
EasyChair Preprint

№ 588

Online Scan Diagnosis - A Novel Approach to

Volume Diagnosis

I-De Huang, Pallav Gupta, Loganathan Lingappan and
Vijay Gangaram

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 24, 2018

Online Scan Diagnosis
A Novel Approach to Volume Diagnosis

I-De Huang, Pallav Gupta, Loganathan Lingappan, Vijay Gangaram
Intel Corporation

1900 Prairie City Road, Folsom, CA 95630, USA
{i-de.huang|pallav.gupta|loganathan.lingappan|vijay.gangaram}@intel.com

Abstract—In this paper, we present a novel approach to
run scan diagnosis in a high volume manufacturing (HVM)
environment. Our methodology enables two usage modes during
scan diagnosis; we can perform diagnosis on all failing partitions
on all units (a) on production testers directly or (b) on a few
compute machines. Diagnosis or fault dictionary based methods
are employed to pre-generate a suspect database (DB) for each
design partition. Computationally efficient capture and chain
diagnosis algorithms are developed to query the DB to form a
suspect universe that explains the fail signature. Only certain
pages of the DB are loaded in memory at any given time,
requiring no more than a few megabytes of RAM. The technique
has been successfully demonstrated on two Intel products with
significant cost savings realized over the traditional approach.
Diagnosis results have been validated by comparing against the
output of a commercial diagnosis tool on thousands of wafers;
more importantly, 97% of actual defects confirmed by physical
failure analysis (FA) are successfully identified by the proposed
approach.

I. INTRODUCTION

Yield analysis (YA) is performed to (a) accelerate yield
ramp, (b) debug excursions, and (c) improve mature yield.
Scan diagnosis is a useful tool in the YA framework [1] [2] [3]
[4] [5], and currently it can be summarized into two categories:
hardware/tester based methods [6] [7] [8] [9] [10] and software
based methods [11] [12] [13] [14]. However, selecting repre-
sentative units, which highlight either existing or new defect
modes, for failure analysis (FA) is difficult. Consequently, the
electronic design automation (EDA) industry has developed
software based volume scan diagnosis flows that statistically
analyze diagnosis results from a large number of units to
identify potential causes of yield loss at end-of-line. Timely
resolution, whether it be in process, design, or test, is a boon
to any product.

Although volume scan diagnosis flows are well defined,
deploying them in an HVM environment is fraught with chal-
lenges. Our ability to scale to multiple products simultaneously
is severely limited because we cannot afford to invest the
necessary resources required to enable and maintain the flows.
Based on our work at Intel, the main problems that plague the
traditional approach can be summarized, in priority order, as
follows:

1) It is a herculean task to coordinate with the various
scan test content teams to collect, sanity-check, and
manage diagnosis input collaterals (partition models, test
patterns, layout DB, etc) in a timely fashion that are
synchronized with the production test contest for every
product stepping. Otherwise, significant delay is incurred
in enabling diagnosis; and

2) A large number of dedicated compute machines are
needed to process the diagnosis jobs with a reasonable
turnaround time. Otherwise, heavy sampling is used
which limits visibility for YA teams; and

3) Tester datalogs quickly grow big when there are lots
of failures. Diagnosis throughput time is affected as
we have to spend time splitting datalogs to generate
individual failure files (one file per failing partition) for
running diagnosis.

To address the aforementioned shortcomings, this paper pro-
poses a novel, yet streamlined approach to enable volume scan
diagnosis. The fundamental premise is to employ diagnosis or
fault dictionary based methods to pre-generate a suspect DB
for each design partition for all diagnosis scan test patterns
only. This can be done during the test content generation
phase. Using heuristic algorithms, to be described later, we
perform fast lookup operations to form a suspect universe that
explains the fail signature. The technical merit of this approach
is that the algorithms are so simple and efficient that they can
either run directly (hence, Online Scan Diagnosis (OSD)) on
an automatic test equipment (ATE) (with minimal test time
overhead) or on a few, undedicated computing machines. To
be clear, we have demonstrated both use cases on two Intel
products.

The reader may harbor suspicion regarding the feasibility
of pre-generating diagnosis DB’s for all design partitions in
a reasonable amount of time. First, it should be mentioned
that diagnosis scan test patterns generally are a subset of the
full scan production test suite (10-50% per partition). Second,
while we have used a brute force approach to generate the
DB’s, this is mainly due to the limitation imposed by our
automatic test pattern generation (ATPG) tool. With some
modifications, an ATPG tool can generate the diagnosis DB
as a by-product during test generation. Later, we will present
some experimental data to justify our claim.

The key contribution of this work is that, to the best of the
authors’ knowledge, this is the first practical demonstration of
successfully running volume scan diagnosis on ATEs directly
on a complex product with hundreds of partitions. In doing so,
our methodology addresses the limitations of the traditional
approach as follows:

1) Scan test content teams are now responsible for deliv-
ering diagnosis lookup DB’s. Since these are generated
during ATPG, they are easily synchronized with produc-
tion test content.

2) Dedicated compute machines are no longer required.
If running OSD on ATE’s is not desired (this can

Paper 11.3 INTERNATIONAL TEST CONFERENCE 1

FAIL
DATALOGS1

REVERSE
MAPPING2

PARTITION
FAILS

SCAN
DIAGNOSIS4

YIELD ANALYSIS

TEST PATTERNS3

(UNCOMPRESSED)ATPG MODEL3 LAYOUT DB3

(OPTIONAL)

Fig. 1. A traditional scan diagnosis flow diagram.

happen on products with mature yields where test time
is the primary concern), we can run diagnosis on a few,
undedicated compute machines.

3) If OSD is run on an ATE, instead of capturing failures,
we generate candidate suspects. Thus, the datalogs are
significantly smaller in size.

The remainder of this paper is organized as follows: In Sec-
tion II, we discuss some preliminaries that will be helpful in
understanding this work. We describe our OSD methodology
in detail in Section III. Capture and chain diagnosis algorithms
based on this methodology are developed in Sections IV and
V, respectively. The challenges and their solution in imple-
menting OSD on automatic test equipment (ATEs) is discussed
in Section VI. The encouraging results from deploying our
work on two Intel products is presented in Section VII. We
conclude this paper in Section VIII.

