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ABSTRACT
Semantic change detection (SCD) is derived from change detec-
tion (CD) and is highly valuable in remote sensing. The tradi-
tional change detection approach mainly focuses on identifying
where changes have occurred in multitemporal remote sensing
images. Convolutional Neural Network (CNN) for SCD can be
three-branched, with one branch recording change information
and two branches recording information at two different time.
CNN-based semantic change detection supports finer-grained and
three-dimensional change analysis and provides rich semantic in-
formation about the details on the Earth’s surface before and after
the transition. However, many problems occur in existing stud-
ies, including the convergence problem while training with lim-
ited change samples, the low accuracy of classifying the semantic
classes, and the inconsistency between multi-temporal results. To
address these issues, our research aims to advance the development
of semantic change detection in remote-sensing images by using
deep learning methods. To this end, the research we plan to con-
duct includes the following: 1) Developing semi-supervised SCD
methods to improve the training under limited training samples
to alleviate the ’data-hungry’ problem; 2) Analyzing the coher-
ence between semantic and change information. We will model the
inherent mechanism in SCD tasks to reduce false detection and
omission, thus improving the training stability; 3) Developing SCD
methods for image time-series. We will analyze the temporal fea-
tures to distinguish between seasonal change and semantic changes,
thus modeling the change trend in the observed regions. The devel-
oped methodologies will be compared with state-of-the-art network
models to test their performance.
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1 INTRODUCTION
Change detection (CD) in remote sensing data is a process to iden-
tify surface changes from the joint analysis of two ( or more) images
acquired in the same area and at different times [1] [2]. With the
emergence and application of remote sensing technology, this is
one of the earliest and most widely considered research fields [3].
Moreover, it plays an essential part in multi-industry and multi-
discipline operations such as land and resource surveys, disaster
monitoring and assessment, environmental agricultural forestry
monitoring, and urban resource management.
Change detection compares the contents of two images in the same

area and detects the difference between them [4]. While CD al-
gorithms can monitor and analyze regions of interest in remote
sensing images (RSI), they can only inform ’where’ changes have
occurred without specifying ’what’ the detailed change types are.
To overcome this limitation, the task of semantic change detec-
tion was proposed in recent literature, which makes the semantic
information representation of land-cover/land-use (LCLU) richer
and more complex. it not only provides change information but
also provides detailed LCLU maps before and after the change [5].
Semantic change detection (SCD) extends binary change detection
(BCD). SCD is beneficial in various remote sensing applications,
such as urban management, environment monitoring, crop moni-
toring, and damage assessment.
Semantic Change Detection (SCD) [6] provides detailed "from-to"
change information. In early papers, it was often called multi-class
change detection or post-classes change detection [7]. Compared
to binary change detection, semantic change detection requires se-
mantic classes before and after the observation interval to be noted
in the results, which can be expressed as a) a binary change map and
two semantic classes of pre-temporal and post-temporal, or b) two
semantic change maps that contain only information on change
region classes [8]. For example, Fig.1 (a)(b) shows the differences
between binary change detection and semantic change detection.
Semantic change detection provides richer change information and
therefore can address deeper research and application needs [9].
Deep neural networks include CNNs and RNNs. In general, CNNs
are applied to analyze images, RNNs are used to analyze language
association. However, in recent year, CNNs and RNNs have been
widely used for change detection in remote sensing images (RSI).
Current CNN-based change detection methods such as FCN [10],
U-Net [11], and DeepLab [12], provide flexible techniques to deal
with CD. However, SCD based on the integration between CNN and
RNN has been rarely studied. SCD is more complex than BCD, and
it includes two assignments: semantic segmentation and change
detection. Semantic segmentation refers to the extraction of the bi-
temporal semantic information in changed areas, where CD refers
to identifying the changes. To represent the semantic information
before and after the change, SCD generates one change map [13]
and two semantic change maps [14]. Some CNN-based methods
has been proposed for SCD in recently published articles [15][16].
However, the learning of change information is difficult, especially
in form of representation of the transition of ground surface classes.
Thus, the SCD tasks have higher requirements for CNN-based meth-
ods [17].
The planned Ph.D. activities aim at addressing the abstraction power



Figure 1: Illustration of different types of CD tasks: a) binary change detection, b) semantic change detection and c) Semantic
change detection for time-series images.

of deep learning to boost the accuracy and efficiency of semantic
change detection on RSIs. The specific objectives of the research
proposal are,

• Analysing the coherence between semantic and change infor-
mation by modeling their relations to reduce false detection
and omission, thus improving the training stability.

• Developing semi-supervised SCD methods to improve the
training under limited training samples to alleviate the ’data-
hungry’ problem.

• Developing SCD methods for the analysis of image time-
series to distinguish between seasonal changes and semantic
changes, thus modeling the changing trend in the observed
regions.

