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A fuzzy goal programming approach for solving
fuzzy multi-objective stochastic linear programming

problem
Mahmoud Masoud, H. A. Khalifa, Shi Qiang Liu, Mohammed Elhenawy and Peng Wu

Abstract—This paper deals with the multi-objective chance
constrained programming, where the right hand side of the con-
straints are normally distributed and the objective functions with
fuzzy numbers coefficients. A fuzzy goal programming approach
is developed for the corresponding deterministic problem by
defining membership values and aspiration levels. The advantage
of the proposed approach is the decision-maker’s role only in
estimating the efficient solution to avoid or at least limit the
influences of his/ her knowledge incomplete about the studied
problem. A numerical example is given in the utility of the paper
to illustrate the applied and the efficiency of the approach.

Index Terms—Chance constrained programming, Normal dis-
tribution, Joint probability distribution, fuzzy numbers, Fuzzy
programming, Goal programming, Optimal compromise solution

I. INTRODUCTION

ONE of the difficulties occur in the mathematical pro-
gramming (MP) applications is that the parameters in the

problem formulation are not crisp but fluctuating and uncertain
[1]. In most of the real life problems in MP, the parameters are
considered as random variables. The branch of MP which deals
with the theory and methods for the solution of conditional
extremum problems under in complete information about the
random parameters is called ”stochastic programming” [2].
When the random variables are normally distributed with
known means and variances, Conini [3] investigated an algo-
rithm for solving stochastic goal programming. Based on the
concept of chance constraints introduced by Charnes & Cooper
[4], and using probabilistic goals, Sullivan and Fitzsimmoms
[5] suggested an algorithms. Most of the problems in applied
mathematics may belong any one of the following classes [6]:
• Descriptive Problems, in which information is processed

about the investigated event, some laws of the events
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being introduced by others, that is occurred with the help
of mathematical methods.

• Optimization Problems in which from a set of feasible
solutions, an optimal solution is chosen.

Besides the previous division of applied mathematics prob-
lems, they may be classified into ordinary and stochastic
problems. Several mathematical methods have been applied
in the process of the solution of the stochastic problem. It has
been applied in the management science [2]. Leclereq [7] in-
vestigated an interactive approach for stochastic programming.

Two major approaches to stochastic programming [8], [9]
are organized as:

• Chance constrained programming;
• Two-stage programming.

The chance constrained programming (CCP) technique is
one which can be used to solve problems involving chance
constraints i.e., constraints having finite probability of being
violated. The CCP has been used in several directions and
various applications too. CCP models can be converted into the
corresponding deterministic mathematical problem. In order
to solve this kind of problems, a stochastic simulation based
genetic algorithm in which the stochastic simulation was used
to check the feasibility of solution has been proposed by
Iwamura and Liu [10]. Shen et al. [11] used chance constraints
for the risk of undesirable random outcomes. Du et al. [12]
presented a fuzzy multi-objective programming model that
minimizes the risk, travel time and fuel consumption for
the transportation problem. Under uncertain delivered time,
Kalinina et al. [13] investigated a multi Objective chance
constrained programming for matching of goods and trans-
ports. Yang et al. [14] applied CCP for optimizing spare
parts inventory. Masoud et al. [15], [16] applied CP as an
effective approach to solve rail problems as a deterministic
mathematical application. In many scientific areas, such as
system analysis and operations research, a model has to be
set up using data which is only approximately known. Fuzzy
sets theory, introduced by Zadeh [17], makes this possible.
Dubois and Prade [18] extended the use of algebraic operations
on real numbers to fuzzy numbers by the use a fuzzification
principle. Tanaka and Asal [19] formulated a fuzzy linear pro-
gramming (FLP) problem to obtain a reasonable solution under
consideration of the ambiguity of parameters. Rommelfanger
et al. [20] introduced an interactive method for solving multi-
objective linear optimization problem, where coefficients of
the objectives and/ or of the constraints are known exactly but
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imprecisely. Zhao et al. [21] studied the complete solution set
for fuzzy linear programming problems included fuzzy and
non-fuzzy equality and inequality constraints. Hamadameen
[22] proposed a technique for solving fuzzy MOLP problem
in which the objective functions coefficients are triangular
fuzzy numbers. Kiruthiga and Loganathan [23] reduced the
Fuzzy MOLP problem to the corresponding ordinary one
using the ranking function and hence solved it using the
fuzzy programming technique. Zimmermann [24] developed
fuzzy programming approach for solving multi-objective lin-
ear programming problem. Masoud et al. [25] and Liu and
Kozan [26] solved an advanced sugarcane railway scheduling
optimisation model by job shop scheduling and metaheuristic
algorithms. Masoud et al. [27], [28] and Liu et al. [29]
developed a multi-objective mixed integer programming (MIP)
formulation to design a customized scheduling optimizer for
the sugarcane rail transport system. Also, Yan et al. [30] and
Li et al. [31] solved solved many industrial applications based
on three graph-based constructive algorithms for multi-stage
scheduling and treating multi-regional factors in the industrial
green development.

