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Abstract. Linear resolution is one of the ancient methods for first-order
theorem proving. We extend linear resolution with clause splitting, pro-
ducing subgoals dispatched independently. An incremental SAT solver
keeps track of refutations and thus provides a “lemma” mechanism. We
describe some implementation considerations, present some initial exper-
imental results, and discuss future directions for this approach.
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1 Introduction

Goal-sensitive, backtracking calculi such as connection tableaux have some ad-
vantages over the dominant saturation paradigm. They are relatively simple to
implement, do not struggle with large axiom sets, and use little memory. They
also accommodate learned guidance very naturally [16,19,50,32], a growing con-
sideration for theorem provers. Linear resolution is an ancestor of many of these
backtracking calculi, and it is arguably even simpler. We investigate applying
clause splitting to linear resolution, achieving surprisingly strong performance
with a number of advantages including a lemma mechanism, universal variables,
and the ability to generate useful training data even when no proof is found.

2 Preliminaries

We assume the fully-automatic, clausal, refutational setting for proof search in
classical first-order logic. Given a set of first-order axioms and a conjecture, we
first negate the conjecture and then refute the resulting set of facts. This is
done by converting to clause normal form (CNF) and deriving the empty clause
⊥. Clauses are the usual disjunctions of literals, written ∀x̄. C, where x̄ is a
sequence of variables given in order of occurrence in the sequence of literals C,
left-to-right.

2.1 Linear Resolution

Linear resolution [27] is an early (1968) refinement of Robinson’s resolution pro-
cedure [37] for refuting a set of first-order clauses. It is a sound and complete
proof calculus, simple and yet very powerful. Many other techniques can be seen
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∀x.P (x, c) ∨ P (c, x)

P (c, c)

(a) factoring

. . .

∀x.¬P (x) ∨Q(x)

. . .

P (c)

Q(c)

(b) ancestor resolution

. . .

P (c)

Q(c)

(c) input resolution

Fig. 1: Adding centre clauses to a linear derivation. Derivations are written top-
down. In the case of input resolution, ∀x.¬P (x) ∨Q(x) is an input clause.

as instances or refinements [26] of linear resolution, including model elimina-
tion [25] and SLD-resolution [2].

Linear resolution operates on a sequence of centre clauses Ci, called a linear
derivation. The first clause, C0, is a member of the input set of clauses. Any
subsequent clause Ci+1 is derived from its parent Ci by one of (i) factoring Ci;
(ii) ancestor resolution between Ci and a previous centre clause Cj ; or (iii) input
resolution between Ci and an input clause. Figure 1 shows an example for each of
these cases. Note that any unification is applied only to the newly-added clause,
not the whole derivation (cf. free-variable tableaux, model elimination). The last
centre clause Ci is called the goal. A linear derivation that ends in ⊥ is a linear
refutation and shows the unsatisfiability of the input set.

Linear resolution is not proof-confluent, so alternative centre clauses must
be backtracked over to retain completeness. To improve efficiency, it is possible
to demand that C0 be a member of the set of support1; that no centre clause
occurs twice in the derivation; and that only some literal of the goal need take
part in inferences. We implement only these refinements, but there are many
others, such as the no-tautologies condition, literal selection and various forms
of subsumption [27,22].

2.2 Clause Splitting

During proof search in saturation-style systems [46], clauses may grow very long,
which is generally considered to be undesirable. One effective approach to solving
this problem is to split clauses into variable-disjoint subclauses. For example, if
we obtain a clause ∀x̄ȳ. C[x̄] ∨D[ȳ], we can deduce (∀x̄. C[x̄]) ∨ (∀ȳ. D[ȳ]) by
manipulating quantifiers. Splitting can proceed as far as possible until no more
sub-clauses can be further split: the so-called maximal splitting. Clauses that
cannot be split any further are called non-splittable clauses, or components [45].