The rest of the proposal organized is as follows. Section 2 is dedi-
cated to introducing state-of-the-art on change detection, semantic
change detection for time-series images, and semantic change detec-
tion for multi-temporal Image. The problem statement, motivation,
goals, and proposed methodologies are described in section 3, 4.

section 5 focusing on the preliminary results. Section 6 concludes
the proposal.

2 RELATEDWORK
2.1 Change Detection
Change detection (CD) is the task that finds areas that have changed
in remotely sensed images (RSI) (RSI)[4]. Change detection from
multi- temporal satellite imagery detects anthropogenic or natural
spatial changes[18]. It has critical applications in environmental
monitoring, and identifying changes in land-use and land-cover.
Since the emergence of change detection, researchers have devel-
oped many methods for change detection,using spectral and textual
features. Many PBCD(Pixel-Based Change Detection) algorithms
have been proposed, such as methods based on image processing
[19] [20], classification of images [7], and machine learning [21]
[22]. Numerous deep learning approaches have been implemented
for change detection since the emergence of these techniques. Some
of them presented consider both the high spatial correlation be-
tween pixels in ultra-high spatial resolution (VHR) images and
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the differences in multi-sensor images [23]. Others combine CNN
features with Super Pixel Segmentation [24].

2.2 Semantic Change Detection
Traditional semantic change detection focuses on the post-classification
change detection method. This approach first classifies surface
classes and produces semantic categories, generating semantic clas-
sification maps, and then calculates the interconversion statistics
between each category [25]. Since the analysis of the change two
time images is done inadequately this method overlooks their inter-
connection, and the error accumulation problem is more significant.
In order to improve this method, Xian et al. [26] calculated the
variation probabilities through change analysis and identified the
areas with high variation probability [26]. Bruzzone et al. [27][28]
optimized the process for change discrimination, using Bayes prior
probability estimation to measure the transition probability for
semantic categories to improve the classification accuracy on se-
mantic changes. Wu et al. [7] combined both ideas to calculate
change probabilities by slow feature analysis and synthesized the
change types by joint probability estimation. In general, the post-
classification change detection method accuracy depends on the
semantic information extraction and change discrimination algo-
rithm, which is influenced by the parameters (thresholds) and the
cumulative error problem.

2.3 Semantic change detection in images
time-series

In the existing literature, change detection in images time-series
is strongly related to land use/cover mapping and other thematic
mappings. A common strategy involves using change detection
to filter and reduce classification areas, and then classification for
semantic information is applied to each temporal phase. Peiman et
al. [29] used principal component analysis to exclude areas with
low change probability and then used post-change classification for
land use/cover mapping and change detection for urban areas in
the Pisa region of Italy. Zhu et al. [30] compared the latest Landsat
images with historical data to detect changes for continuous updat-
ing of land-use maps. Demir et al. [31] used Landsat data to update
land use maps by combining change detection and active learning
to predict unknown temporal phases from semantic labeling of
known temporal phases. Yan et al. [32] used change detection to
improve the performance of land use/cover classification. Firstly,
the change pixels were identified by analysis of the change curves
in the time dimension, and then the long time series was divided
into several short series to classify the MODIS data between 2000
and 2018. Lu et al. [33] extended the BFAST algorithm from 1D
pixel value analysis to Spatio-temporal 3D array analysis to detect
vegetation changes recorded in MODIS data. Ai et al. [34] applied
an object-based classification algorithm using Landsat data to the
dynamics of the Yangtse River estuary between 1985 and 2016.
Qiu et al. [35] improved the accuracy of land-cover classification
using Sentinel-2 images by combining CNN and RNN to learn sea-
sonal observation images. Sudi et al. [36] devised an unsupervised
method for temporal image change detection by pre-training CNNs
to extract features and using self-supervised training LSTM net-
works to reconstruct the temporal sequence.

In recent year, CNN-based semantic change detection studies have
emerged. Compared with the post-classification change detection
method, CNN-based semantic change detection extracts semantic
features from two-temporal images directly and generates semantic
change prediction maps "end-to-end", thus avoiding the cumulative
error problem. Daudt et al. [6] presented a CNN architecture for
two-temporal image semantic change detection and proposed a net-
work structure with three CNN branches, including two branches
to extract the semantic information in each temporal item and one
branch to learn the change information. Yang et al. [8] exploited this
3-branch network architecture by weighting in semantic branches
fusion of multilayer features in the semantic branches, and learn-
ing the semantic feature differences in the changing branches to
improve the detection of which change. Peng et al. [16] learned
change information by multi-layer difference features. They use a
visual attention mechanism to introduce change information into
semantic branches and directly output semantic change maps. Ding
et al. [15]proposed a novel CNN structure that fuses high-level
semantic features to detect changes. Compared to the Daudt et al.
[6] method, this method shows advantages in accuracy and effi-
ciency. Recurrent Neural Networks(RNNs) have shown excellent
performance in the field of natural language processing. Ding et al.
[15] proposed RNNs as a unit with multiclass in detecting temporal
features in a recent paper.

3 MOTIVATION AND GOALS IN THIS THESIS
In this Ph.D. activity, our goal is to develop solutions to improve
the accuracy and efficiency of semantic change detection of RSI
using deep learning.