In this paper, the proposed approach is developed to solve
enormous types of optimization problems with of different
types of parameters in accessible way comparing with alge-
braic methods, where selecting the weights reduce the effort
to obtain satisfactory solution. The research will be extended
in different topics of operations research in future work.

The rest of the paper is organized as follows: In section
2, some preliminaries need in the paper are introduced. In
section 3, multi-objective a stochastic programming problem
is formulated and defined. In section 4, a fuzzy goal program-
ming approach for solving the corresponding deterministic
problem is given. The stability set of the first kind without
differentiability is determined in section 4. In section 5, a
solution algorithm for solving the problem is proposed. In
section 6, a numerical example is developed for illustration.
Finally some concluding remarks are reported in section 7.

II. PRELIMINARIES

In order to discuss our problem conveniently, we introduce
fuzzy numbers (Kauffmann and Gupta [32]; Fottemps and
Roubens [33])

Definition 1: (Kauffmann and Gupta [32]). A fuzzy number
ã is a mapping:
µã : R→ [0, 1], with the following properties:
(i) µã is an upper semi-continuous membership function;
(ii) ã is a convex fuzzy set, i.e., µã(λx1 + (1 − λ)x2) ≥
min{µã(x1), µã(x2)} for all x1, x2 ∈ R, 0 ≤ λ ≤ 1;
(iii) ã is normal, i.e., ∃x0 ∈ R for which µã(x0) = 1;
(iv) Supp(ã) = {x ∈ R : µã(x) > 0} is the support of ã, and
its closure cl (supp(ã)) is a compact set.

It is assumed that F0(R) is the set of all fuzzy numbers.
A function, usually denoted by “L” or “R”, is a reference

function of a fuzzy number if and only if
1. L(x) = L(−x),
2. L(0) = 1,
3. L is non-increasing on [0,∞]

A convenient representation of fuzzy numbers in the L−R
flat fuzzy number which is defined as

µÃ(x) =

 L((A− − x)η) x ≤ A−, η > 0
R((x−A+)β) x ≥ A+, β > 0

1 elsewhere
(1)

where, A− ≤ A+; [A−, A+] is the core of Ã; µÃ(x) =
1,∀x ∈ [A−, A+]; A−, A+ are the lower and upper modal
values of Ã, respectively; and η > 0, β > 0 are the left-hand
and right-hand spreads (Roubens [34]).

Remark 1: A flat fuzzy number is denoted by Ã =
(A−, A+, η, β)LR
Among the various type of fuzzy numbers, trapezoidal fuzzy
numbers, denoted by Ã = (A−, A+, η, β)LR, are of the
greatest importance (Roubens [34]).

The main concept of comparison of fuzzy numbers is based
on the compensation of areas determined by the membership
functions(Baldwin and Guild [35], and Nakamura [36]).