II. PRELIMINARIES

In this section, we present some background material that
will be helpful in understanding this work.

The traditional scan diagnosis flow diagram is shown in
Fig. 1. Scan pattern failures are collected for every partition on
every unit during wafer sort. The failures are represented using
a 3-tuple: pattern index, cycle number, and I/O pin name. Since
the I/O pins are at ATE-level (i.e., full-chip), and diagnosis
runs at partition-level, a reverse mapping procedure is applied
to convert the cycle fails to scan cell fails. Failure files are then
created by splitting the datalog to grouping fails by partition
across different units. The diagnosis jobs are then submitted to
a compute farm for processing using an EDA diagnosis tool.
After the diagnosis runs are completed, results are transferred
to a DB where they can be analyzed by YA engineers.

III. OVERVIEW OF OSD METHODOLOGY

In this section, we describe our OSD methodology in details.

A. DB Generation

Some approaches use the fault simulation based dictionary
for diagnosis existed before [1] [15] [16] [17], but the common
challenges all come down to that it cannot be scaled to a larger
partition as the dictionary size depends on the number of faults
and patterns. Some researchers were able to apply dictionary
approach on chain diagnosis since the number of faults are
determined by the total number of scan cells which is usually
∼2 to 3 order of magnitudes smaller. However, in order to
reduce the dictionary size, additional overheads to calculate
relative signature (instead of direct lookup) were introduced
[15].

Suspect

Selected

Masked

Fig. 2. An example of creating suspects for a single scan cell fail.

As mentioned earlier, the fundamental differences in our
approach compared with other fault dictionary based approach
are (a) to use diagnosis to pre-generate a suspect DB, and (b)
two DB’s are generated for every partition so direct lookups
can be applied to avoid the overheads to perform forward and
backward analysis. The first DB enumerates a set of pinpaths
(e.g., pins of standard cells) that will propagate a defect to
an observation point (i.e., a scan cell or a primary output).
We call this the Fail DB. The second DB captures all the
scan cells that will observe a defect on a pinpath. We call this
the Pass DB. The reader will observe that once one of the
DB is generated, we can directly compute the Pass (Fail) DB
by reversing the data in the Fail (Pass) DB. Furthermore, the
process of generating the Fail DB is equivalent to running
diagnosis, while the process of generating the Pass DB is
equivalent to running non-dropping fault simulation.

1) Diagnosis-based Fail DB: For generating the suspect
DB (Fail DB) using diagnosis, we assume that there is a
mismatch on a single scan cell while masking all other scan
cells. We then ask a diagnosis tool to report a set of suspects
that explain the failure on this scan cell for a scan pattern.
The procedure is repeated for every scan cell in every scan
chain using all the diagnostic patterns for a given partition. In
essence, the tool is generating the fanin cone of the scan cell,
and enumerating all the faults that can be propagated within
the cone to that scan cell. Fig. 2 illustrates this concept.

2) Fault Simulation-based Pass DB: For generating the
Pass DB using fault simulation, one suspect/fault is simulated
in an ATPG tool to report a set of scan chain and cell failures
for every scan pattern. The procedure is repeated for every
suspect for a given partition. In essence, the tool is generating
the fanout cone of a suspect, and enumerating all scan chains
and cells where the fault can be observed. The brute force
approach to run fault by fault simulation is used in order
to generate Pass DB due to the limitation imposed by our
automatic test pattern generation (ATPG) tool which will be
discussed in Section VII-A

It is worth mentioning that the DB generation process de-
scribed above can work on both compressed and uncompressed
patterns. Furthermore, it is fault model agnostic as we do not
put any limitation on the diagnosis tool on the types of faults

Paper 11.3 INTERNATIONAL TEST CONFERENCE 2

(p_i,c_i,sc_i), s_i
(0,0,0), 1:2
(0,0,1), 1:2
(1,0,0), 0:3
(1,0,1), 0:3
...

FAIL DB

s_i, (p_i,c_i,sc_i)
0, (1,0,0):(1,0,1)
1, (0,0,0):(0,0,1)
2, (0,0,0):(0,0,1)
3, (1,0,0):(1,0,1)
...

PASS DB

s_i, suspect
0, /a/b/c/n0
1, /a/b/c/n1
2, /a/b/d/n0
3, /a/b/d/n1
...

PINPATHS

Fig. 3. An example of DB schemas.

to seed.

B. DB Schema

Once the necessary information for the Pass and Fail DB’s
has been generated, it needs to be stored in an efficient
manner to enable fast query operations. We investigated
multiple options, and settled on Berkeley DB [18] [19] - a
high-performance embedded DB for key/value data. Unlike
traditional dictionary based algorithms, Berkeley DB requires
only a small chunk of a dictionary is loaded into memory at
any given time. This size of the chunk is configurable (e.g.,
256KB) and pages of the chunk can be swapped with the
dictionary at a very high speed (with the help of B+tree and
extended linear hashing access methods) when a dictionary
lookup results in a miss in the chunk. Even with a very large
size of DB (e.g., several GB), it is confirmed that loading and
accessing DB has negligible impact on both of the memory
footprint and algorithm runtime.

Our DB schemas and an example are shown in Fig. 3. The
Pass DB is indexed using a bit-packed 3-tuple which comprises
of the pattern number, scan chain, and scan cell index (shown
as p i, c i, and sc i, respectively, in Fig. 3), and such order
makes strong form of locality of reference to reduce the miss
rate in DB cache. The return value is a set of integers delimited
by ’:’. Each integer represents a unique pinpath. A separate file
is maintained that maps pinpaths to these integers. The Fail
DB is indexed using a pinpath index which is assigned to the
pinpath by the order of pattern number, scan chain, and scan
cell index, so the strong form of locality of reference is also
enforced. It also returns a set of integers that can be unpacked
to obtain the pattern number, scan chain, and scan cell index.
For our use case, 32-bit integers are sufficient. By this point,
readers may already know how to estimate the size of Fail/Pass
DB. For example, the size of Fail DB is determined by the
total number of scan chains, the scan chain length, the total
number of patterns, and the average number of suspects that
can be observed at a scan cell.