3.1 Problem Statement
The issues we mainly focus on are as follows:

1) Modeling the correlations between semantic and change in-
formation.
Semantic information and change information are corre-
lated with each other in semantic change detection. Semantic
feature similarity directly reflects whether surface classes
change and change features can support reasoning on multi-
temporal semantic classes. Most of the existing change de-
tection methods extract change features by CNN directly,
without analyzing the correlation between semantic informa-
tion and change information. The key point to address in this
thesis is how to model the learning of "semantics-change"
correlations.

2) Joint extraction of semantic information and changes detec-
tion with limited label samples.
Semantic change detection requires identifying the kinds
of surface classes before and after the change, so it is more
complicated than BCD. This makes it difficult to obtain a
sufficient number of training samples. Thus, a fundamen-
tal problem is how to exploit supervised information and
unsupervised data with limited sample quantity to improve
recognition accuracy.

3) Analysis of time-series image change features.
Surface information shows a stage change pattern during
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the observation period. Analyzing the time series of obser-
vation data features can help to more robustly get semantic
information on the surface, distinguishing between periodic
and semantic changes, and locating the time point of change.
However, there are few studies on change detection in time-
series images. The central issue is how to extract historical
memory information from time-series images and analyze
changes in time-series features.

3.2 Motivation of the Thesis
As already mentioned, this thesis focuses on the semantic change
detection problem of multi-temporal high-resolution images, which
is urgently needed in remote sensing applications, It is proposed to
overcome problems encountered by current methodologies such
as high data dependency, poor detection stability, and difficulty
in analyzing temporal changes. In order to enhance the capability
of intelligent ground observation and analysis, and to enrich the
theoretical techniques related to semantic change detection, we will
promote the radicalization for change detection in remote sensing
applications. For this reason, We plan to studying three aspects:

3.2.1 Enhance Stability in Semantic Change Detection. To opti-
mize the distributions of semantic classes in the prediction results
(to make it closer to the prior distribution), reduce false and missed
detection, where learn correlations between semantic information,
and change information on the landscape to improve the discrimi-
nation of minority classes and the consistency of multi-temporal
prediction results.

3.2.2 To Improve the Training of Semantic Change Detection
Techniques with a limited amount of Labels samples. To design train-
ing methods for semantic change detection to alleviation problems
such as insufficient variation of samples and difficult semantic class
identification.

3.2.3 Develop of SCDmethods for time-series HR of RSIs. Through
the joint analysis of spatio-temporal features, we will achieve end-
to-end predictions of each temporal semantic map and adjacent
temporal change maps. We will analyze the historical information
from unlabeled observation images, to distinguish between peri-
odic changes and semantic changes, and to improve the accuracy
of semantic class discrimination.

3.3 Goals of the thesis
In order to address the above mentioned motivations. Firstly, we
study semi-supervised training strategies to address issue of the
limited number of samples. Secondly, We use classical theory and
cutting-edge technology to analyze the correlation between learn-
ing semantic features and change features to address the technolog-
ical difficulties. Finally, we consider the application requirements
for time series observation, designing a semantic change detection
algorithm for combining spatio-temporal information to expand
application scenarios. In the three studies, the analysis of the inher-
ent mechanisms of semantic changes relevant. Fig.2, we presents
our research objectives, research content, experimental data, and
range for this thesis.
There are three main goals in this thesis that we presented in detail
in the next subsection.

Figure 2: Overview of the Ph.D. research program

3.3.1 Detection Method for Learning the Between Semantic and
Change Relationships. Existing studies on semantic change detec-
tion mainly extend the CNN-based semantic change detection
method. It mainly extracts different information directly via con-
tinuous convolutional transform, neglecting to learn the relevant
relationships between specific semantic and change information.
We focus on a specialized module to analyze the relationship be-
tween semantic and change information, and to optimize the feature
classification process by prior semantic change probability. This will
be done by develpoing a bi-directional RNN for semantic change
detection of remote sensing images.

3.3.2 Semi-supervised Training Method for Semantic Change De-
tection. Currently, CNN-based semantic change detection models
require large-scale data for training to achieve high accuracy and
reliable data results. However, there are only a few semantic and
change annotation available for model training in change detection
applications. This makes the model insufficiently trained and eas-
ily under-fitted. To address this issue, in this thesis we propose to
explore the use of semi-supervised approaches. On the one hand,
we plan to expand the availability of labeled change sample, on
other hand, we guide the training by constraint information. In this
context we plan two main activities:

• Object-based change sample dynamic augmentation;
• Semantic information extraction with spatio-temporal con-
sistency constraints.

3.3.3 Semantic Change Detection Method for Time-series High-
resolution Images. There is growing demand to detect ongoing
change information via time-series observations in remote sens-
ing applications. Existing change detection methods are mainly
designed for two images, thus it is difficult to have an end-to-end
prediction of the semantic changes in time-series images. This sec-
tion presents semantic change detection studies for time-series
images to address practical application requirements. We consider
two different application scenarios:

• Semantic change detection for learning historical image
memory information;

• Learning spatio-temporal correlation for semantic change
detection in time-series images.