The question for saturation systems is then how to partition and subsequently
organise the resulting search. This has produced several approaches [47,35], of
which arguably the most successful is AVATAR [45].
1 a profitable example of the support set is “clauses derived from the conjecture” [49,33]



Linear Refutation and Clause Splitting 3

2.3 Boolean Satisfiability

Boolean satisfiability (SAT) is a well-studied problem [5], which we gloss as “given
a propositional formula, is there an assignment of propositional variables such
that the formula is satisfied?”. While as-stated the problem statement is only a
decision procedure (and an NP-complete one at that), in practice SAT solvers
are highly efficient, can solve incrementally, and provide auxiliary information
such as a satisfying assignment.

SAT solvers may be embedded into other software, which is exploited to great
effect in theorem proving. Good examples include SMT solving [14], instantiation-
based methods and global subsumption [20], finite model-finding [13], among
many others. We especially highlight AVATAR [45], a technique for organising
clause splitting via SAT (or SMT [6]) implemented in the saturation-style system
Vampire [21].

3 Linear Resolution with Clause Splitting

∀x̄0. C0

∀x̄1. C1

. . .

∀ȳiz̄i. (Di ∨ Ei)

(a) no splitting

∀x̄0. C0

∀x̄1. C1

. . .

∀ȳi. Di

(b) splitting, 1st goal

∀x̄0. C0

∀x̄1. C1

. . .

∀z̄i. Ei

(c) splitting, 2nd goal

Fig. 2: Linear derivations showing the effect of clause splitting. The new goal
splits into two components, so 2b and 2c can be solved independently.

We propose augmenting linear resolution with clause splitting. When adding
a centre clause Ci+1 to a linear derivation as above, it may be that it can be
split into n components. At this point we can produce n linear derivations, each
the same up to Ci, but each with a different component as the new goal, in place
of Ci+1. We call these sub-derivations and call them solved if we can produce a
linear refutation from them. If we can solve each of these n derivations separately,
then we have a refutation for the original derivation. Figure 2 shows an abstract
example.

In this work we require all goal clauses to be immediately and maximally split,
as we see no clear benefit to optional or non-maximal splitting with respect to
proof search. Note that this scheme produces sub-derivations in which centre
clauses are always components.
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3.1 Motivation

This technique provides a kind of subgoal mechanism, in the same way as clause
splitting applied in a saturation context. However, there is almost no bookkeep-
ing required due to the backtracking nature of linear resolution. Smaller clauses
are also desirable for linear resolution due to the reduced number of possible
factors and ancestor resolvents, and in a heuristic sense they are closer to a refu-
tation. Subgoals may recur during backtracking search, a feature we exploit in
§4 to reduce the amount of search required. Opportunities for splitting can occur
surprisingly frequently, and almost all problems tested trigger some amount of
splitting.

3.2 Soundness and Completeness

Clearly this technique is sound, by a similar argument to clause splitting in other
contexts. Completeness is slightly more difficult due to a technicality involving
factoring which we will deal with in a moment. However, we believe linear res-
olution with splitting is in fact complete, and we sketch a proof to that effect
below.

Proof sketch. If linear resolution with splitting is complete, then we should be
able to translate any linear refutation of an input set into another refutation of
the same input set, this time with splitting. Suppose that we have such a linear
refutation. If at any point i we have a splittable goal Ci, then it should be im-
mediately split into components. Suppose further and without loss of generality
that Ci yields two components, Di and Ei. Then, the linear refutation of Ci at
each step j ≥ i performs an inference using a literal from either the component
Dj or Ej . This step will leave the other component unchanged for the next step
because component variables are disjoint by assumption. Therefore, we generate
two sub-refutations from the original by partitioning steps into two: those that
affect Dj , and those that affect Ej . Inductively, there is a translation from linear
refutations to linear refutations with splitting.