C. OSD Flow Diagram

Now that we know how to generate the DB’s, we can
significantly simplify the traditional scan diagnosis flow shown
in Fig. 1 to the new flow shown in Fig. 4. The reverse mapping
of ATE I/O fails to partition level I/O fails is now a part of
the runtime engine. We parse the datalog to group the fails for
each partition on every unit. Then we process each partition in
sequential order by opening a handle to the DB’s to diagnose
all the jobs associated with that partition. In this manner, we
are able to obtain speedup that is over two orders of magnitude
compared with the conventional diagnosis flow with the help
of pre-generated DB’s and OSD algorithms.

FAIL
DATALOGS

OSD RUNTIME
ENGINE

YIELD ANALYSIS

OSD DB’S

Fig. 4. A simplified OSD-based scan diagnosis flow diagram.

TABLE I
REMOVE SUSPECT(S) WITH A FAIL MISMATCH.

Suspects Expected Fails Actual Result
Pat3, Cell500 PASS
Pat5, Cell502 FAIL1
Pat7, Cell500 FAIL

Eliminate

Pat4, Cell500 FAIL
Pat6, Cell502 FAIL2
Pat8, Cell500 FAIL

Keep

IV. OSD CAPTURE ALGORITHM

A Fault-based OSD capture algorithm is first proposed,
and it demonstrates high diagnosis accuracy when the suspect
defect type is Stuck-at (SA). (Here we assume the diagnosis
results returned by the commercial diagnosis tool used in
house are golden.) In order to obtain high diagnosis accuracy
on the defect type other than SA (that includes Open/Short,
Bridge, Cell, and Unknown defects), Cell-based OSD capture
algorithm is introduced. In this section, we describe both OSD
capture algorithms in details, and the experimental results are
presented in Section VII.

A. Fault-based OSD Capture Algorithm

We first developed Fault-based OSD capture algorithm to
serve the purpose of running scan diagnosis on ATE. It
is computationally efficient and achieves speedup over two
orders of magnitude compared with the conventional diagnosis
flow. The proposed Fault-based OSD algorithm starts with
querying Fail DB for every failed scan cell to form a suspect
universe. Pass DB is queried for each suspect from the universe
to obtain expected fail patterns, scan chains, and scan cells. If
the expected fails does not match the actual fail signature, such
suspect is removed. Table I demonstrated a case where there
are 2 suspects, Suspect1 and Suspect2. Suspect1 supposes to
fail Pat3, Pat5, and Pat7. However, the actual fail signature
shows Pat5 and Pat7 fail while Pat3 passes. Hence, Suspect1 is
removed from the suspect list. We then start to iterate through
retained suspects to obtain the patterns where the fail signature
is explained by the suspect. Suspects that have the maximum
explained patterns are first picked up, and suspects that explain
the same patterns are lumped together as a symptom. The
process is repeated until all failed patterns are covered.

B. Cell-based OSD Capture Algorithm

As described earlier, the Fault-based OSD capture algorithm
only identified suspects that can perfectly match actual fail
signature for explained patterns. When the defect type is SA,
the proposed algorithm is able to match commercial diagnosis
tool, and those are confirmed 100% to be the actual defects
by physical failure analysis (FA). However, we observed the

Paper 11.3 INTERNATIONAL TEST CONFERENCE 3

FAULT-BASED
OSD CAPTURE

PIN
OBSERVATION

MODEL

CELL
OBSERVATION

MODEL

DIAGNOSIS
RESULTS

< 95% < 95%

≥ 95% ≥ 95%

Fig. 5. The proposed Cell-based OSD capture algorithm flow diagram.

proposed algorithm matched poorly (match ∼15% of actual
defects by FA) when the defects types are Open/Short, Cell,
Bridge, and Unknown. After further investigation, the follow-
ing root causes are identified:

1) The proposed algorithm forces restrict constraints by
discarding suspects that do not match the fail signature
perfectly for explained patterns even though they are the
best candidates where the defect type other than SA may
occur.

2) The Pass/Fail DB is generated pattern by pattern, and
when a single pattern is diagnosed, the suspects in
reports can only contain SA defects. However, for the
defect type other than SA, it may require 2 patterns to
detect it [20] [21]. It requires either additional DB to
be generated for other types of defects specifically or a
new heuristic algorithm to model other types of defects
with exploiting the existing SA DB.

The Fault-based OSD capture algorithm is then enhanced
with the following three key techniques to tackle the gaps
identified above.

1) A scoring system is introduced to loosen the strict
constraint which requires a suspect to match the fail
signature perfectly. The score is calculated for every
potential suspect on each pattern based on the percentage
of fail signature match. At the end, the average score per
pattern is recorded for every potential suspects and use
it as a guideline to only select those suspects with the
highest score in the diagnosis results.

2) A generic fault propagation and observation model at the
pinpath level is proposed based on the following axiom.
Axiom 1: Any type of defect that occurs at a pinpath
can be the diagnosis suspect if both SA defects (SA0
and SA1) at a pinpath can collectively explain the failed
pattern.

3) A generic fault propagation and observation model at the
cell instance level is proposed based on the following
axiom.
Axiom 2: Any type of defect that occurs within a cell
can be the diagnosis suspect if both SA defects (SA0
and SA1) at the cells output pinpaths can collectively
explain the failed pattern.

The proposed cell-based OSD capture algorithm flow dia-
gram is shown in Fig. 5, and details on each key idea are
described next.

1) Scoring System: For a given potential suspect, the score
is calculated for each pattern based on the percentage of fail
signature (at scan cells) such suspect can explain (from the

lookup in Pass DB). In the Fault-based OSD capture algorithm
described earlier, the percentage of fail signature the heuristic
is seeking to explain is always 100%, i. e., all failed scan
cells need be explained by such suspect for a given pattern. If
this requirement is not satisfied, the suspect will be dropped
and not be included in the diagnosis results. Due to this 100%
match constraint enforced in the algorithm, some cases end up
reporting suspects that are able to explain much less number
of failed patterns with 100% fail signature match (that leads
to multiple symptoms with incorrect suspects) while dropping
suspects that are able to explain all failed patterns with, lets
say, 99% fail signature match. By having a scoring system
with high threshold (e.g., 95% shown in Fig. 5) set in the
heuristic helps to recover such suspects. As demonstrated in
Fig. 5, if the proposed heuristic can identify a set of suspects
that are able to explain all failed patterns with more than 95%
match, the diagnosis is concluded. Otherwise, we will proceed
to the next step.

