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Abstract— This study aims to experimentally control of 

robotic arm position in the presence of model uncertainties and 

external disturbances. A feedback linearization controller 

(FLC) is designed based on a precise dynamic model, in which 

the perturbations are estimated using an extended state 

observer (ESO). The ESO employs the angular displacement of 

the arm as a measurable output, and adds the terms containing 

perturbations to the system equations as new state variables. By 

estimating the system states, an accurate model is provided to 

design the feedback linearization controller for tracking the 

desired paths of the arm. The stability analyses are presented, 

indicating the estimation and tracking errors are bounded. 

Finally, an experimental implementation on a fabricated 

platform of a robotic arm is given to illustrate the superior 

performance of the proposed control scheme. 

Keywords—Robot arm, Extended state observer, Feedback 

linearization controller, Perturbation rejection, Experimental 

implementation. 

I. INTRODUCTION  

Nowadays, robotic manipulators/arms are highlighted 

due to many advantages such as low cost, high accuracy, high 

load ratio, and decreased power consumption [1]. These 

devises are usually replacing human workers to help them 

with complicated and duplicate tasks such as transportation, 

handling, packing, coloring, welding, etc. [2]. To track the 

desired trajectories more closely, robotic manipulators are 

required to be precisely controlled. The important issue in the 

design of controllers is access to a reliable and precise model 

of the system and environmental conditions. The presence of 

the uncertainties, external disturbances and other 

perturbations are inevitable, affecting the accuracy of the 

model and consequently the performance of the designed 

control system. Estimation of these perturbations and 

updating of the system model is a suitable approach to 

achieve a reliable model for the controller design [3]. 

In the literature, extensive efforts have been made to 

control robot manipulators/arms in the presence of 

uncertainties and external disturbances to track the desired 

trajectory. Rojko et al. [4] proposed an adaptive fuzzy 

estimator for disturbance estimation in the direct-drive robot. 

Soltanpour et al. [5] developed a new approach of controller 

design using the sliding mode controller with the support of 

FLC and the backstepping method. Perrusquía [6] proposed a 

robust FLC for a direct-drive robot manipulator. In refs. [7,8], 

researchers developed a nonlinear optimal control system 

based on a predictive approach for trajectory tracking 

problem. Nikdel et al. [9] proposed an adaptive backstepping 

control method to control robotic manipulators and 

uncertainty estimation. Fateh et al. [10] applied an adaptive 

fuzzy controller to handle the robotics manipulator. Chang et 

al. [11] proposed an adaptive fuzzy backstepping control. In 

the reviewed studies, the researchers have usually focused on 

adaptive and robust control methods to cope with model 

uncertainties and external disturbances. 

On the other hand, estimation methods are extended to 

compensate for uncertainties and external disturbances with 

no need to the extra control input. Agarwal et al. [12] 

presented a new observer that produced a new state to 

estimate disturbance, and then the EKF was applied to 

remove the noise in the disturbance estimation. Mohammadi 

Asl et al. [13] presented an adaptive extended Kalman filter 

for position estimation of the robotic manipulators utilized in 

a non-singular fast terminal sliding mode controller. The 

Kalman filter (KF) provides optimal solutions in noisy 

environments but needs information about the statistical 

characteristics of measurement uncertainties. Also, 

researchers are faced with adjusting the covariance matrices 

in the KF-based algorithms as a challenge. As another 

approach, the extended state observer (ESO) is presented to 

estimate uncertainties. In this method, model uncertainties 

are considered as extra state variables. Talole et al. [14] 

designed an ESO for states and uncertainties estimation and 

used the estimated states in a FLC. Yang et al. [15] proposed 

an ESO observer to estimate the nonlinearities of a two-link 

flexible manipulator based on a backstepping controller to 

track the trajectories. In [16], a dual extended state observer 

based on a dynamic surface controller is proposed for a 

manipulator with a hydraulic actuator. The ESO is an 

important approach to disturbance rejection, that is not 

dependent on specific mathematical models of disturbances 

[17]. 

This study deals with the design and experimentally 

implementation of an ESO-based FLC to overcome the 

uncertainties and external disturbances in the lever arm. The 

ESO utilizes the angular displacement of the lever arm 

measured by a 2-phase encoder. After estimating the model 

perturbations, the FLC is developed based on an updated 

model for tracking the desired path of the arm actuated by a 
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DC motor. The stability of the observer and controller is 

analyzed mathematically. The performance of the designed 

control system is evaluated experimentally for different 

trajectories with and without the observer. The results of FLC 

and ESO-based FLC are compared.   