In order to achieve the goals of the Ph.D., we plan to schedules
activities according to the Gantt presented in Fig.3.
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Figure 3: Gantt chart of the Ph.D. activities

4 PROPOSED METHODOLOGIES
Based on the issues mentioned in the Section 3, we developed
new methodologies for semantic change detection. This study ex-
ploits open datasets to develop semantic change detection in two-
temporal high-resolution images. Then we build time series of high-
resolution image datasets to explore the semantic change detection
approach in time-series of high-resolution data. Before introducing
specific research methods, we mathematically define the semantic
change detection tasks. We assume there are two pair of images
(I1, I2) observed at different times from the same area, the (p1,p2)
are corresponding pixels in (I1, I2). Semantic change detection can
be denoted as a mapping function fscd resulting in:

fscd (p1,p2) =

{
(0, 0), cm = cn

(cm , cn ), cm , cn
(1)

where (cm , cn ) is the semantic pair of classes corresponding to
(p1,p2). After mapping all pixels, the generated results are two
semantic change maps (S1, S2).

4.1 Bi-directional RNN for Semantic Change
Detection in Remote Sensing Images

The traditional CNN-based change detection model ignores time
series correlation. Each image of the time series is analyzed inde-
pendent by a change detection branch, which is computationally
intensive and not appropriate for modifying time series connection.
RNN networks play a significant role in natural language process-
ing, as they learn to analyze time-series signals, Their input and
output formats can be flexible, making them good at Seq2Seq (se-
quence input to sequence output) tasks. We address the research
topic of combining CNN and RNN deep network models to address
the problem of semantic change detection problem.
Although CNNs have good performance in semantic change de-
tection, they have some shortcomings in establishing a correlation
between time series and change. CNNs lack comprehension of the
context of the given input, thereby misjudging the change class. To
address this issue, we propose a bi-directional RNN for semantic
change detection of remote sensing images. RNNs adapt at han-
dling time-series information learning from previous time steps to
represent it. Therefore we use RNN to model time-series-change
correlations in semantic change detection.
The network SSCDl [15] extracts features by two semantic branches,

and change branch intended to learn change information. This has
been experimentally tested in SCD networks. The weak connection
between the semantic and change branches, leads to inconsistent
predictions between the two temporal phases. This is a crucial
problem. To tackle this issue, we introduce an RNN module to
learn "semantic-temporal" correlations, which communicates in-
formation between the three branches, and propose a hybrid CNN
and RNN network structure. As shown in Fig.4, encoder1 and en-
coder2 are used to obtain the two temporal features FA and FB . We
present a Bi-directional RNN to build a correlation between the two
times and learn the change features simultaneously. In the proposed
BiRNN module, the neural units all take the two-temporal semantic
features and memory features as input, and provides output the
enhanced semantic features and memory features.
The first direction of change is computed as:

A0 = f ( ®U 0 ∗ S0 + ®W 0 ∗A0 + ®b0) (2)

while the second change direction is calculated as:

A1 = f ( ®U 1 ∗ S1 + ®W 1 ∗A1 + ®b1) (3)

where S denotes the memory information. S0 indicates the initial
value of the memory information (set to 0), S1 indicates the mem-
ory (change) information in one direction and S2 indicates memory
(change) information in both directions. U, W, and b are model pa-
rameters, After calculations in both directions, A0 and A1 obtained
information on the changes in the forward and backward directions,
respectively. The last step is to utilize the weight matrix V to fuse
A1 and A2 to generate the output feature F

′

A at the time A as:

F
′

A = so f tmax(V ) ∗ [ ®A1, ®A2](4)

Here A1 and A2 are connected together.
The output at the current time is determined by the memory and
the input (FA and FB ) of the current time.Thus, the output at each
time takes into account the two-way change information, so that
the semantic information at each time is not extracted in isolation,
but is fused with the time-series information. Finally, a simple
convolutional transformation is applied to the output memory S2
to obtain the binary change map C . To sum up, the proposed can
build better links between time semantic information and change
information.
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Figure 4: Bi-directional RNN for change analysis in time-series HR RSIs

4.2 Semantic Information Extraction with
Spatio-Temporal Consistency Constraints

4.2.1 Object-based change sample dynamic augmentation. Sur-
face semantic change classes. This results is insufficient amount
of training samples for surface change. The training data should
contain semantic annotations of each time period in a semantic
change detection scenario. Therefore, we utilize the CutMix sample
augmentation method in the semantic segmentation task to dynam-
ically generate change samples using annotation information to
alleviate the problem of insufficient valid samples.

The CutMix augmentation method is well recognized for its ac-
curacy improvement in natural image semantic segmentation tasks.
The methodology is basically based on the principle of cutting local
regions of different images for patching and correspondingly patch-
ing their semantic annotations. We consider that remote sensing
images contain fewer semantic classes than natural images, and the
distribution of features is more concentrated (well-defined areas). In
this section we extend CutMix to refine the expansion of semantic
information.

