Object Detection And Recognition For Blind Assistance.

Akshay Shinde, Pratik Bhagat and Sairaj Dhobale
Object Detection and recognition for Blind Assistance

Akshay R. Shinde
Department of E & TC Engineering
Jaihind College Of Engineering, Kuran
Pune, Maharashtra, India
akshays9503@gmail.com

Sairaj R. Dhobale
Department of E & TC Engineering
Jaihind College Of Engineering, Kuran
Pune, Maharashtra, India
saidhobale2146@gmail.com

Pratik P. Bhagat
Department of E & TC Engineering
Jaihind College Of Engineering, Kuran
Pune, Maharashtra, India
pratikbhagat672@gmail.com

Abstract-
The aim of this is to explore different methods for helping computers interpret the real world visually, investigate solutions to those methods offered by the open source computer vision library, OpenCV, and implement some of these in a Raspberry pi based application for detecting and keeping track of objects. The main focus rests on the practical side of the project.
The result of this thesis is a GNU/Linux based C/C++ application that is able to detect and keep track of object by reading the pixel value of frame captured by the Raspberry Pi camera module. The application also transmits some useful information, such as coordinates and size, to other computers on the network that send appropriate query.

Keywords: Object Detection, Object Recognition, Computer Vision Technique.

INTRODUCTION -

People are witnessing the dawn of the new era of Deep Learning and embedded devices. Real life applications whether it be in the domain of Image recognition, Driver less cars, better preventive health care are all here today or on the horizon. The primary motivation which drives our team is how we can build a real-world application, in a cost effective manner which can benefit a section of society namely “blinds”.

A. Problem Statement

One of the major problems faced by Blind people is detecting and recognizing an obstacle in their path. The projects approach lies in developing a system based on Raspberry Pi 3, which is capable of labeling objects with the help of OpenCV and Tensor flow libraries and converting the labeled text to speech and producing output in the form of audio signals to make the blind person aware of the object in front of him. The scope also includes measurement of the distance of the object from the person and reporting the same. Most of the Object Detection algorithm has been tested on GPU with high computation abilities and are less likely to achieve same speed and accuracy with less powerful devices with microprocessor only, which are in high demand in current scenario. We choose Pi 3 as our platform because it is a standard representative of embedded device and is widely being used for devising low cost-system. We would like to have a prototype that can successfully perform real time detection in about 5-10 fps on Pi, with decent accuracy.

B. Major Challenges

- Exploring OpenCV and Tensor flow libraries, discovering, selecting and applying their those aspects which will help in achieving our target (Object Detection and Recognition)
- Installing Tensorflow on Raspberry pi, embedding the code in it and working with Raspbian (Jessie) OS.
- Making command over Advanced Linux Sound Architecture (ALSA) , setting up Text-to-speech engine (eSpeak) and making use of alsa-utils package and alsamixer program to produce audio signals.

C. Significant contribution
Raspberry Pi:
The Raspberry Pi is a series of small single board computers developed in the United Kingdom by the Raspberry Pi Foundation to promote the teaching of basic computer science in schools and developing countries. The original model became far more popular than anticipated, selling outside its target market for uses such as robotics.

Pi Camera:
The Raspberry Pi camera module v2 is a high-quality 8 MP image sensor custom designed by add-on-board for Raspberry Pi.

Tensor Flow:
It is an open source software library for high performance numerical computation. Its flexible architecture allows easy deployment of computation across a variety of platforms (CPU’s, GPU’s, TPU’s) and from desktop to clusters of servers to mobile and edge devices.

Matlab:
(Matrix Laboratory) is a multi-paradigm numerical computing environment and proprietary programming language developed by MathWorks. MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interface and interfacing with programs written in other languages including C, C++, C#, Java, FORTRAN and Python.

Although Matlab is intended primarily for numerical computing, an optional toolbox uses the MuPAD symbolic engine, allowing access to symbolic computing abilities.

Python:
It is an interpreted high-level programming language for general purpose programming. Created by Guido van Rossum, Python is open source BSD license OpenCV.

GNU Octave is a high level interpreted language, primarily intended for numerical computations. It provides capabilities for the numerical solution of linear and non-linear problems, and for performing other numerical experiments.
Rossum and first released in 1991, Python has a design philosophy that emphasizes code readability, notably using significant whitespace. It provides constructs that enable clear programming on both small and large scale. In July 2019, the creator van Rossum stepped down as the leader in the language community after 30 yrs. Python features a dynamic type system and automatic memory management. It supports multiple programming paradigms, including object oriented, imperative functional and procedural, and has a large and comprehensive standard library. Python interpreters are available for many operating systems. CPython, the reference implementation of Python, is open source software and has a community-based development model, as do nearly all of Python’s other implementations. Python and CPython are managed by the non-profit python software foundation.

CONCLUSIONS

This assistive system will help the blind people to lead an independent life by giving them auditory input regarding their nearby objects. This system takes the images from user’s environment and recognizes them, then adaptively learns about the frequently used objects thus making it more efficient. This system will also help other fields to identify objects, pedestrians, anomalies, etc. thereby making system more visually capable and smart.

ACKNOWLEDGEMENT

The authors wish to thanks the anonymous reviewers. The authors would like to thank all the staff of Jaihind College Of Engineering, Kuran, Pune, Savitribai Phule Pune University Pune, Maharashtra, INDIA.

REFERENCES