Let p̃, q̃ be fuzzy numbers and SL(p̃, q̃), SR(p̃, q̃) be the
areas determined by their membership functions according to

SL(p̃, q̃) =

∫
I(p̃,q̃)

(inf p̃a − inf q̃a)dα, (2)

SR(p̃, q̃) =

∫
S(p̃,q̃)

(sup p̃a − sup q̃a)dα, (3)

where I(p̃, q̃) = {α : inf p̃a ≥ inf q̃a} ⊂ [θ, 1], θ > 0, and
S(p̃, q̃) = {α : sup p̃a ≥ sup q̃a} ⊂ [θ, 1], θ > 0.

The degree to which is defined (Roubens [34] ) as

C(p̃, q̃) = SL(p̃, q̃)− SL(q̃, p̃) + SR(p̃, q̃)− SR(q̃, p̃) (4)

Proposition 1: (Roubens [34]). Let p̃ and q̃ be L − R
fuzzy numbers with parameters (p−, p+, η, β), (q−, q+, γ, δ)
and reference functions (Lp̃, Rp̃), (Lq̃, Rq̃), where all refer-
ence functions are invertible. Then p̃(≥)q̃ if and only if
sup p̃αp̃,R + inf p̃αp̃,L ≥ sup q̃αq̃,R + inf q̃αq̃,L.

If k = p̃ ⊗ q̃ then αk.R = Rk(
∫ 1

0
R−1k (α)dα), αk.L =

Lk(
∫ 1

0
L−1k (α)dα).

Remark 2: p̃ ≥ q̃ if and only if p− + p+ + 1
2 (β − η) ≥

q− + q+ + 1
2 (δ − γ).

Definition 2: The associated real number p corresponding
to p̃ = (p−, p+, η, β) is defined as R(p̃) = p̂ = p− + p+ +
1
2 (β − η).

Let F (R) be the set of all trapezoidal fuzzy numbers.

III. PROBLEM DEFINITION AND SOLUTION CONCEPTS

Consider a multi-objective chance constrained programming
(MOCCP) problem with joint probability distributions con-
straints and L − R fuzzy numbers in the objective functions
coefficients as

min Z̃(k)(x) =

n∑
j=1

c̃
(k)
j ⊗ xj , k = 1, 2, ...,K (5)

subject to:

Pr(

n∑
j=1

aijxj ≥ bi) ≥ 1− θi, i = 1, 2, ...,m, (6)

xj ≥ 0, j = 1, 2, ..., n. (7)
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where c̃j = (c−j , c
+
j , ωj , ξj) ∈ F (R), j = 1, 2, ..., n; bi(i =

1, 2, ...,m) are normal random variables with means and
variances are known and θi ∈ (0, 1) is specified probability.
It is assumed that:

• the normal random variables are independent, and
• the decision variables are crisp.

Definition 3: The x∗ which satisfies the conditions (6) and
(7), is called a fuzzy pseudo-random efficient solution of
the problem (5)-(7) if and only if there is no x0 such that
Z̃(k)(x0)(≤)Z̃(k)(x∗), for all k; and Z̃(k)(x0)( 6=)Z̃(k)(x∗),
for some k.

Let E(bi), and σ(bi) be the means and the standard devia-
tions of the normal random variables bi. Hence, inequality (6)
can be rewritten as

n∏
i=1

Pr(

n∑
j=1

aijxj ≥ bi) ≥ 1− θi (8)

Also, (5) can be simplified in the following form
n∏
i=1

Pr(
bi − E(bi)

σ(bi)
(≤)

∑n
j=1 aijxj − E(bi)

σ(bi)
) ≥ 1− θi (9)

where bi−E(bi)
σ(bi)

follows standard normal distribution with
mean and variance are zero, and one; respectively.