We consider a pair of input images {I1, I2} and its supervision
information {L1,L2,Lc }, where L1 and L2 are the semantic informa-
tion provided in L1,L2, to increase the number of change samples.
The proposed technique is shown in Fig.5. First, each image Ii , is
analyzed with its corresponding semantic annotation Li , and the
related feature objects are "cropped" by a mask calculation. This
operation is performed on all training samples to generate a se-
mantic sample library with semantic labels and feature patches.

Afterwards, when the data is loading, a geometrically transformed
feature object{O I

j ,O
L
j } is randomly added to I1 (or I2) and L1 (or

L2) by mask calculation, and the corresponding area {OL
j } is added

to L correspondingly. This can be denoted as:

OM
j = O

I
j ≥ 0 (5)

L̂c = Lc +O
M
j (6)

Î1 = OM
j ⊙ O I

j + (1 −OM
j ) ⊙ I1 (7)

L̂1 = OM
j ⊙ OL

j + (1 −OM
j ) ⊙ L1 (8)

where {OM
j } is {OL

j } of the mask, and ⊙ means pixel-by-pixel mul-
tiplication operation. After this expansion operation, the number
of non-zero regions is increased on Lc , which means more samples
of variation.

This variation augmentation process is dynamic and regulates
the selection of {O I

j ,O
L
j } through the definition of random parame-

ters and geometric modification. The generated {O I
j ,O

L
j } class and

location must be controlled so that they adhere to the prior class
probabilities and disturb as little as possible the foreground/background
and contextual spatial relationships on the remote sensing images
so that the expanded change samples match the original data dis-
tribution. In this research activities we study how to control these
space and class limitations to increase the accuracy of generated
samples. Potential solutions include the introduction of unsuper-
vised constraint methods, such as adversarial training.
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Figure 5: Dynamic augmentation to the semantic change
samples.

4.2.2 Semantic information extraction with spatio-temporal con-
sistency constraints. In the common settings of the SCD task, the
changed areas are provided with semantic labels, whereas the un-
changed areas are annotated with ’unchanged’. In other words,
the number of semantic labels are very limited. This leads to the
challenge of learning semantic information with limited samples.
However, considering the internal mechanism in the SCD, it is pos-
sible to utilize the bi-temporal consistency constraints to improve
the learning of semantic information. Let us consider the cases in
’changed’ and ’unchanged’ region, respectively. See Fig.6. In the
following we discuss the two cases respectively. First, let us con-
sider the ’changed’ areas that are provided with semantic labels. For
the input image {I1, I2}, via the network model fθ 1(·) and fθ 2(·)
(where θ1,θ2 are the network parameters), prediction of the seman-
tic classes corresponding to the map {Y1,Y2} is obtained. General
methods use {Y1,Y2} and semantic labeling {ℓ1, ℓ2} to calculate the
loss function Lsem . For example, the common cross-entropy losses
can be calculated as:

Lsem (Y1) = −Lc loд(Y1) − (1 − L1)loд(1 − Y1) (9)
Lsem (Y2) = −Lc loд(Y2) − (1 − L2)loд(1 − Y2) (10)

According to characteristics of the semantic change detection
task, the semantic information of Y1 and Y2 should have similarity
in the unchanged region, but not in the changed region. Therefore,
by using this factor as auxiliary information, a semantic consistency
loss function Lsc can be constructed to guide the network training.
For the point (p1,p2) and its corresponding prediction category
(cm , cn ), let the change corresponding to this position be labeled as
yc (1 denotes changed, 0 denotes unchanged). Lsc is calculated as:

Lsc =

{
1 − sim(cm , cm ), yc = 1
sim(x1,x2), yc = 0 (11)

where sim() represents a similarity function calculated on the vec-
tors. The loss objectives can be represented as follow:

Lp = Lsem + Lsc (12)

By adding Lsc , two temporal semantic information is jointly con-
sidered, which improves the discrimination of critical areas.

For unchanged areas that are not provided with semantic labels,
their semantic categories can be inferred with the bi-temporal pre-
dictions. We adopt the pseudo-labeling method that is commonly

used in semi-supervised semantic segmentation tasks, generating
a class label from areas with high confidence in the model predic-
tion results. Most surface areas show no change and the semantic
information remains unchanged in the semantic change detection.
Therefore, we can jointly consider the multi-temporal predictions to
discriminate the surface type. It is considered that high confidence
levels can be achieved in regions where class predictions on Y1 and
Y2 are close, generating pseudo-semantic labeling L. Calculation at
p is given by:

L̂p =
{
arдmax(Y 1

p ), sim(Y 1
p ,Y

1
p ) ≥ Tsim

0, sim(Y 1
p ,Y

1
p ) < Tsim

(13)

where Tsim is the similarity threshold. A mark 0 denotes this pixel
is not involved in training loss calculation. Semantic loss function
is the same as in equation (9,10), except that the multi-temporal
semantic loss calculation occurs via L is calculated.