Fig. 6. An example of fault propagation and observation model at pinpath
level.

2) Fault Propagation and Observation Model at Pinpath
Level: For any type of defect other than SA (e.g., Open/Short),
the defect occurs at a cell pinpath may behave like a SA0, SA1,
or no faulty value under different logic conditions by different
patterns. In order for this pinpath to be a suspect, it need
explain the failed pattern with a faulty value at the pinpath
that can be propagated and observed at those failed scan cells.
The faulty value can be either 0 or 1. Hence, the idea here
is instead of analyzing and simulating a pattern to determine
if the defect would behave like SA0 or SA1 at a pinpath, the
expected fail signatures of SA0 and SA1 at the pinpath are
both tested to check if either one matches the fail signature.
If it matches, we can conclude that this failed pattern can be
explained at this pinpath by a defect.

In the example shown in Fig. 6, there are total 6 failed
patterns. P1 and P6 can be fully explained by the SA0 at
the pinpath /a/b/c/out while P2, P5, P7, and P23 can be
fully explained by SA1 at the same pinpath. Collectively SA0
and SA1 at the pinpath /a/b/c/out can explain all 6 failed
patterns. The proposed heuristic will conclude there exist a
defect at the pinpath /a/b/c/out. Readers may observe that the
proposed heuristic will only identify that a defect occurs at
the pinpath. However, it is not able to conclude the defect
type. For yield analysis (YA) point of view, this is acceptable
as the key information such as pinpath name, net that is
connected to this pinpath, the cell template name, and even
the layout information can still be obtained to perform YA
without knowing the defect type. As demonstrated in Fig. 10,
if the proposed heuristic can identify a set of suspects that
are able to explain all failed patterns collectively with both

Paper 11.3 INTERNATIONAL TEST CONFERENCE 4

SA0 and SA1 with more than 95% match, the diagnosis is
concluded. Otherwise, we will proceed to the next step. By
this stage, only a small percentage of diagnosis runs (∼10%)
found to proceed to the next step.

Fig. 7. An example of fault propagation and observation model at cell level.

3) Fault Propagation and Observation Model at Cell Level:
For any type of defect occurs within a cell may or may not
cause a faulty value appears on at one of its output pinpath(s)
under different logic conditions by different patterns. In order
for this cell to be a suspect, it need explain the failed pattern
with a faulty value at one of its output pinpath that can be
propagated and observed at those failed scan cells. The faulty
value can be either 0 or 1. Hence, the idea here is instead of
analyzing and simulating a pattern to determine if the defect
within a cell would behave like SA0 or SA1 and propagate
to which of its output pinpath(s), the expected fail signatures
of SA0 and SA1 at all its pinpath(s) are all tested to check
if any one matches the fail signature. If it matches, we can
conclude that this failed pattern can be explained by a defect
within this cell.

In the example shown in Fig. 7, P1 and P6 can be fully
explained by a defect occurs at the pinpath /a/b/c/out1 (It
can be collectively explained by SA0 and SA1, or it can be
explained only by either SA0 or SA1.) while P2, P5, P7, and
P23 can be fully explained by a defect occurs at /a/b/c/out2.
Collectively pinpath /a/b/c/out1 and /a/b/c/out2 can explain all
6 failed patterns. The proposed heuristic will conclude there
exist a defect within the cell /a/b/c. As demonstrated in Fig.
10, if the proposed heuristic can identify a set of cells that are
able to explain all failed patterns collectively with both SA0
and SA1 at cells output pinpaths with more than 95% match,
the diagnosis is concluded. Otherwise, suspect(s) with highest
score will be reported.

With these 3 key changes encapsulated in the Cell-based
OSD capture algorithm, 97% of actual defects (improved
from 15%) confirmed by FA are successfully identified as
suspects in the diagnosis results by our proposed heuristic.
More experimental results are presented in Section VII.

V. OSD CHAIN ALGORITHM

The normal practice of software-based chain diagnosis
usually consists 2-step tests. A chain test that consists of
shift-in and shift-out operations is first applied to detect any
scan chain fail and to determine the defect type by simply
analyzing the faulty shift-out sequence [22]. If a scan chain
fails, scan/capture tests that are specifically generated by
targeting the faults at scan cell pins are run to help allocate
the defect location [23] [24].

Fig. 8 demonstrates a chain diagnosis case where a SA
defect occurs at (chain 2, cell 5). Initially the lower bound

Fig. 8. An example of chain diagnosis case.

(LB) is set to (chain 2, cell 1) and the upper bound (UB) is set
to (chain 2, cell 10). Lets assume it is learned from Pass DB
that SA0 and SA1 at (chain 2, cell 3) would cause (chain 3,
cell 5) and (chain 1, cell 4), respectively, to fail pattern p.
If (chain 3, cell 5) does not fail and the expected shift value
is 1 at (chain 2, cell 3) for such pattern, it implies (chain 2,
cell 3) will not have SA0 defect, i.e., it can be set to 1 by
shift. Similarly, if (chain 1, cell 4) does not fail pattern q and
the expected value is 0 at (chain 2, cell 3) for that pattern,
it implies (chain 2, cell 3) will not have SA1 defect, i.e., it
can be set to 0 by shift. Since both value 0 and 1 can be set
at (chain 2, cell 3) by shift, we can conclude that the defect
at chain 2 must occur after cell 3. (If a SA occurs before the
cell 3, cell 3 can only be set to one single value by shift.)
Hence, LB can be refined to cell 4.

A. Implication Graph

We start with the definitions of controllable and observable
which are used to refine LB and UB, respectively.

Definition 1: (chain i, cell j) is said to be controllable-
1 and controllable-0 if it can be set to value 1 and value
0, respectively, with shift. (chain i, cell j) is said to be
controllable if it is both controllable-1 and controllable-0.

Definition 2: (chain i, cell j) is said to be observable-
1 and observable-0 if it passes with expected value 0 and
1, respectively, with shift. (chain i, cell j) is said to be
observable if it is both observable-1 and observable-0.

Axiom 3: If (chain i, cell j) is controllable, (chain i, cell k)
is controllable for all k < j. Hence LB can be improved to
scan cell j.