So,
n∏
i=1

φ(

∑n
j=1 aijxj − E(bi)

σ(bi)
) ≥ 1− θi (10)

where φ represents the cumulative distribution function corre-
sponding to the standard normal variable. Let

τ =

∑n
j=1 aijxj − E(bi)

σ(bi)
, (11)

and

φ(τ) = wi, i = 1, 2, ...,m, (12)

Then,
n∏
i=1

wi ≥ 1− θi (13)

For the standard normal distribution, the probability density
function is defined as

φ(τi) =
1√
2π

∫ τi

−∞
dz (14)

By putting h = z2/2 into (14), we obtain

φ(τi) =
1

2
(
γ( 1

2 ,
π2
i

2 )

Γ( 1
2 )

− 1) (15)

where

γ(
1

2
,
π2
i

2
) =

∫ x

0

h−1/2e−hdh (16)

= e−
τ2i
2 (
τ2i
2

)1/2
∞∑
s=0

Γ(1/2)

Γ(3/2 + s)
(
τ2i
2

)s (17)

From (17) to (12), and simplified we get
∞∑
s=0

τ
(2s−1)
i∏s

n=0(2n+ 1)
=

√
π

2
(2wi + 1)e

τ2i
2 (18)

It follows that the series may be expanded as∑∞
s=0

τ
(2s−1)
i∏s

n=0(2n+1) = τi(1 + 1
3τ

2
i + 1

25τ
4
i + ...+ ...)

≤ τi(1 + 1
3τ

2
i + ( 1

3 )2τ4i + ...+ ...)
= τi(

1
1− 1

3 τ
2
i

), τ2i 6= 3 (i.e., τ3i < 3)

From the above expansion into (18), we obtain

τi(
1

1− 1
3τ

2
i

)e−
τ2i
2 ≥

√
π

2
(2wi + 1) (19)

Based on the previous and by using the definition 2, the
equivalent ordinary problem corresponding to the problem
(5)-(7) can be reformulated as

minZ(k)(x) = R(
∑n
j=1 c̃

(k)
j ⊗ xj)

= (
∑n
j=1 c

(k)
j xj); k = 1, 2, ...,K

(20)

Subject to



τi(
1

1− 1
3 τ

2
i

)e−
τ2i
2 ≥

√
π
2 (2wi + 1);∏n

i=1 wi ≥ 1− θi;∑n
j=1 aijxj = τiσ(bi) + E(bi);

0 ≤ wi ≤ 1, i = 1, 2, ...,m;

xj ≥ 0, j = 1, 2, ..., n;

(21)

IV. FUZZY GOAL PROGRAMMING APPROACH FOR SOLVING
MOCCP PROBLEM

Bellman and Zadeh [37] introduced three basic concepts:
fuzzy goal ( ,fuzzy constraints ( , and fuzzy decision and
explored the application of these concepts to decision- making
processes under fuzziness

The fuzzy decision is the fuzzy set defined as:

D = G ∩ C (22)

The fuzzy decision is characterized by its membership func-
tion:

µD(x) = min(µG(x), µC(x)) (23)

Consider the following multi-objective linear programming
problem

(MOLP) Z(k)(x) = (Z(1)(x), Z(2)(x), ..., Z(k)(x))T (24)

Subject to

x ∈ X = {x ∈ Rn : Ax ≤ b, x ≥ 0} (25)

Having elicited membership functions µk(Z(k)(x)), k =
1, 2, ...,K, from the decision maker (DM) for each of the
objective functionsZ(k)(x), the above MOLP problem can be
converted into the fuzzy optimization problem
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max
x∈X

(µ1(Z(1)(x)), µ2(Z(2)(x)), ..., µk(Z(k)(x)))T (26)

The fuzzy decision or the minimum operator of Bellman and
Zadeh [37])

max max
k=1,2,...,K

(µ1(Z(1)(x)), µ2(Z(2)(x)), ..., µk(Z(k)(x))) (27)

By introducing an auxiliary variable v, the fuzzy multi-
objective decision making problem can be transformed into
the following well known linear or nonlinear programming
model as

max v (28)
Subject to v ≤ µk(Z(k)(x)), k = 1, 2, ...,K (29)

x ∈ X (30)
0 ≤ v ≤ 1 (31)

A. Linear membership function

The linear membership function for MOLP problem is
given by:

µk(Z(k)(x)) =


0 Z(k)(x) ≤ Lk

Z(k)(x)−Lk
Uk−Lk Lk ≤ Z(k)(x) ≤ Uk

1 Z(k)(x) ≥ Uk
(32)

Where Uk, and Lk are the upper bound and the lower
bound of the objective functions k, respectively which are
calculated as follows:

Uk = (Z(k))max = max
x∈X

Z(k)(x),

andLk = (Z(k))min = min
x∈X

Z(k)(x), k = 1, 2, ...,K

Using the linear membership function IV-A, problem (28)-(31)
becomes

max v (33)

Subject to v ≤ Z(k)(x)− Lk
Uk − Lk

, k = 1, 2, ...,K (34)

x ∈ X (35)
0 ≤ v ≤ 1 (36)

To formulate problem (38)-(36) as a goal programming
(Sakawa [38]), let the following positive and negative
deviations are to be considered as:

Z(k)(x) + dlk − duk = Hk, k = 1, 2, ...,K (37)

Where, Hkis the aspiration level of the objective functions k
Problem (38)-(36) with these goals (37) can be reformulated
as follows

max v (38)

Subject to v ≤ Z(k)(x)− Lk
Uk − Lk

, k = 1, 2, ...,K (39)

Z(k)(x) + dlk − duk = Hk, k = 1, 2, ...,K(40)
xj , d

l
k, d

u
k ≥ 0, j = 1, 2, ..., n; 0 ≤ v ≤ 1(41)

Thus, problem (20)-(21) becomes

max v (42)

Subject to

v(Uk − Lk) ≤ (Z(k)(x)− Lk)m, k = 1, 2, ...,K;

Z(k)(x) + dlk − duk = Hk, k = 1, 2, ...,K;

τi(
1

1− 1
3 τ

2
i

)e−
τ2i
2 ≥

√
π
2 (2wi + 1);∏n

i=1 wi ≥ 1− θi;∑n
j=1 aijxj = τiσ(bi) + E(bi);

0 ≤ wi ≤ 1, i = 1, 2, ...,m;

xj ≥ 0, j = 1, 2, ..., n; andτiare unrestricted in sign

(43)

V. SOLUTION PROCEDURE

In this section, a solution procedure for solving problem
(5)-(7) can be summarized as in the following steps:

Step 1: Converting the given problem (5)-(7) into the
corresponding ordinary problem (20)-(21),

Step 2: Evaluate the objective function at the solution and
determine the lower bound, the upper bound,

Step 3: Construct fuzzy goal programming by defining
linear membership function (IV-A) and also initial aspiration
level defined as in (37) to develop the problem (45)-(46),

Step 4: Solve problem (45)-(46) to get optimal compromise
solution.

Step 5: Stop.
From our discussion above, the features of the solution

procedure are: 1. It applies a more convenient and other types
of membership functions may be used. 2. It could be extended
to treat a fuzzy goal programming with objective functions
coefficients in vague, imprecise, etc. 3. It can directly applied
to solve different topics of operations Research

VI. NUMERICAL EXAMPLE

Consider the following problem

min Z̃(1)(x) = c̃1
(1)x1 + c̃2

(1)x2 + c̃3
(1)x3 (44)

min Z̃(2)(x) = c̃1
(2)x1 + c̃2

(2)x2 + c̃3
(2)x3 (45)

subject to

Pr(2x1 + x2 + 2x3 ≥ b1;x1 + 2x2 + 4x3 ≥ b2) ≥ 0.90 (46)
x1, x2, x3 ≥ 0 (47)

Where,

c̃1
(1) = (0, 1, 1, 3), c̃2

(1) = (1, 1, 1, 3), c̃3
(1) = (2, 4, 2, 4),
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c̃1
(2) = (0, 1, 1, 1), c̃2

(2) = (0, 1, 1, 3), c̃3
(2) = (1, 2, 2, 4),

E(b1) = 7, E(b2) = 6, σ(b1) = 3, σ(b2) = 2.