(a)

(b)

Figure 6: The objectives to learn semantic information in (a)
’changed’ areas and (b) ’unchanged’ areas.

4.3 Semantic Change Detection Method for
Time-series of High-resolution Images

4.3.1 Semantic change detection for learning historical image
memory information. Multiple historical images from different time
periods of observation are often available. However, limited images
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have corresponding manual annotations in time-series monitoring
applications. In this case, the memory information from the his-
torical images can be extracted for training, and the accuracy and
stability of the class prediction can be improved.

In Fig.7 we present a semantic change detection network based
on historical image similarity analysis of us consider on existing
recent observed image Itwith a variable length historical image se-
quence {It−1, It−2...I1} (T ≥ 3). Moreover, let us consider that only
a part of the historical images (more than one) has annotation in-
formation. For presentation purposes, let us assume that the image
at time t − 1 has label Lt−1 available. This section presents research
that aims to use historical images to predict semantic class mapYt at
the time t , and the relative semantic change mapYc at the time t−1.
Firstly, the CNNnetwork is used for feature extraction of {It−1, It−2...I1},
It and Lt−1 to obtain three sets of features: 1) memory features
Km ∈ Rt×c×hw (t is the time duration, c is the feature length, h and
w are the spatial dimension size), 2) query features Kq ∈ Rc×hw ,
3) memory value features Vm ∈ Rc×hw , and then make a similar-
ity computation between Km and Kq to evaluate the consistency
between the current image and the historical image.

Sk = sim(Km ,Kq ) (14)

where: Sim ∈ Rc × Rc → R is a position-by-position similarity
function. Sk ∈ Rt×hw×hw is the calculated similarity matrix. Then
we pool sk along the time dimension. After normalization, a simi-
larity weight matrixW k ∈ Rhw×hw is obtained. This calculation is
performed point-by-point and can be expressed as:

Ŝkjk = avд(Ski jk ),W
k
jk =

expSkjk∑
j expS

k
jk

(15)

The query value feature Vq ∈ Rc×hw is calculated by multiplying
Vm withW k :

Vq = VmW
k (16)

Finally, Vq is processed to convolution and up-sampling, to obtain
the predicted resultsYt andYc . Compared to the bi-temporal seman-
tic change detection, this method can search the similarity values
in the memory information to assist in the discrimination, thus
improving the stability of prediction.

4.3.2 Learning spatio-temporal correlation for semantic change
detection in time-series images. In this section, we will build a
multi-temporal dataset. In section 4.1, we discussed RNNs and
CNNs, we plan to extend this method to multi-temporal semantic
change detection. Let us consider a collection of observation images
{I1, I2...IT } (T ≥ 3). For time-series image semantic change tasks, it
is necessary to get the class predictionmap for each pixel in the time
series and the change detection results for each neighboring time
series. Semantic change diagram for each time-series {S1, S2...ST }
can be further calculated by masking:

St = Pt
⊙

Y tc (17)

where t denotes the t time series) Y tc is obtained. A simple illustra-
tion of this model follows in Fig.8. The model firstly uses several

Figure 7: Similarity analysis based on historical images for
semantic change detection

Figure 8: RNN based onCNN Semantic Change Detection for
Multi-temporal Images

lightweight CNN networks with shared weights to extract spatial
features and get the semantic information of each time step; Sec-
ondly, it analyses the temporal correlation between each temporal
feature via a series of bi-directional RNN modules. Finally, it learns
the temporal "memory" information.
Let fθ (·) be the feature transformation function for the CNN net-
work counterpart. For each image (I1), features are extracted by the
CNN network and expanded into a vector signal along the spatial
dimensionfθ (I1). In this model, all CNN networks share the same
weights to reduce the number of network parameters and reduce
the dependence on samples. To lower dimensional spatial-temporal
space and interaction with temporal memory information.We apply
the following computation:

Ot =WiX
t +Wsr

t−1 (18)

rt = tanhot (19)
where ot is the output feature in time phase t, r t−1 and r t are
temporal memory information for the former and current time
phases, respectively.Wi andWx both represent the transformation
matrix of the fully connected layer. In order to make the change
information interact with the semantic information, we define r0
as the change feature generated by convolution and dimensional
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transformation from all temporal features X = {x1,x2...xT }. The
RNN network processes time-series signals in both chronological
and inverse directions, learning time-series correlations of semantic
features. Then it transforms output of each temporal phase into a
semantic prediction map, and transforms hidden features ot that
memorize time-series states into a binary change map between
adjacent time steps. In this model, spatial semantic information
extraction includes time-series signals, while change information
comes from time-series state transformation directly, thus achieving
joint learning for time-domain and space-domain information.

5 PRELIMINARY RESULTS
In this section we present the results obtained by the network
described in section 4.1 and provide preliminary evaluation on its
performance compared to several state-of-the-art models in the
computer vision community.