Axiom 4: If (chain i, cell j) is observable, (chain i, cell k)
is observable for all k > j. Hence UB can be improved to scan
cell j.

The above exercise helps the idea of modeling Pass/Fail
DB as an implication graph and use Boolean Constraint
Propagation to improve the lower bound (LB) and upper
bound (UB) of the potential defect location. Axiom 3 states if
(chain i, cell j) is controllable, both value 0 and 1 can be set
at (chain i, cell j) with shift. It indicates no defect can occur
before (chain i, cell j). Hence, LB can be refined to cell j.
Axiom 4 states if (chain i, cell j) is observable, it indicates
both expected value 0 and 1 can be observed and passed at
this cell and no defect can occur at or after this cell. (If a SA
defect occurs at or after this cell, cell j would always tight to
a single value.)

The implication graph can be derived from iterating through
Fail DB. For example, given by the example Fail DB in Fig.
9, the implications are created in Fig. 10.

Paper 11.3 INTERNATIONAL TEST CONFERENCE 5

Fig. 9. An example Fail DB used for implications.

Observable[3,4] -> Controllable-1[2,2]

Observable[3,1] -> Controllable-0[2,2]

Controllable[2,2] -> Observable-0[3,4]

Controllable[2,2] -> Observable-1[3,1]

Controllable-1[2,2] & Controllable-0[2,2] -> Controllable[2,2]

Observable-0[3,4] & Observable-1[3,4] -> Observable[3,4]

Observable-0[3,1] & Observable-1[3,1] -> Observable[3,1]

Fig. 10. Example implications built from a Fail DB.

B. OSD Chain Algorithm
Given by a chain fail datalog for a partition, the proposed

OSD chain algorithm starts with building implication graph
from its FAIL DB. Then the mismatches on the faulty chain
are processed to identify the defect type. Once the defect
type is realized, we proceed with the following 2-step process.
The first step is to quickly refine UB based on the shift-out
sequences for scan tests at the faulty chain followed by feeding
built implication graph to Boolean Constraint Propagation
engine [25] to improve LB.

Lets assume a scan chain has length of m, and scan vector
shift in starting at cell index equal to 1 and shift out at cell
index equal to m. The defect type is determined to be SA0.
The search to identify the first failing scan cell (that has an
expected value 1) starts from the scan cell index equal to m.
Another search to identify the first passing scan cell (that also
has an expected value 1) starts from the scan cell index equal
to 1. The minimum value of these two search results will be
assigned to UB. Observable is set to TRUE for every scan cell
index larger than UB in the faulty chain.

The second step is to set Observable to TRUE for every
passing scan cell in a non-faulty chain by iterating every scan
pattern. SMT solver is then launched to perform Boolean Con-
straint Propagation, and after the run is completed, Axiom1 is
applied to refine LB to conclude the defect location. More
experimental results are presented in Section VII.

VI. HVM TESTER IMPLEMENTATION

The low memory requirements and high computational
efficiency of the online scan diagnosis algorithm makes it
suitable to be deployed in a sort/class test program. During
test program load, the diagnosis dictionary is copied to each
tester site controller machine. Site controllers have several 100
GBs of disk space available and the dictionaries can be added
without any impact on other disk related needs of the test
program. The load time overhead associated with copying both

PASS DB and FAIL DB to site tester controller is ∼5-10%.
Please note that this is a one-time activity as a test program
once loaded is used for several wafers and the overhead gets
amortized across these wafers.

After the test program completed loading, test program
starts initialization, so a chunk of the dictionaries is loaded
into the tester memory. This size of the chunk is configurable
and pages of the chunk can be swapped with the dictionary
at a very high speed when a dictionary lookup does not find
the needed information in the chunk. For each dictionary, the
memory overhead at any given time is only 256 KB (size of
the chunk). Several tester runs confirmed that this overhead
has negligible impact on the memory footprint of the entire
test program.

The test method used to run scan content and collect the
failure datalogs is enhanced in the following two ways:

1) After the scan content is run on the unit/device under
test, the failures or mismatches between expected and
actual scan captures are fed directly to the online scan
diagnosis algorithm.

2) Instead of storing mismatches, the scan datalog now
stores the results of diagnosis algorithm in terms of sus-
pects and symptoms. An added benefit of this approach
is to drastically reduce the size of the scan datalog file.
While scan datalog file sizes are not of much concern in
a mature process node, it is actively managed during the
ramp of new process nodes. Given the defect densities,
the datalog sizes could get large enough to force either
sampling or truncation. However, this is a non-issue with
online scan diagnosis.

The test time overhead of adding the additional diagnosis
step per wafer is ∼1% of the total wafer runtime. One critic
here could be that the algorithm was run only on a few units
per wafer. This experiment was done during the initial stages
of a process ramp wherein potentially many units on any
wafer would fail some portion of the sort content. Hence,
the overhead per wafer also translates to a similar overhead
per unit. The reduction in scan datalog size is ∼131X as the
diagnosis candidates are captured instead of the mismatches.
Fig. 11 demonstrates the overall compute time trends (on one
CPU thread) for OSD and the commercial diagnosis tool on
one of the actual partition. OSD compute time takes one big
hit upfront to generate both PASS and FAIL DB’s (about 54
hours), and then average 0.076 second per diagnosis case to
remain almost flat due to its very low average runtime. The
commercial diagnosis tool start at 0 overhead with averages
23 seconds per diagnosis case, and the compute time trend
of the commercial diagnosis tool crosses that of OSD and
continue to increase at a much faster pace when the total
number of diagnosis cases reaches 8,453. (Please note that we
give benefit of discounting the time to load model and patterns
for the commercial diagnosis tool even though the time may
not be always negligible.) This figure perfectly demonstrates
OSD approach is more suited to scale up for volume diagnosis
while the commercial diagnosis tool is well suited for unit
level diagnosis.

The following two approaches aid in eliminating the over-
head of the additional diagnosis step and further help in

Paper 11.3 INTERNATIONAL TEST CONFERENCE 6

Fig. 11. Compute time trend for OSD and the commercial diagnosis tool.

RUN
PLIST1

PLIST1
FAILS &

DIAGNOSIS
GOOD?

RUN
PLIST2

PLIST2
FAILS &

DIAGNOSIS
GOOD?

