the full connection,
for the hidden layer we will be using ReLU
[2] to remove linearity Dropout() [3] is used

Figure 5 [6] Layers in Full Connection

Equation 2 ReLU equation

 5

to remove the chances of overfitting. Dense()
[3] is again used to create output layer and
sigmoid activation is used for binary output
and softmax activation function is used for
the more than two output

“#Full Connection
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dropout(0.5))

 model.add(Dense(1))
 model.add(Activation('sigmoid'))”

values in the Dense() [3] defines the number
of the hidden layer.
For compiling the model compile() [3] is
used

“#Compiling CNN
model.compile(loss='binary_crossentropy'
,optimizer ='adam',
metrics =['accuracy'])”

binary_crossentropy is used when we dealing
with binary output and for categorical output
categorical_crossentyopy, class_node is
used. Adam optimizer is used as it is the
replacement of stochastic gradient descent
and also it achieves satisfactory result very
fast.
Before starting the training of the model we
should make sure we need to apply some
changes to the data so that every time new
data is received by the model and these
changes are zooming the image flipping it,
rescaling it, applying shear ranges so to do
that ImageDataGenerator() [3] is used both
on training data and test data.
We can’t directly use data into the model so
to make data so in order to prepare data flow-
from-directory() [3] is used here we specify
the directory, target size and batch size also
class mode is selected for the type of output
above function is used for both train data and
test data.

“train_generator=train_datagen.flow_from_
directory(train_data_dir,
target_size =(img_width, img_height),

batch_size=batch_size,
class_mode ='binary')”

“validation_generator=test_datagen.flow_fr
om_directory(validation_data_dir,
target_size =(img_width, img_height),
batch_size=batch_size,
 class_mode ='binary')”

The last thing to do in our model is start
training of the data so for that fit-generator()
[3] is used which contain test data, steps-per-
epochs, epochs, validation data, validation
steps.

“model.fit_generator(train_generator,
steps_per_epoch=nb_train_samples//
batch_size,
epochs=epochs,
validation_data = validation_generator,
validation_steps = nb_validation_samples
// batch_size)”

So to save the weights from the model we
will use the save-weights()

“model.save_weights('model.h5')”

4. Result

We have achieved an accuracy of 95.81%
and the validation accuracy is 83.92%, since
we have used 3 convolutional layers that is
the reason, we have achieved the accuracy
above 90% and also rescaling the image also
helps in increasing the accuracy. With the use
of only one convolutional layer, the accuracy
was in mid-80%.
Using more convolutional layer is the most
effective way to improve the accuracy,
adding convolutional layer is not the only
solution, we can reduce the size of the kernel,
Rescaling the image is one solution and also
try to use low size and low-resolution images
as these are faster to load.

 6

With each iteration we are getting lower loss
which a good result as loss predict how well
our model is performing.

Val_loss is same as loss but this works on the
validation data. Basically, this is loss on the
test/validation data.

Accuracy is the level of correctness on the
training set.

Val_accuracy is the level of accuracy outside
the data or on the validation set.

Figure 6 loss per epoch

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 3 5 7 9 11 13 15 17 19 21 23 25

val_loss

val_loss

Figure 7 val_loss per epoch

Figure 8 accuracy level per epoch

Figure 9 val_accuracy per epoch

 7

5. Conclusion

 In this paper, we have discussed about the
basic knowledge about Convolutional Neural
Network and we have also discussed how to
build our own model for the object detection
and classification. Our result shows that our
model is giving some good accuracy and we
have also discussed the ways to increase the
accuracy of the model.

Validation accuracy, we are need to increase
in the near future and need to reduce the
validation loss. We can add more range in the
data in future so we can remove the problem
of the overfitting and underfitting we can also
increase the number of epochs and batches to
improve these variables but with increasing
number of epochs, but we should not increase
epochs with too, this will cause a problem of
overfitting and thus reducing the accuracy.

References

[1] J. Wu, Convolutional neural networks, Nanjing University, China:

National Key Lab for Novel Software Technology, 2020.

[2] MACHINECURVE, "MACHINECURVE," [Online]. Available:

https://www.machinecurve.com/index.php/2018/12/07/convolutional-

neural-networks-and-their-components-for-computer-vision/#.

[3] Keras, " Keras Documentation," [Online]. Available: https://keras.io/.

[4] N. W. T. C. M. L. Bing Xu, "Empirical Evaluation of Rectified

Activations in Convolution," 2015.

[5] O. D. i. 2. Y. A. Survey, "Zhengxia Zou, Zhenwei Shi, Yuhong Guo,

and Jieping Ye," 2019.

[6] superdatascience, "superdatascience," [Online]. Available:

https://www.superdatascience.com/.

Table 1 value of loss, accuracy, val_loss, val_accuracy per epoch