The paper is organized as follows: After Introduction, in 

the section 2, the overview of the kinetic model of the lever 

arm is presented. In the section 3, an ESO algorithm is 

developed. In the section 4, the controller is presented by the 

FLC. The results of the practical implementation are discussed 

in section 5. Finally, the conclusion is given in the last section. 

II. PROBLEM STATEMENT 

A schematic of lever arm is presented in Fig. 1. It consists 

of a massless arm with two lumped masses positioned at the 

end-points. 

 
Fig 1. The schematic of the lever arm. 

 

In order to derive the governing equations of the system, 

we adopt the Lagrange approach. In this respect, the kinematic 

and potential energies are derived as follow: 

𝑇 =
1

2
𝐼𝑜�̇�

2, 
(1) 

𝑉𝑔 = (𝑚1𝑙1 −𝑚2𝑙2) 𝑔 𝑠𝑖𝑛𝜃, (2) 

where 𝐼𝑜 is the moment of inertia. 𝑚1 and 𝑚2 denote the end-

point masses. 𝜃 is the angular displacements of the arm. The 

Lagrange equation for the lever arm is presented as 
𝑑

𝑑𝑡
(
𝜕𝑇

𝜕�̇�
) −

𝜕𝑇

𝜕𝜃
+
𝜕𝑉𝑔

𝜕𝜃
= 𝜏, 

(3) 

Consequently, the dynamics of the lever arm can be 

expressed as 

𝐼𝑜�̈� + 𝐺(𝜃) = 𝜏, (4) 

where 𝐼0 = 𝑚1𝑙1
2 +𝑚2𝑙2

2 denotes the inertia of the lever arm 

and 𝐺 = (𝑚1𝑙1 −𝑚2𝑙2)𝑔cos𝜃  is the gravity term. 𝜏  is the 

motor torque. By considering 𝜃 = 𝑥1. �̇� = 𝑥2, the state-space 

model of the lever arm is represented as 

{
�̇�1 = 𝑥2,

�̇�2 = −𝐼𝑜
−1𝐺(𝑥1) + 𝐼𝑜

−1𝑢 + 𝑑,
 

(5) 

where 𝑢 is the control input and 𝑦 ∈  𝑅 is the output of the 

manipulator. In practical scenarios, uncertainties and external 

disturbances within the lever arm model are unavoidable. 

These factors render the nominal model unsuitable for 

accurate simulation and controller design under real-world 

conditions. In this study, external disturbances are considered 

as follows: 

𝑑 = 0.2 sin(0.5𝑡), (6) 

where 𝑡 ∈  [0, 𝑡𝑓] demonstrates the time index. 

III. EXTENDED STATE OBSERVER ALGORITHM 

In order to design a reliable model-based controller, an 

ESO is employed to estimate model perturbations of the 

system. Perturbations may include as unknown parameters, 

un-modeled dynamics, and external disturbances. A term 

encompassing modeling perturbations is considered an 

additional state, represented as 𝑥3 = 𝑓(𝑥) = −𝐼𝑜
−1𝐺(𝑥1) +

𝑑 . Therefore, the state-space model of the lever arm is 

rewritten as 

{

�̇�1 = 𝑥2,

�̇�2 = 𝑓(𝑥) + 𝐼𝑜
−1𝑢,

�̇�3 = 𝛾(𝑡),

 

(7) 

where 𝛾(𝑡) = 𝑓̇(𝑥) is assumed to be an unknown but bounded 

function. By considering 𝑦 = 𝑥1  as the system output, the 

steady state observer of Eq. (7) is manufactured as 

{

�̇�1 = 𝑧2 + 𝛽1(𝑥1 − 𝑧1),

�̇�2 = 𝑧3 + 𝐼𝑜
−1𝑢+𝛽2(𝑥1 − 𝑧1),

�̇�3 = 𝛽3(𝑥1 − 𝑧1),

 

(8) 

where 𝛽𝑖(𝑖 = 1,2,3) are the observer gains.  