5.1 Dataset and Evaluation Metrics
5.1.1 Datasets Description. The experiments were carried out

in the SEmantic Change detection Dataset (SECOND) [14], a bench-
mark dataset for the SCD. The SECOND is constructed with bi-
temporal HR optical images (containing RGB channels) collected
by several aerial platforms and sensors. The observed regions in-
clude several cities in China, including Hangzhou, Chengdu and
Shanghai. Each image has the spatial size of 512 × 512 pixels. The
spatial resolution varies from 0.5m to 3m per pixel. The semantic
labels were annotated by a professional annotation team. The LC
categories before and after the change events are provided. In each
GT semantic change map, one change class and six LC classes are
annotated, including unchanged, non-vegetated ground surface, tree,
low vegetation, water, buildings and playgrounds. These LC classes
are selected considering the commonly interesting LC classes and
the frequent geographical changes [37]. The bi-temporal LC tran-
sitions raise a total of 30 LC change types. The changed pixels
account for 19.87% of the total image pixels. Among the 4662 pairs
of temporal images, 2968 ones are openly available. We further split
them into a training set and a test set with the numeric ratio of 4 :
1 (i.e., 2375 image pairs for training and 593 ones for testing).

5.1.2 Evaluation Metrics. In this study, 3 evaluation metrics are
adopted to evaluate the SCD accuracy, including: overall accuracy
(OA), mean Intersection over Union (mIoU) and Separated Kappa
(SeK) coefficient. OA has been commonly adopted in both semantic
segmentation [38]and CD [6] tasks. Let us denoteQ = {qi, j } as the
confusion matrix where qi, j represents time the number of pixels
that are classified into class i while their index is j (i, j ∈ {0, 1, ...,N },
( represents unchanged). OA is calculated as:

OA =
N∑
i=0

qii/
N∑
i=0

N∑
j=0

qi j . (20)

Since the unchanged pixels are the majority, OA cannot well-
describe the identification of semantic categories. Therefore, in
[8] mIoU and SeK are introduced to assess the discrimination of
changed/ unchanged regions and the segmentation of LC classes,
respectively.

mIoU is the mean value of the IoU of unchanged regions (IoUnc )
and that of the changed regions (IoUc ):

mIoU = (IoUnc + IoUc )/2, (21)

IoUnc = q00/(
N∑
i=0

qi0 +
N∑
j=0

q0j − q00), (22)

IoUc =
N∑
i=1

N∑
j=1

qi j/(
N∑
i=0

N∑
j=0

qi j − q00), (23)

The SeK coefficient is calculated based on the confusion matrix
Q̂ = {q̂i j }, where q̂i j = qi j except that q̂00 = 0. This is to exclude
the true positive unchanged pixels, whose number is dominant. The
calculations are as follows:

ρ =
N∑
i=0

q̂ii/
N∑
i=0

N∑
j=0

q̂i j , (24)

η =
N∑
i=0

(

N∑
j=0

q̂i j ∗
N∑
j=0

q̂ji )/(
N∑
i=0

N∑
j=0

q̂i j )
2, (25)

SeK = e IoUc−1 · (ρ − η)/(1 − η). (26)

The mIoU and SeK directly evaluate the sub-tasks in SCD, i.e.,
the CD and the SS of LCLU classes, respectively. Additionally, to
evaluate more intuitively the segmentation of LCLU classes in
changed areas, the Fscd is introduced in [15], which is calculated
as:

Pscd =
N∑
i=1

qii/
N∑
i=1

N∑
j=0

qi j , (27)

Rscd =
N∑
i=1

qii/
N∑
i=0

N∑
j=1

qi j , (28)

Fscd =
2 ∗ Pscd ∗ Rscd
Pscd + Rscd

(29)

where Pscd and Rscd are variants of the Precision and Recall [38] ,
respectively, that are calculated in the changed areas only.

5.2 Experimental settings
The experiments are conducted on servers with NVIDIA RTX3090
GPUs. The methods are implemented with Pytorch. The same train-
ing parameters are set, including batch size (8), running epochs
(50) and initial learning (0.1) The gradient descent optimization
method is Stochastic Gradient Descent (SGD) with Nesterov mo-
mentum. The augmentation strategy includes random flipping and
rotating while loading the image pairs. For simplicity, no test-time
augmentation operation is applied.

5.3 Results
5.3.1 Quantitative Results. As introduced in Sec.4, we intro-

duced task-specific loss objectives (Lsc and Lpsd ) to guide the
learning of semantic information, and introduce RNN modules to
improve the learning of semantic-change correlations. We perform
an ablation study on the basis of the SCD framework SSCDl [15] to
evaluate these proposed methods, and report the results in Table.1.
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Table 1: Quantitative results of the ablation study.

