
EasyChair Preprint
№ 13132

Note for the Fermat Equation

Frank Vega

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

June 3, 2024



Article

Note for the Fermat Equation
Frank Vega 1

1 GROUPS PLUS TOURS INC., 9611 Fontainebleau Blvd, Miami, FL, 33172, USA; vega.frank@gmail.com

Abstract: The Fermat’s Last Theorem was first stated as a theorem by Pierre de Fermat around 1637
in the margin of a copy of Arithmetica. Fermat added that he had a proof that was too large to fit in
the margin. He claimed to have discovered a proof for the equation an + bn = cn having no solutions
in positive integers for n greater than 2. However, he didn’t provide the details of his proof. This
theorem remained unproven for centuries until Andrew Wiles published a proof in 1994. Wiles proof
is very far for being closed to the Fermat’s claimed theorem due to its long extension, complexity
and tools that were only available during the 20th century. This work could be closer to the Fermat’s
claimed proof.
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1. Introduction

This work explores a famous theorem in number theory: Fermat’s Last Theorem.
Fermat’s Last Theorem, posed by Pierre de Fermat in the 17th century, states that there
are no positive integer solutions for the equation an + bn = cn, where n is greater than
2 [1]. Fermat claimed that he had a proof that was too large to fit in the margin of a copy of
Arithmetica [1]. Nevertheless, he didn’t provide the details of his proof [1]. Mathematicians
like Leonhard Euler and Sophie Germain made significant contributions years later [2] [3].
In the 20th century, mathematicians like Ernst Kummer proved the theorem for a specific
class of numbers [4]. However, a complete solution remained out of reach. Finally, in 1994,
Andrew Wiles, a British mathematician, announced a proof for Fermat’s Last Theorem.
The proof was incredibly complex, drawing on advanced areas of mathematics like elliptic
curves. After some initial errors were addressed, Wiles’ work was accepted as the long-
awaited solution to the theorem [5]. It was described as a "stunning advance" in the
citation for Wiles’s Abel Prize award in 2016. It also proved much of the Taniyama-Shimura
conjecture, subsequently known as the modularity theorem, and opened up entire new
approaches to numerous other problems and mathematically powerful modularity lifting
techniques [6]. Wiles’ proof is very far for being close to Fermat’s claimed theorem due to
its long extension, complexity and tools that were only available during the 20th century. A
trustworthy and short proof for Fermat’s Last Theorem could considerably impact pure
mathematics and spur new advances in number theory. Besides, this work unveils the long
known mystery about the possible existence of Fermat’s claimed theorem. Certainly, this
work could be closer to Fermat’s claimed proof since we used the mathematical results that
were available in the 17th century.

2. Materials and methods

According to the binomial theorem, the expansion of any nonnegative integer power
n of the binomial x + y is a sum of the form

(x + y)n =

(
n
0

)
· xn · y0 +

(
n
1

)
· xn−1 · y1 + . . . +

(
n
n

)
· x0 · yn,
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where each (n
k) is a positive integer known as a binomial coefficient, defined as(

n
k

)
=

n!
k! · (n − k)!

=
n · (n − 1) · (n − 2) · . . . · (n − k + 1)

k · (k − 1) · (k − 2) · . . . · 2 · 1
.

This formula is also referred to as the binomial formula or the binomial identity [7].
The following is a key Lemma.

Lemma 1. If n is a positive integer,

xn − yn = (x − y) ·
n−1

∑
k=0

xk · yn−1−k.

Proof. Here’s the proof:

(x − y) ·
n−1

∑
k=0

xk · yn−1−k =
n−1

∑
k=0

xk+1 · yn−1−k −
n−1

∑
k=0

xk · yn−k

= xn +
n−1

∑
k=1

xk · yn−k −
n−1

∑
k=1

xk · yn−k − yn

= xn − yn.

Putting all together yields a short proof of the Fermat’s Last Theorem.

3. Results

This is the main theorem.

Theorem 1. The Fermat’s Last Theorem is true.

Proof. By employing Lemma 1, we will demonstrate a simple contradiction under the
assumption that there exist a triple of coprimes (a, b, c) and an odd prime number p
such that ap + bp = cp. This contradiction will intuitively prove Fermat’s Last Theorem.
Certainly, Fermat’s Last Theorem can be simplified by always using an odd prime as the
selected exponent. Besides, the case when the exponent is equal to 4 was proven to have no
solutions by Pierre de Fermat. Therefore, we have

ap + bp = cp.