RUN
PLIST3

END

NO NO

YES

YES YES

Fig. 12. Test time reduction by splitting pattern lists.

reducing the test time associated with running the scan content.

1) An approach is used to eliminate the test time overhead
of diagnosis by launching it as a separate thread once
the mismatches are available in the tester memory. An
additional checkpoint is needed further down in the test
program to wait for the thread to complete and write
the diagnosis results to the datalog. Based on multiple
wafer experiments, as long as the scan content execution
and checkpoint stages are separated by 4-5 tests, the
overhead associated with diagnosis can be completely
eliminated by running diagnosis in parallel to these tests.

2) A diagnosis is considered to be of high quality if the
number of diagnosis candidates (suspect) per symptom
(defect) is small (ideally 1). Diagnosis algorithms need a
combination of passing and failing pattern information
to reason about the candidates. In general, depending
on each defect, high quality diagnosis can be attained
by using a subset of the test content as not all of
the content is relevant for each defect. Given the high
computational efficiency of the proposed algorithm, this
observation can be exploited to reduce the overall test
time per unit. Fig. 12 illustrates this process. The first
step is to divide the scan content into smaller pattern
lists (plist), said 3 plists. Plist1 is executed first and
diagnosis is run. If the resulting diagnosis is of high
quality, then the execution of remaining plists is skipped.
This saves both the execution and diagnosis times asso-
ciated with plists 2 and 3. However, if the diagnosis
quality is not sufficient or if plist1 passes, then the next
plist is executed and diagnosis is run. The process is
repeated until a good quality diagnosis is obtained or
all plists are executed. Implementation of this approach

TABLE II
ESTIMATED IDEAL RUNTIME FOR DB GENERATION.

Pattern # of Patterns Fault Simulation
(Seconds)

Fault Simulation without
Fault Dropping (Seconds)

P1 32 24 71
P2 64 64 66
P3 10 56 112
P4 636 118 1793
P5 27 149 162

in a production test program not only eliminated the
initial diagnosis overhead but also reduced the test time
associated with scan content by 23%. One shortcoming
of the approach could happen when plists 1 and 3
detect separate defects and the execution end after plist2
execution, i.e., plist3 is skipped. At a wafer level, we
did not see any degradation in diagnosis quality due
to this shortcoming as such scenario is extremely rare
since it requires different pattern lists to target mutually
exclusive faults and failing units to have exactly the
same defects (mode and location) associated with the
mutually exclusive faults.

VII. INDUSTRIAL RESULTS

The section starts with the fault simulation results to
demonstrate the speedup OSD DB generation potentially can
have with a fault simulation enhancement in the commercial
ATPG tool. By assuming the diagnosis results produced by the
commercial diagnosis tool are golden, the comparison in terms
of diagnosis accuracy and resolution are demonstrated for
Fault-based OSD capture algorithm, Cell-based OSD capture
algorithm, and OSD chain algorithm for results on many
wafers.

A. Ideal DB Generation Runtime

As described in the earlier section, a brute force approach
to run fault by fault simulation (or scan cell by scan cell
diagnosis) is used in order to generate Pass DB (Fail DB)
due to the limitation imposed by the commercial ATPG
(Diagnosis) tool. It is believed that with some modifications
to report all observable points (at scan cell) for all detectable
faults for every pattern, an ATPG tool can generate the
Pass DB by running fault simulation without fault-dropping.
Table. II illustrates the fault simulation time with and without
dropping faults. It demonstrates even with a large number
of 636 patterns for P4 and after adding some overheads to
the forward simulation engine to track faults with all their
observable points (at scan cells) plus I/O time to write out the
dictionary table, Pass DB should still be able to be created
within a reasonable time (within 24 hours on a single CPU
thread). However, for the partition with the same pattern set
P4, using a brute force way like what we are doing is this
paper would take tens or even hundreds of days on a single
CPU thread. This expensive overhead make it difficult to scale
up and fully utilize the goodness of proposed method. The
expected turnaround time to generate Pass/Fail DB may speed
up by 2 to 4 orders of magnitudes if such capability exists.

Paper 11.3 INTERNATIONAL TEST CONFERENCE 7

B. Experimental Results for Fault-based OSD Capture Algo-
rithm

The experiment is setup to randomly inject a number of 1
to 5 SA defects in a partition for totally 10k cases with two
types of patterns (bypass patterns and compressed patterns).
Failure is reported by performing fault simulation on those
injected random SA defect(s) and then it is sent to both the
commercial diagnosis tool and our proposed OSD algorithm to
diagnose. The accuracy is determined by verifying if diagnosis
results return with the injected defect(s) as suspects. We used
the following accuracy definitions to help demonstrating the
benefits of the proposed OSD algorithms given by ki is the
number of defects correctly reported in diagnosis results, mi
is the number of actual defects injected to the partition, and
N is the total number of diagnosis cases.

Accuracyw =

∑N
i=1

ki
mi

N

Accuracyp =

∑N
i=1

{
1, ki = mi

0, ki 6= mi

N

Accuracya =

∑N
i=1

{
1, ki > 0
0, ki = 0
N

Accuracyw is the sum of all weighted accuracy calculated by
the percentage of the injected defects identified in diagnosis
results for a diagnosis case. If a test case injected by 4 SA
defects is successfully diagnosed with 3 suspects, Accuracyw

is equal to 0.75 for such case. Accuracyp is the sum of all
diagnosis cases where all injected defects are identified in the
diagnosis results. This indicates all injected SA defects need
be in the diagnose report in order for Accuracyp to be 1. If any
injected SA defect is missed in the diagnosis report, it will be
0. Accuracya is the sum of all diagnosis cases where at least
one injected defects is identified in the diagnosis results.

Fig. 13 demonstrates Accuracyw for compressed patterns
with 8 EDT channels and bypass patterns. We noticed that the
commercial diagnosis tool and OSD can both obtain 100%
accuracy when there is only one injected SA defect. However,
when it comes to multiple defects within a partition, OSD
starts to have a slightly higher accuracy from 1% at 2-defect
cases and gets bigger (3%) at 5-defect cases.