A snag. Tacit in the above sketch is that an inference cannot take place be-
tween two components in the same clause, and that components remain disjoint
once split. Unfortunately, in a linear derivation, factoring may be carried out
between two literals belonging to different components, which breaks both of
these assumptions. Suppose that we have components within a single clause,
D[x̄]∨L[x̄] and E[ȳ]∨L′[ȳ]. Without splitting, we might factor L and L′ to pro-
duce D′[z̄] ∨ E′[z̄] ∨ L′′[z̄]. With splitting, this inference would not be possible.

A fix. However, the above case is the only way these assumptions can be broken,
and this inference does not seem to be necessary for completeness of linear
refutations. Any refutation of D′[z̄] ∨ E′[z̄] ∨ L′′[z̄] could also be applied to
either original component as they both subsume it, then the same refutation
applied again to the remaining component, unchanged as it is variable-disjoint.
Therefore, we may simply forbid factoring across component boundaries in linear
refutations and remain complete.
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4 SAT and Lemmas

An immediate observation from the above is that sub-derivations may now be
repeatedly solved during proof search. Before, if a refutation was found, proof
search was over. Now, a moderately difficult goal may recur in several different
contexts, wasting system time to dispatch it: ideally, this should be avoided.
However, it is quite expensive and fiddly to keep track of dispatched sub-goals
and the context necessary to solve them.

4.1 Inferences as SAT

It is possible to maintain a set of components, input clauses containing compo-
nents, and inferences between components, all encoded as an incremental SAT
problem. Components ∀x̄. C are mapped injectively to propositional literals
[∀x̄. C]. The propositional literals representing first-order components are usu-
ally positive, but in the case of a component that is a negative ground literal
¬L, it is a possible optimisation (but not required) to have [¬L] = ¬[L] [45].

First, the clauses in the input set are split and encoded directly as propo-
sitional clauses. Then, during proof search, inferences can be encoded as they
are made at the first-order level. Inferences are implications from one or two
components (factoring and resolution respectively) to a clause that may have
zero-or-more components after splitting2. As it happens, each inference can be
treated as a single propositional clause, relating several components. Input res-
olution hides a detail: it is only necessary to encode an inference involving the
component that contains the literal resolved against, ignoring other components
in the input clause.

4.2 Unsatisfiability and Lemma Components

Given this encoding, a SAT solver may soundly report unsatisfiability when
queried, which indicates a refutation has been found. This happens when suffi-
cient first-order information has been encoded to detect an inconsistency, which
may be significantly before the first-order search finds a proof.

However, before unsatisfiability is detected, some SAT solvers can report that
a propositional variable is forced : that is, it can have no other assignment than
it has currently. We can use this to implement a “lemma” mechanism. If the
current sub-goal is ∀x̄. C, and its corresponding propositional literal [∀x̄. C] is
forced false, it may be treated as solved.

5 Implementation

We present a prototype system Lickety3 that implements linear resolution with
clause splitting as described above. The system ingests problems written in the
2 note that the clause with zero components is the empty clause
3 “lickety-split!”
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CNF or FOF dialects of the the TPTP language [41] and attempts to prove
them. Conversion of first-order formulae to CNF is achieved with the standard
naïve transformation, followed by splitting clauses into components. Equality, if
present, is then axiomatised in the usual way. Clauses are split into components
using an implementation adapted from AVATAR, which is essentially union-find
and very efficient. However, once split, it is practically important to identify
component variants up to literal order and renaming, but this can be a little
more expensive in our context.

Search begins with clauses derived from the conjecture, and proceeds by
iterative deepening on the length of sub-derivations plus the number of literals
in the current goal. Input clauses and deductions are inserted as described in §4
into an instance of the PicoSAT [4] API, which is queried after every iterative
deepening step for satisfiability, and constantly for forced literals. No attempt
is yet made to extract proofs, but this is not impossible. The implementation
tested here is available online4.