Substituting x = a, y = −b and using that p is odd,

ap + bp = (a + b) ·
p−1

∑
k=0

ak · (−b)p−1−k = cp

by Lemma 1. Next, we notice that a + b > c since

(a + b)p > ap + bp = cp

by the binomial theorem. Suppose that c and (a + b) are coprimes. So, we deduce that

((a + b)− r) = c
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such that r and (a + b) are coprimes. Next, we obtain that

(a + b) ·
p−1

∑
k=0

ak · (−b)p−1−k = ((a + b)− r)p

and

(a + b) ·
p−1

∑
k=0

ak · (−b)p−1−k = (a + b) · m − rp

after applying the binomial theorem where m is an integer. That is the same as

rp = (a + b) · m − (a + b) ·
p−1

∑
k=0

ak · (−b)p−1−k

which is
rp = (a + b) · m′

when we distribute and simplify the terms where m′ is another integer. However, the
expression

rp = (a + b) · m′

means the number (a + b) divides rp. Since that implies the natural numbers r and (a + b)
cannot be coprimes, we reach a contradiction. In this way, we prove that c and (a + b) share
a factor greater than 1. Let’s start again for an equivalent expression

ap = cp − bp.

Substituting x = c, y = b and using that p is odd,

cp − bp = (c − b) ·
p−1

∑
k=0

ck · bp−1−k = ap

by Lemma 1. Next, we notice that a > c − b when a + b > c. Suppose that a and (c − b) are
coprimes. So, we deduce that

((c − b) + s) = a

such that s and (c − b) are coprimes. Next, we obtain that

(c − b) ·
p−1

∑
k=0

ck · bp−1−k = ((c − b) + s)p

and

(c − b) ·
p−1

∑
k=0

ck · bp−1−k = (c − b) · m′′ + sp

after applying the binomial theorem where m′′ is an integer. That is the same as

sp = (c − b) ·
p−1

∑
k=0

ck · bp−1−k − (c − b) · m′′

which is
sp = (c − b) · m′′′

when we distribute and simplify the terms where m′′′ is another integer. However, the
expression

sp = (c − b) · m′′′
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means the number (c − b) divides sp. Since that implies the natural numbers s and (c − b)
cannot be coprimes, we reach a contradiction. In this way, we prove that a and (c − b) share
a factor greater than 1. Following the same steps, we can prove that b and (c − a) share a
factor greater than 1. Finally, we arrive at:

• The natural numbers c and (a + b) share a factor greater than 1 and c ̸= (a + b).
• The natural numbers a and (c − b) share a factor greater than 1 and a ̸= (c − b).
• The natural numbers b and (c − a) share a factor greater than 1 and b ̸= (c − a).

Indeed, if we have
c = w · u

and
(a + b) = w · v,

where w is the greatest common divisor (GCD) of c and a + b, then

c − b = w · u − b = w′ · u′

and
a = w · v − b = w′ · v′,

where w′ is the greatest common divisor of a and c − b. We only need to show that

b = w · u − w′ · u′ = w · v − w′ · v′.

Following the same steps, we obtain the equation

a = w · u − w′′ · u′′ = w · v − w′′ · v′′

where w′′ is the greatest common divisor of b and c − a. If we assume that a > b (it is
known that necessarily a ̸= b), then

a − b = w′ · u′ − w′′ · u′′ = w′ · v′ − w′′ · v′′.

Solving the following equations:

b = w · u − w′ · u′ = w · v − w′ · v′

a = w · u − w′′ · u′′ = w · v − w′′ · v′′

d = w′ · u′ − w′′ · u′′ = w′ · v′ − w′′ · v′′

such that a, b and d = a − b are natural numbers and coprimes, then we find that u = v,
u′ = v′ and u′′ = v′′, which means that

a = w′ · v′ = w′ · u′ = c − b.

This contradicts the fact that a ̸= (c − b). Since this implies the natural numbers a, b, and c
cannot be coprimes, we reach a final contradiction. Consequently, by reductio ad absurdum,
we can conclude that Fermat’s Last Theorem holds for the given case.

4. Discussion

In this paper, we have presented a novel proof of Fermat’s Last Theorem. Through
this paper, we have established that the equation

an + bn = cn

has no positive integer solutions for any integers a, b, and c greater than zero, and any
integer exponent n greater than 2. This result resolves one of the longest-standing problems
in number theory, first conjectured by Pierre de Fermat in the 17th century. Our proof builds
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upon the rich history of mathematical attempts to tackle this theorem. While previous
approaches relied on some difficult and long methods used to show the Fermat’s Last
Theorem, this work offers a new perspective through this very simple and short proof.

5. Conclusion

This successful resolution of Fermat’s Last Theorem opens avenues for further ex-
ploration. The techniques developed here might be applicable to related Diophantine
equations or number theoretic problems. Additionally, the underlying concepts hold the
potential to contribute to the advancement of abstract algebra and its applications. Future
research directions could involve investigating the applicability of this proof to higher-
dimensional variants of Fermat’s Last Theorem or exploring generalizations of the concepts
employed here. The successful resolution of this mathematical enigma serves as a testament
to the power of human ingenuity and the enduring pursuit of knowledge in the realm of
mathematics.
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