Fig. 14 illustrated the trend of Accuracyp by looking for
perfect diagnosis (e.g., all injected defects need be reported).
Both approaches suffer when the number of injected defects
is larger, but still OSD demonstrates 1.5% - 8% and 3% -
5% higher accurate for bypass patterns and compressed pat-
terns, respectively, when it is compared with the commercial
diagnosis tool. Fig. 15 shows the resolution (the number of
suspects per symptom) and overall OSD produces 50% - 60%
less suspects due to more restrict constraints (always look
for 100% fail signature matched) are used in our proposed
approach.

As illustrated above for ideal SA defect cases, Fault-based
OSD capture algorithm matches or perform slightly better
than the commercial diagnosis tool in terms of accuracy. It
also yields much less suspects as well as 2 to 3 orders of

magnitudes speedup against the commercial diagnosis tool.
For those real world diagnosis cases that further are been
confirmed by physical failure analysis (FA), OSD is able to
identify the defect location 100% accurately if the defect type
is SA. However, for other defect types, OSD can only identify
the defect location 15% accurately. Hence, we proposed Cell-
based OSD capture algorithm to overcome the limitation and
results are presented next.

Fig. 13. Weighted diagnosis accuracy comparison for running diagnosis with
compressed patterns and bypass patterns.

Fig. 14. Perfect diagnosis accuracy comparison for running diagnosis with
compressed patterns and bypass patterns.

Fig. 15. Diagnosis resolution comparison.

Paper 11.3 INTERNATIONAL TEST CONFERENCE 8

TABLE III
CELL OVERLAP RESULTS FOR 10 WAFERS.

Wafer Avg. Overlap Perfect Match Correlation Coff.
W1 68% 37% 0.97
W2 71% 41% 0.98
W3 68% 36% 0.93
W4 74% 45% 0.98
W5 69% 38% 0.96
W6 70% 41% 0.98
W7 71% 41% 0.98
W8 72% 42% 0.99
W9 67% 36% 0.96
W10 69% 39% 0.99

C. Experimental Results for Cell-based OSD Capture Algo-
rithm

Fig. 16 illustrated the improvement Cell-based OSD cap-
ture algorithm over Fault-based OSD capture algorithm for
actual diagnosis cases across 10 wafers. For every diagnosis
symptom, the overlap is determined by the cell instances
(discarded the cell pin in the pinpath) that are identified by
both OSD and the commercial diagnosis tool. The average cell
overlap is then calculated by the average values of all diagnosis
symptoms. As seen in Fig. 16, the cell overlap is improved
significantly from 21% (by Fault-based OSD algorithm) to
70% (by Cell-based OSD algorithm) on real world diagnosis
cases (diagnosis results shown on all (100+) partitions for 10
wafers). Please note that ”OSD Only” percentage is a good
indication to determine how close the OSD resolution number
is to that of the commercial diagnosis tool, and ”Commercial
Only” percentage is a good indication to identify the number
of ”missing” suspects that lower the overlap number. (Again,
the results reported by the commercial diagnosis tool are used
as the ”golden” results for our comparison.)

Table. III shows the average overlap number (ranged from
67% to 74%) across 10 wafers. One interesting observation to
be noted is the column of ”Perfect Match %” whose values are
ranged from 36% to 45%. The symptom is said to be ”Perfect
Match” if the reported cell suspects are identical between OSD
and the commercial diagnosis tool. Overall, it is ∼40% of
symptoms have the identical diagnosis results between OSD
and the commercial diagnosis tool. As the sole purpose of
HVM diagnosis is to help YA, Correlation Coefficient on cell
template analysis results obtained by OSD and the commercial
diagnosis tool is used. It is calculated by the normalized fail
rates (based on the instantiated number of a cell template)
by having the same order of all cell templates for both
approaches. It shows a good correlation (ranged from 0.93 to
0.99) between OSD and the commercial diagnosis tool. Fig.
17 demonstrated a good correlation for top 20 cell templates
with Correlation Coefficient equal to 0.99 on 10 wafers. That
indicates our proposed algorithm would yield a similar results
as the commercial diagnosis tool for serving YA. In terms of
accuracy and resolution, Cell-based OSD capture algorithm
demonstrated high overlap with the commercial diagnosis tool
while still maintaining 2 orders of magnitudes speedup over
the traditional diagnosis. More importantly, 97% of actual
defects (that include all defect types) confirmed by FA are
successfully identified by Cell-based OSD capture algorithm.

Fig. 16. Overlap improvement from Fault-based to Cell-based OSD capture
algorithm.

Fig. 17. Correlation Coefficient of commercial diagnosis tool and OSD for
YA.

D. Experimental Results for OSD Chain Algorithm
Unlike the previous experiment to inject SA defect ran-

domly in a partition, the fault simulation here is performed
based on injecting random SA defects targeting at one single
chain for bypass patterns to create 10K failed datalog for
diagnosis. Fig. 18 shows the trends of Accuracya, Accuracyw,
and Accuracyp for both the commercial diagnosis tool and
OSD chain algorithm. As seen in the figure, both of the
commercial diagnosis tool and OSD yields close to 100%
accuracy when there is only single SA defect injected to the
chain. For more than one defect in the chain, OSD obtains a
better Accuracyw ranged from 6% to 17%. Both OSD and
the commercial diagnosis tool fail to identify all multiple
injected SA defects in the chain perfectly. However, if we
only consider those cases where we call the diagnosis success
as long as one of multiple injected defects can be detected
by the chain diagnosis, it is close to 100% accuracy for OSD
chain algorithm while it is around 70% for the commercial
diagnosis tool. That indicates OSD can at least identify one
of the injected defects for close to 100% of cases which
makes OSD more effective in the high defect regime. Fig.
19 shows that OSD reports ∼55% more suspects for single
defect but it is able to obtain a slightly better resolution
when it comes to 2 or more SA defects occurring in the
chain. Please note that the resolution number is reported only
for those cases the commercial diagnosis tool is able to at
least identify one defect accurately. The proposed OSD chain
algorithm has been successfully demonstrated on two Intel
products with significant speedup (∼100-400X) realized over

Paper 11.3 INTERNATIONAL TEST CONFERENCE 9

the traditional approach. Diagnosis results have been validated
by comparing against the output of a commercial diagnosis
tool; more importantly, they have been confirmed by FA.

Fig. 18. Diagnosis accuracy comparison for injecting SA defect(s) at single
chain.

Fig. 19. Diagnosis resolution comparison for injecting SA defect(s) at single
chain.