By merging equations (7) and (8), we can formulate the 

equations for observer errors as follow: 

{

�̇̃�1 = �̃�2 − 𝛽1�̃�1,

�̇̃�2 = �̃�3−𝛽2�̃�1,

�̇̃�3 = 𝛾(𝑡) − 𝛽3�̃�1,

 

(9) 

where �̃�𝑖 = 𝑥𝑖 − 𝑧𝑖 , 𝑖 = 1,2,3  shows the observer error. By 

selecting suitable values for observer gains, we can guarantee 

the input-output stability of the observer while also 

considering the bounded nature of 𝛾. 

Theorem 1. By selecting 𝛽1 =  3/𝜖, 𝛽2 =  3/𝜖
2
, and 𝛽3 =

 1/𝜖3, in which 𝜀 is a positive free parameter, the estimation 

error dynamic (9) is bounded under the assumption that 𝛾(𝑡) 
is bounded. 

Proof. Using 𝛽1 =  3/𝜖 , 𝛽2 =  3/𝜖2 , and 𝛽3 =  1/𝜖
3 , in 

the estimation error dynamic (9) leads to 

[

�̇̃�1
�̇̃�2
�̇̃�3

] = 𝐴 [

�̃�1
�̃�2
�̃�3

] + 𝐵𝛾(𝑡). 

 

(10) 

where 𝐴 = [

−3/𝜖 1 0

−3/𝜖2 0 1

−1/𝜖3 0 0

] and 𝐵 = [
0
0
1
]. The characteristic 

polynomial of 𝐴  is  𝜆 = 𝑠3 +
3

𝜖
𝑠2 +

3

𝜖2
𝑠 +

1

𝜖3
= (𝑠 +

1

𝜖
)
3

 

which indicates that the eigenvalues of  𝐴  are equal to 𝑠𝑖 =

–
1

𝜖
  (𝑖 = 1,2,3). Therefore, for a given 𝜖 > 0, the matrix 𝐴 is 

Hurwitz and 𝜀 affects the convergence speed of the observer. 

The first order differential equation of (10) is solved as 

�̃�(𝑡) = 𝑒𝐴𝑡�̃�(0) + ∫ 𝑒𝐴(𝑡𝑓−𝜗)𝐵𝛾(𝜗)𝑑𝜗,

𝑡𝑓

0

 

 
(11) 

It is clear, for smaller positive values of 𝜖, the system response 

will be faster and the steady-state estimation error converges 

to 

lim �̃�(𝑡) =
𝑡→∞

∫ 𝑒𝐴(𝑡−𝜗)𝐵𝛾(𝜗)𝑑𝜗.
𝑡

0

 
 
(12) 

It is concluded from (12), by considering boundedness of 

𝛾(𝜗), estimation error will be bounded ∎ 

Remark. The free parameter 𝜖 influences the placement 

of the eigenvalues and consequently the speed of the ESO as 

a high-gain observer. For larger values of 𝜖 , the response 



speed decreases, and for smaller values of free parameter 𝜖, 

despite faster responses, the system becomes sensitive to 

measurement noise and modeling errors, leading to 

fluctuations with high frequency. Furthermore, numerical 

errors may occur when solving the set of differential equations 

at each sampling time [18]. 

IV. ESO-BASED FEEDBACK LINEARIZATION CONTROLLER 

The overall structure of the proposed control method is 

shown in Fig. 2. By using angular displacement measurement 

and the control input, the system states are estimated by the 

ESO observer. The proposed estimation algorithm not only 

aims to estimate the state variables, but also strives to 

minimize the discrepancy between the initial model and the 

actual model. Therefore, by assuming access to accurate 

dynamics of the system, a controller with the structure of 

feedback linearization is firstly designed based on the model 

described by (5). Then, the supervisor updates the initially 

designed model after receiving information from the observer 

and then utilizes the updated model including all model 

uncertainties to develop an ESO-based FLC for tracking the 

desired trajectory. 

 

Fig 2. The overall structure of the proposed control method. 

According to Eq. (5), the system has the relative degree 

𝜌 = 2 since the control signal 𝑢 first appears in the second 

derivative of 𝑥1 as follow 

�̈� = −𝐼𝑜
−1𝐺(𝑥1) + 𝐼𝑜

−1𝑢 + 𝑑. (13) 

The feedback linearization control law is derived in the 

presence of uncertainties and with access to precise dynamics 

as follows  

𝑢 = −𝐼𝑜(𝛽 − 𝛼), (14) 

where 

𝛽 = −𝐼0
−1𝐺(𝑥1) + 𝑑, (15) 

will be available by the ESO. Considering  
𝛼 = �̈�1𝑑 − 𝑘1(𝑥2 − �̇�1𝑑) − 𝑘2(𝑥1 − 𝑥1𝑑), the error dynamics 
can be written as 

�̈� + 𝑘1�̇� + 𝑘2𝑒 = 𝜅, (17) 

where 𝑒 = 𝑥1 − 𝑥1𝑑. According to Theorem. 1, the ESO is a 

bounded-input bounded-output observer and the estimation 

error are considered as the term 𝜅 in the right-hand side of 

error dynamic (17). Therefore, the following theorem is 

presented to demonstrate the stability of the proposed control 

method in the presence of bounded estimation errors of 

uncertainties, and disturbances. 

