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Abstract. Tensorized programs use various hardware intrinsics on het-
erogeneous accelerators to improve tensor computation performance. The
wave of hardware customization introduces massive hardware accelera-
tors and intrinsics, prompting deep learning compilers(DLCs) to explore
tensorized program tuning to effectively leverage these hardware intrin-
sics. At the core of program tuning relies the design of the cost model, but
currently there is still a lack of cost models specifically designed for ten-
sorized programs, which severely hampers the co-optimization of DLCs
and heterogeneous accelerators. To the best of our knowledge, we propose
the first unified cost model for tensorized program tuning by introducing
a unified feature representation and unified transfer prediction strategy.
To meet training and testing requirements, we constructed a dataset
dedicated to tensorized program tuning. UCMoH significantly improves
adaptability to diverse execution environments and enables flexible trans-
fer prediction while ensuring high accuracy. We will apply UCMoH to
the tuning framework in the heterogeneous acceleration cluster.

Keywords: Cost Model· Tensorized Program Tuning· Lifelong Learning
· Heterogeneous Acceleration Cluster.

1 Introduction

With the rise of AI algorithms such as deep learning and large models, cus-
tomized hardware accelerators like x86 AVX512/VNNI, ARM NEON/SDOT,
NVIDIA Tensor Core, Cambricon MLU, Ascend Cube, and TPU have proven
to be essential means to address performance issues in related applications[3, 4].
Correspondingly, these hardware backends offer intrinsics at the software pro-
gramming level to invoke underlying customized units for accelerating tensor
computation. The process of transforming and scheduling the original
tensor program using these hardware intrinsics is called tensorization.

To effectively leverage these hardware intrinsics, DLCs begin to explore ten-
sorized program tuning[1]. The tuning process typically takes place in hetero-
geneous acceleration clusters. As shown in Fig. 1, DLC adopts a tensorization-
aware scheduling method to generate the tensorized program space. First, the
partition step divides the complete workload onto the most suitable accelera-
tion platform. And then, the tensorization step matches the sub-workload to
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Fig. 1. Tensorized program space generation.

various intrinsic semantics on the acceleration platform. Finally, the schedul-
ing step varies how intrinsics are invoked by applying basic schedule, e.g., loop
tiling, reorder. The above three steps generate a tensorized program
space with hardware platform diversity, intrinsic diversity, and rich
schedules. DLCs need to search for the best performing program in this space.
However, obtaining the actual latency of programs involves unacceptable time
costs. To address this issue, many DLCs resort to the cost model –
using the predicted latency from the cost model as the criterion[7].
Therefore, as the core of program tuning, the design of the cost model is crucial
for searching for the optimal program.

There are currently many cost models for tensor programs[7], but it is difficult
to effectively apply a cost model for tensor programs to accurately predict the
performance of tensorized programs. First, while normal tensor programs run
on general arithmetic processing units (ALU on CPUs, and CUDA Core on
GPUs), tensorized programs mainly rely on customized acceleration components.
Thus, the configuration and invocation of hardware intrinsics become the main
factor affecting tensorized program performance. Second, tensorized programs
are affected by the diversity of hardware platforms and hardware intrinsics in
heterogeneous acceleration clusters, posing great challenges for their cost model’s
generalization across different hardware. This challenge will be increasingly acute
due to the continuous iteration of various NPUs. In contrast, tensor programs
are more stable due to mature general-purpose components. In summary, it
is necessary to design a new cost model for tensorized programs.

According to the requirements of an efficient cost model specialized for ten-
sorized program tuning in heterogeneous acceleration clusters, we posit that the
efficient cost model involves two key points: ❶ feature representation, i.e., how
to represent programs as features learnable by the model; ❷ transfer predic-
tion, i.e., how the model can support predictions on untrained hardware at low
cost and with flexibility. To the best of our knowledge, we propose the first uni-
fied cost model for tensorized program tuning by introducing a unified feature
representation and unified transfer prediction strategy.

2 Key Ideas and Methods

2.1 The Unified Feature Representation

Considering the acceleration platform diversity (Req 1) and intrinsic diversity
(Req 2) in the heterogeneous cluster, the ideal feature representation for ten-
sorized programs should pursue generality while ensuring prediction accuracy
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Fig 3. Key ideas for unified feature representation 
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Fig. 2. Tensorized program space generation.

(Req 3). As shown in Fig. 2 (a), to meet three requirements above, we propose
the unified feature representation for tensorized programs.

Tensorized programs exhibit a unified program behavior, which can be ab-
stracted into a three-stage execution model: load, compute, and store. This uni-
fied behavior remains consistent across platforms. Therefore, the behavior tem-
plate allows tensorized programs running on different platforms to be unifiedly
represented (meeting Req 3). Considering abstract syntax tree (AST) as a
comprehensive program abstraction, it not only intuitively demonstrates pro-
gram behavior but also incorporates hardware intrinsic information. This can
further cope with intrinsic diversity (meeting Req 2). The target AST fea-
tures should effectively reflect the impact of schedule differences on program
performance to ensure accuracy. Although TLP’s feature representation method
lacks generality, it achieves SOTA accuracy[7]. We can utilize the attention ma-
trix of TLP to mine the key schedules affecting program performance, and then
construct target AST features based on these key schedules (meeting Req 1).

2.2 The Unified Transfer Prediction Strategy

Considering acceleration platform extension and hardware intrinsic extension
in heterogeneous acceleration clusters, the cost model must support transfer
prediction at low cost and with flexibility (Req 4). Multiple learning methods
are compared in Fig. 2 (b). Lifelong learning as an incremental learning method
is particularly suitable for heterogeneous acceleration cluster scenarios (meeting
Req 4). Models do not forget old intrinsics when learning new ones, significantly
reducing storage and training costs and allowing flexible adaptation. We adopt
the method of selective synaptic plasticity[5] to address the transfer prediction.
Specifically, UCMoH is trained on new intrinsics using the following loss function,

L′(θ) = L(θ) + λ
∑
i

bi(θi − θbi )
2 (1)

Where L(θ) is the lambda rank loss[6]. bi is the importance of parameters. θi is
the parameter to be learned. θbi is the parameter converged on old tasks.
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3 Implementation and Evaluation
To meet the training and testing requirements, we first construct TensorizeSet,
a tensorized program dataset, which includes 10 hardware intrinsics (6 on tensor
core, 2 each on x86.avx512/vnni and arm.neon/sdot) from 3 hardware platforms
(NVIDIA A100 GPU, Xeon Platinum 8369B, ARM Yitian710) and 84 common
neural network structures (CV and NLP). This dataset will be open-sourced and
updated with intrinsics of Ascend and Cambricon in the future. Based on lifelong
learning method, UCMoH is trained on TensorizeSet. It sequentially learns the 6
matmul intrinsics of tensor core and the dot product intrinsic of arm.sdot. The
model architecture of UCMoH includes attention and fully connected layers.

We incorporate UCMoH into TVM MetaSchedule[2], the SOTA tensorized
program tuning framework for evaluation. Each network is tensorized to 6 mat-
mul intrinsics of tensor core and dot product intrinsic of arm.sdot. After 2000
rounds of tuning, UCMoH is compared with the default online cost model. The
tuning curves are shown in Figure 3. These curves indicate that UCMoH can
converge to lower latency faster. UCMoH can improve the inference speed by
1.9× on average. UCMoH can speed up the search time by 9.3× on average (the
time required for UCMoH to achieve the latency of Online tuning 2,000 times).
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