Methods Proposed Techniques Accuracy
RNN Bidirectional RNN Lpsd Lsc mIoU(%) Sek(%) OA(%) Fscd (%)

SSCDl [15] 72.60 21.86 87.19 61.22
SSCDl∗

√
73.06 22.68 87.48 61.98

SSCDl∗∗
√ √

73.17 22.97 87.50 62.26
SSCDl-RNN

√ √
73.13 23.34 87.47 62.84

SSCDl-BiRNN
√ √

73.14 23.26 87.77 62.91
SSCDl-BiRNN∗ √ √ √

73.27 23.65 87.87 63.32

First let us assess the improvements brought by the semantic
learning objectives. The SSCDl∗ and SSCDl∗∗ refer to the methods
of training the SSCDl baseline with different semantic learning
objectives, i.e. using only Lsc and using both Lsc and Lpsd , re-
spectively. One can observe that SSCDl∗ has advantages of around
0.76% in Fscd and 0.29% inOA compared to the baseline SSCDl. The
SSCDl∗∗ further outperforms the SSCDl∗ by around o.3% in both
Sek and Fscd .

Then we further assess the accuracy of using RNNmodules. First
we add the RNN module on the basis of SSCDl∗. This improves
the learning of semantic classes, which improves FSek by 0.66%
and Fscd by 0.86%. Second, we replace the RNN to BiRNN. This
brings marginal improvements of around 0.07% in Fscd and 0.3%
in OA (compared to the results of SSCDl-RNN). Finally, we use
the SSCDl-BiRNN and adopt the semantic learning objective Lpsd .
This further improves the accuracy by around 0.4% in Sek and Fscd .

To conclude, the RNN modules improves the discrimination of
semantic classes. The semantic learning objectives improve not
only the learning of semantic information but also the detection of
changes.

5.3.2 Effects of the Bidirectional RNNmodule. In Fig.9we present
the quantitative results before and after the use of RNN modules.
One can observe that each of our proposed approaches has effective
detection for building and low vegetation (Fig.9(a)). The RNN mod-
ules also help to reduce the false alarms (see in Fig.9(b)). The RNN
method is much better than the SSCDl method in detecting change.
The results of SSCDl-RNN and SSCDl-BiRNN are pretty close, while
the latter is slightly better in discriminating the semantic classes.

5.3.3 Visualization of the pseudo labels. The Lpsd is calculated
with pseudo labels, which are generated with bi-temporal semantic
predictions. To visually assess the quality of generated pseudo la-
bels, we present some examples in Fig.10. The pseudo labels cover
the pixels with no semantic labels, thus their correctness should be
visually compared with the images. One can observe that the gener-
ated labels are generally correct, and different semantic categories
are included. This supervision function improves the learning of
semantic information in unchanged regions where the bi-temporal
prediction confidence is high.

5.3.4 Effects of the semantic learning objectives. To qualitatively
assess the performance of the proposed techniques, in Fig.11 we

(a1)

(a2)

(b1)

(b2)

Test image GT SSCDl SSCDl-RNN SSCDl-
BiRNN

Figure 9: Example of results provided by different methods
in the comparative experiments.

present the results obtained before and after the use of Lsc and
Lpsd . One can observe that the semantic learning objectives im-
prove the recognition of certain semantic categories, such as the
discrimination between vegetation and ground in Fig.11(a1). They
also help to better detect the change from ground in Fig.11(b1) to
playground in Fig.11(b2).

6 CONCLUSIONS
Semantic change detection in remote sensing images has been
studied in this doctoral thesis. We found state-of-the-art studies
mostly based on CNNs for semantic change detection, in which
the information sharing between temporal and change branches
is insufficient. Thus, we propose to employ Bi-directional RNN for
semantic change detection in HR remote sensing images. RNN is
placed on the basis of the SSCDl network architecture. The proposed
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(a1)

(a2)

(b1)

(b2)

Training image GT Semantic map Pseudo label︸                                   ︷︷                                   ︸
(generated by the SSCDl)

Figure 10: The generation of pseudo labels.

(a1)

(a2)

(b1)

(b2)

Test image GT SSCDl SSCDl∗ SSCDl∗∗

Figure 11: Comparison of results obtained by differentmeth-
ods in the ablation study (before and after the use of seman-
tic learning objectives).

network employs a hybrid CNN-RNN structure, where the CNN
captures the spatial features, while the RNN models the temporal
correlations in terms of the semantic information. This allows the
joint spatio-temporal analysis on the change features. Ablation
studies have been conducted to assess this method. According to the
preliminary results, this improves greatly the detection of changes
and the discrimination of semantic classes.

Furthermore, we propose to improve the learning of semantic
features through two task-specific objectives. A semantic consis-
tence loss is proposed to improve the consistence of bi-temporal
results, while a pseudo supervision technique is introduced to en-
hance the learning of semantic information in unchanged areas.
Ablation study have demonstrated the effectiveness of proposed
techniques.

In the near feature, we will also investigate to generate dynamic
change samples to improve the learning of semantic changes. We
will also extend the SCD to time-series images to continuously
capture changes and semantic classes. Promising research outcomes
can be expected in this Ph.D. activity, which will benefit the use of
RS techniques in solving real-world problems.
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