6 Experimental Results

Table 1: problems solved in 5 seconds
FOF JD bushy chainy

total problems 500 1240 2078 2078
Vampire 189 481 1162 367

...uniquely 110 112 410 117
Lickety 116 421 774 369

...uniquely 37 52 22 119

We give a very brief, informal experimental evaluation to whet the appetite:
Lickety competes with a recent build of Vampire [21], a state-of-the-art su-
perposition system with which we are familiar. Both systems were allowed 1
core and 5 seconds per problem5 on a desktop machine. Vampire ran in its de-
fault mode, with the exception of disabling the limited-resource strategy [36] for
reproducibility and not printing proofs for a fair comparison: that is, vampire
-sa discount -p off. We emphasise that this is far from the “competition
strength” of Vampire, which can use extra time, cores and portfolio modes [48]
very effectively.

We began with the “first-order-formulae” (FOF) division from the previous
CASC [42] competition, CASC-28 [43]. This contains 500 problems of mixed dif-
ficulty from a variety of domains. Naturally, we do not do well here compared to

4 https://github.com/MichaelRawson/lickety
revision f0565b58e5aca47eca142211de96f750080de820

5 matching the shortest time limit considered in Sledgehammer: Judgement Day

https://github.com/MichaelRawson/lickety
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the mature Vampire. However, of the 37 problems Lickety solves that Vam-
pire does not, most contain large numbers of possibly-redundant axioms to show
a relatively-simple conjecture. Such problems often arise when reasoning over a
“knowledge base” (e.g. [30]), or when generated from formalised mathematics,
such as with Isabelle [28]/Sledgehammer [7] or Mizar [38]/MPTP [44].

Therefore, we also evaluate other benchmarks from this area. Sledgehammer:
Judgement Day [8] (JD) evaluated the performance of the Sledgehammer system
on 7 diverse Isabelle theories, yielding 1240 problems for the automatic systems
E [39], Spass [47] and Vampire. The MPTP2078 [1] benchmark provides 2078
problems from Mizar and comes in two flavours: bushy (fewer axioms) and chainy
(more axioms). Lickety does better here — even surpassing Vampire in chainy
— although we expect that Vampire’s implementation of SInE [18] would help
enormously if enabled. Table 1 shows the headline figures.

7 Related Work

This approach has common ground with much other work. As a backtracking
system, it is in the same family as model elimination/connection tableaux sys-
tems [25,23], albeit with fewer refinements and universal variables. Since in this
work subgoals are entirely independent and do not need to be backtracked over
to find alternative ways to solve them, it provides one possible way of looking
at restricted backtracking [29,15]. With respect to the treatment of variables,
there is also a passing resemblance to hyper tableaux [3] and the disconnection
tableaux calculus [24], although both of these are proof confluent rather than
backtracking in nature. The use of a SAT solver in this context to detect global
inconsistency and provide lemmas suggests instance/model-based reasoning and
semantic guidance [20,9,40,11,31] Implementation of variable splitting borrows
heavily from AVATAR [45] and the general technique relates to variable splitting
in analytic tableaux [17]

8 Perspective

We are cautiously optimistic about clause splitting as a refinement of linear
resolution. Initial experimental results seem very promising for what is a very
simple implementation, and many of the desirable properties of linear resolution
are retained: simplicity, goal-sensitivity, low memory use, tolerance for large ax-
iom sets, susceptibility to learned heuristics, universal variables. However, the
ability to produce independently-dispatched subgoals introduces some new pos-
sibilities. Subgoals can be closed by lemma mechanisms, possibly driven by SAT
or SMT. Additionally, since at least some subgoals are typically solved during
a run even if the system ultimately fails to find a proof, we gain the ability to
produce training data even without complete proofs.

There are many future directions to explore. Refinements of linear resolution
are plentiful, although it is not clear how many of them are compatible with
splitting. Techniques such as Brand’s modification [10] or paramodulation [12]
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are known to be compatible with linear refutation, possibly helping with equality
reasoning. Clause splitting is helpful with applied to inductive reasoning in a
saturation context [34], which suggests the possibility of a linear system with
induction capabilities. Integrating learned guidance into the system is already in
progress.

Acknowledgements We gratefully acknowledge Geoff Sutcliffe’s help in finding
material on linear methods.
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