Step1: The deterministic problem corresponding to the
problem (44)-(47) is shown below as

min Z̃(1)(x) = 2x1 + 3x2 + 6x3

min Z̃(2)(x) = x1 + 2x2 + 4x3

Subject to

2x1 + x2 + 2x3 − 3τ1 = 6,

x1 + 2x2 + 4x3 − 4τ1 = 7,√
18

π
τ1e
− τ

2
1
2 ≥ (3− τ21 )(2w1 + 1),√

18

π
τ2e
− τ

2
2
2 ≥ (3− τ22 )(2w2 + 1),

w1w2 = 0.90,

0 ≤ w1, w2 ≤ 1,

x1, x2, x3, w1, w2 ≥ 0,

τ1, andτ2are unrestricted in sign.

Step2: The solution of the proposed problem in Step 1 is
shown in Table 1, where two models with single objective
functions are solved.

TABLE I
SOLUTION OF EACH INDIVIDUAL OBJECTIVE FUNCTION

Model1 Objective function(Z1) 21.5994
x1 2.7473
x2 4.2524
x3 0.5579
τ1 1.6210
τ2 10.3493
w1 0.9000
w2 1.000

Model2 Objective function(Z2) 18.4838
x1 2.7473
x2 1.9925
x3 1.6879
τ1 1.6210
τ2 13.2784
w1 0.9000
w2 1.000

Step3: Using the membership function and the goals,
the fuzzy goal programming for the problem can be
formulated as:

max v

Subject to



2x1 + 3x2 + 6x3 − 0.0001v ≥ 21.5994,

x1 + 2x2 + 4x3 − 0.0001 ≥ 13.4838,

x1 + 2x2 + 4x3 + dl1 − du1 = 21.5995,

x1 + 2x2 + 4x3 + dl2 + du2 = 13.4837,

τ1( 1
1− 1

3 τ
2
i

)e−
τ21
2 ≥

√
π
2 (2w1 + 1);

τ2( 1
1− 1

3 τ
2
i

)e−
τ22
2 ≥

√
π
2 (2w2 + 1);

w1w2 ≥ 0.90,

2x1 + x2 + 2x3 − 3τ1 = 6,

x1 + 2x2 + 4x3 − 4τ1 = 7,

0 ≤ wi, v ≤ 1, i = 1, 2,

xj ≥ 0, j = 1, 2, 3,

andτ1, τ2are unrestricted in sign.

(48)

Step4. Solve the above problem through the problem (45)-(46),
we have

TABLE II
SOLUTION OF THE PROBLEM (29)

Objective function Z̃1 (5.3683,11.8047,8.1155,20.6573)
Objective function Z̃2 (1.8446,8.1155,8.1155,15.1629)

x1 2.7472
x2 1.6791
x3 1.8446
τ1 1.6208
τ2 1.7321

v=0.9398 w1 0.3205
w2 0.4282
dl1 8.8146
du1 0.6997
dl2 0
du2 0

VII. CONCLUSIONS

In this paper, the fuzzy multi-objective stochastic linear
programming problem has been studied. These probabilis-
tic parameters have been normally distributed having joint
probability distribution with known means and variances. A
fuzzy goal programming approach is applied to the equivalent
deterministic problem for obtaining optimal compromise so-
lution. The developed approach is formulated as non-linear
programming models and coded by Matlab Language pro-
gramming. Computational experiments are demonstrated to
provide insightful decisions.
This work opens the field to many future avenues of re-
search with a particular emphasis on transportation and health
optimization under uncertainties. There are several benefits
to formulate the transport system optimization problem as a
fuzzy multi-objective stochastic linear programming, namely
to improve the performance considering the arrival and de-
parture times as stochastic elements; reducing the total costs
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associated with the proposed trips; and, limit negative effects
that this system can have on the travelers. Furthermore, in
the health systems optimization, the proposed approach will
increase the patient flow rates through the hospital to optimize
the treatment times and patients waiting times.
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