VIII. CONCLUSION

In this paper, we present a novel approach to run scan
diagnosis in a HVM environment. Our methodology enables
diagnosis runs either on ATE directly with negligible test time
and memory footprint overhead or on a few compute ma-
chines. Computationally efficient capture and chain diagnosis
algorithms are developed to query the DB to form a suspect
universe that explains the fail signature. The technique has
been successfully demonstrated on two Intel products with
significant cost savings realized over the traditional approach.
OSD capture and chain algorithms are observed to obtain 2
to 3 and 1 to 2, respectively, orders of magnitude speedup
compared with the commercial diagnosis tool. Diagnosis re-
sults have been demonstrated to perform better especially on
the high defect regime than a commercial diagnosis tool in
terms of accuracy and resolution, and validated on thousands
of wafers; more importantly, 97% of actual defects confirmed
by physical failure analysis (FA) are successfully identified by
the proposed approach.

Our on-going works include to extend OSD chain algo-
rithms to support other than SA defects. With the modifications
to report all observable points (at scan cell) for all detectable
faults in the commercial ATPG tool, we can also extend OSD
algorithms for User Defined Fault Models (UDFM) which

enable YA in finer granularity. Fail/Pass OSD DB can also be
used to obtain the test coverage to help normalize the fail rate
for YA and to help select best diagnosis patterns to improve
diagnosis resolution.

REFERENCES

[1] C. Hora, R. Segers, S. Eichenberger, and M. Lousberg, “an effective di-
agnosis method to support yield improvement,” in Proc. of International
Test Conference, 2004, pp. 260–269.

[2] B. Seshadri, I. Pomeranz, S. Venkataraman, M. E. Amyeen, and S. M.
Reddy, “Dominance based analysis for large volume production fail
diagnosis,” in Proc. of VLSI Test Symposium, 2006, pp. 394–399.

[3] M. Sharma et al., “Efficiently performing yield enhancements by iden-
tifying dominant physical root cause from test fail data,” in Proc. of
International Test Conference, 2008, pp. 1–9.

[4] Y. Huang, W. Yang, and W.-T. Cheng, “Advancements in diagnosis
driven yield analysis (ddya): A survey of state-of-the-art scan diagnosis
and yield analysis technologies,” in Proc. of European Test Symposium,
May 2015.

[5] R. Turakhia, M. Ward, S. Goel, and B. Benware, “Bridging dfm analysis
and volume diagnostics for yield learning-a case study,” in Proc. of VLSI
Test Symposium, 2009, pp. 167–172.

[6] K. De and A. Gunda, “Failure analysis for full-scan circuits,” in Proc.
of International Test Conference, 1995, pp. 636–645.

[7] S. Narayanan and A. Das, “An efficient scheme to diagnose scan chains,”
in Proc. of International Test Conference, 1997, pp. 704–713.

[8] F. Motika, P. J. Nigh, and P. T. Tran, “Diagnostic method for structural
scan chain designs,” in US Patent 6961886, November 2005.

[9] S. Kundu and S. Chattopadhyay, “An ate assisted dfd technique for
volume diagnosis of scan chains,” in Proc. of Design Automation
Conference, 2013, pp. 1–6.

[10] H. Chen, Z. Qi, L. Wang, and C. Xu, “A scan chain optimization
method for diagnosis,” in Proc. of International Conference on Computer
Design, October 2015.

[11] K. Stanley, “Stuck and transient fault diagnostic system,” in US Patent
6694454, February 2004.

[12] I. Pomeranz, S. Venkataraman, S. M. Reddy, and E. Amyeen, “Defect
diagnosis based on pattern-dependent stuck-at faults,” in Proc. of VLSI
Design Conference, 2004, pp. 475–480.

[13] R. Guo, Y. Huang, and W. Cheng, “A complete test set to diagnose
scan chain failures,” in Proc. of International Test Conference, 2007,
pp. 1–10.

[14] I. Pomeranz, “Improving the accuracy of defect diagnosis by considering
reduced diagnostic information,” in Proc. of VLSI Test Symposium, 2015,
pp. 1–6.

[15] R. Guo, Y. Huang, and W.-T. Cheng, “Fault dictionary based scan chain
failure diagnosis,” in Proc. of Asian Test Symposium, 2007, pp. 45–50.

[16] C. Liu et al., “Hyperactive faults dictionary to increase diagnosis
throughput,” in Proc. of Asian Test Symposium, 2008, pp. 173–178.

[17] I. Pomeranz and S. M. Reddy, “On the generation of small dictionaries
for fault location,” in Proc. of International Conference on Computer-
Aided Design, 1992, pp. 272–279.

[18] M. Olson, K. Bostic, and M. Seltzer, “Berkeley db,” in Proc. of the 1999
Summer Usenix Technical Conference, June 1999.

[19] M. Seltzer, “Berkeley db: A retrospective,” in IEEE Data Eng. Bull.,
2007, pp. 21–28.

[20] J. C.-M. Li and E. J. McCluskey, “Diagnosis of resistive-open and
stuckopen defects in digital cmos ics,” in Trans. on Computer-Aided
Design, 2005, pp. 1748–1759.

[21] H. Wunderlich and S. Holst, “generalized fault modeling for logic
diagnosis,” in Models in Hardware Testing, 2009, pp. 133–155.

[22] W.-S. Chung, W.-C. Liu, and J. C.-M. Li, “Diagnosis of multiple scan
chain timing faults,” in IEEE Trans. on CAD of Integrated Circuits and
Systems, June 2008, pp. 1104–1116.

[23] R. Guo and S. Venkataraman, “A technique for fault diagnosis of defects
in scan chains,” in Proc. of International Test Conference, 2001, pp.
268–277.

[24] Y. Huang, W.-T. Cheng, S. Reddy, C.-J. Hsieh, and Y.-T. Hung, “Statis-
tical diagnosis for intermittent scan chain hold-time fault,” in Proc. of
International Test Conference, 2003, pp. 319–328.

[25] A. ErezEmail and A. Nadel, “Finding bounded path in graph using smt
for automatic clock routing,” in International Conference on Computer
Aided Verification, 2015, pp. 20–36.

Paper 11.3 INTERNATIONAL TEST CONFERENCE 10

