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Abstract: This paper presents an approach to formulate stability for one-side random dy-
namical systems. The concept of exponential stability of deterministic case of discrete
skew-product semiflows is generalized to the case of tempered systems. Using this tempered
concept, results extending existing exponential stability conditions for noninvertible random
dynamical systems are derived.
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1 Introduction

Stability analysis is one of the key issues of time-varying linear systems. Earlier results on expo-
nential stability for infinite dimensional systems have been obtained by Przyluski and Rolewicz
in [11]. More recent works on exponential stability, respectively instability of linear time-varying
systems that extend this work have been reported in [9], respectively [8]. In this line, it is worth
mentioning [1] for various applications. Also, in [6], [3] it is considered the exponential stability
concept for linear cocycles. Beside deterministic case, we refer the reader to [2] for details with
stochastic random dynamical systems.

This work presents some new results on the exponential stability of non-invertible random dy-
namical systems. In doing so, the main ideea is to consider systems which are defined only on the
semi-axes, the so-called one-side systems. Key arguments in this direction for considering such
systems, i.e. non-invertible systems are presented in [7] and [10]. We emphasize that similar
results in the deterministic framework of linear time-varying systems have been established in
[9].

Notations. The notations used in this paper are in general the standard ones. Z+ stands for
positive integers. (X, ‖ · ‖) be a Banach space and B(X) be the Banach algebra of all bounded
linear operators acting from X into X. (Ω,F ,P) be a probability space and θn : Ω → Ω be a
measurable map preserving the probability measure P. A random variable ϕ : Ω → (0,+∞) is
θ−invariant if ϕ(θω) = ϕ(ω), for all ω ∈ Ω, respectively Ω̃ ⊂ Ω an θ−invariant subset. Also, we
consider the metric semi-dynamical system (Ω,F ,P, θn), n ∈ Z+, which is a probability space



such that θn : Ω → Ω, n ∈ Z+ satisfies the measurability properties, respectively, A linear
random semi-dynamical system on a Banach space X over a measurable semi-dynamical system
θn, n ∈ Z+ is a measurable map φ : Z+ × Ω ∈ B(X). For a deeper discussion regarding these
notions we refer to [4], [5]. We recall only the properties which will be used in the developments
from this paper:

(a) φ(0, ω) = IX , for all ω ∈ Ω;

(b) φ(n+m,ω) = φ(n, θmω)φ(m,ω), for all n,m ∈ Z+ and ω ∈ Ω.

2 Tempered exponential stability

Definition 1 The random semi-dynamical system φ(n, ω) is called tempered exponentially stable
if there exists a θ−invariant random variable α : Ω→ (0,+∞), and N : Ω→ [1,+∞) such that

‖φ(n, ω)x‖ ≤ N(ω)e−α(ω)n‖x‖, (1)

for all ω ∈ Ω̃, and all (n, x) ∈ Z+ ×X.

We observe that previous definition can be stated as follows

Remark 1 The random semi-dynamical system φ(n, ω) is tempered exponentially stable if and
only if there exists a θ−invariant random variable α : Ω→ (0,+∞), and N : Ω→ [1,+∞) such
that

‖φ(n+m,ω)x‖ ≤ N(θnω)e−α(ω)n‖φ(m,ω)x‖, (2)

for all ω ∈ Ω̃, and all (n,m, x) ∈ Z2
+ ×X.

Theorem 1 The semi-dynamical system φ(n, ω) is tempered exponentially stable if and only if
there exists a θ−invariant random variable β : Ω→ (0,+∞) and D : Ω→ [1,+∞) such that

+∞∑
k=n

eβ(ω)(n−k)N(θnω)−1‖φ(k, ω)x‖ ≤ D(ω)‖φ(n, ω)x‖ (3)

for all ω ∈ Ω̃, and all (n, x) ∈ Z+ ×X.

We now introduce the additional function L : Z+ × Ω×X → R+ satisfying

L(n, ω, x) ≤ K(ω)‖x‖, (4)

for K : Ω→ [1,+∞) a random variable, where ω ∈ Ω̃ and (n, x) ∈ Z+ ×X.

Theorem 2 The semi-dynamical system φ(n, ω) is tempered exponentially stable if and only if
there exists a function L : Z+ × Ω × X → R+ satisfying (4), a θ-invariant random variable
η : Ω→ (0,+∞) such that

L(0, ω, x)− L(n, ω, x) ≥
n−1∑
k=0

e−η(ω)k‖φ(k, ω)x‖ (5)

for all ω ∈ Ω̃, and all (n, x) ∈ Z∗+ ×X.
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3 Conclusions

Tempered exponential stability in the context of random semi-dynamical systems have been
introduced. Based on this, we have derived a set of necessary and sufficient conditions. By doing
so we have extended various results from deterministic case of linear cocycles over semiflows to
the stochastic dynamical systems in the tempered framework.
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