 

Theorem 2. The tracking error of the proposed controller 

(14) will be bounded in the presence of bounded estimation 

errors of uncertainties and disturbances. Also, to converge the 

tracking error to the compact set, the poles of the controller 

should be selected far away from the imaginary axis.  

Proof. By considering the upper bound for the estimation 

error as |𝜅| < 𝜇, Eq. (17) is rewritten as 

�̈� + 𝑘1�̇� + 𝑘2𝑒 ≤ 𝜇. (18) 

Solving the second-order differential inequality (18) and 

utilizing the comparison lemma [19] leads to 

 

𝑒 ≤

{
 
 

 
 𝑐1𝑒

−
1

2
(𝑘1+√∆)  + 𝑐2𝑒

−
1

2
(𝑘1−√∆)  +

𝜇

𝑘2
if ∆> 0,

𝑒−
1

2
𝑘1𝑡  (𝑐3 + 𝑐4𝑡) +

𝜇

𝑘2
if ∆= 0,

𝑐5𝑒
−
1

2
𝑘1𝑡  𝑠𝑖𝑛(

√∆

2
𝑡 + 𝜑) +

𝜇

𝑘2
if ∆< 0,

  
(19) 

where ∆= 𝑘1
2 − 4𝑘2  and 𝑐𝑖 (𝑖=1,...,5)  are constant values. 

Considering positive values for 𝑘1  and 𝑘2 , all three cases 

above, leads to 

𝑙𝑖𝑚
𝑡→∞

𝑒(𝑡) =
𝜇

𝑘2
. 

(20) 

Based on Eq. (20), for a given 𝜎 > 0, the coefficient 𝑘2 can 

be selected as 
𝜇

𝜎
< 𝑘2 so that the tracking error can converge 

within the following compact set: 

|𝑒| < 𝜎. (21) 

To analysis the boundedness of �̇�, the following candidate 

Lyapunov function is defined: 

𝑉 =
𝑘2
2
𝑒2 +

1

2
�̇�2 > 0. 

(22) 

Derivation from Eq. (22) gives 

�̇� = 𝑘1𝑒�̇� + �̇��̈�. (23) 

By substituting Eq. (17) into Eq. (23), and considering the 

upper bound |𝜅| < 𝜇, the following inequality can be derived: 

�̇� ≤ −𝑘1�̇�
2 + 𝜇|�̇�|. (24) 

By applying the inequality 𝑎𝑏 ≤ 𝑛𝑎2 +
𝑏2

4𝑛
 for any real 𝑎, 𝑏, 

and 𝑛 > 0 to the last terms of inequality (24) and supposing 

𝑛 =
1

𝑘1
, Eq. (24) is rewritten as 

�̇� ≤ −
3

4
𝑘1�̇�

2 +
𝜇2

𝑘1
. 

(25) 

By using (21) and (22), inequality (25) can be rewritten as 

�̇� ≤ −
3

2
𝑘1𝑉 +

3

4
𝑘1𝑘2𝜎

2 +
𝜇2

𝑘1
. 

(26) 

By taking 
3

4
𝑘1𝑘2𝜎

2 +
𝜇2

𝑘1
= ∅, inequality (26) is rewritten as 

�̇� ≤ −
3

2
𝑘1𝑉 + ∅. 

(27) 

Solving Eq. (27) via the comparison lemma leads to 

𝑉 ≤ (𝑉(0) −
∅

𝑘1
)𝑒−𝑘1𝑡 +

∅

𝑘1
. 

(28) 

If 𝑘1  is a positive value, the Lyapunov function will be 

bounded as: 

𝑙𝑖𝑚
𝑡→∞

𝑉(𝑡) =
∅

𝑘1
. 

(29) 

 

Since the Lyapunov function defined by (29) is bounded, and 

also the tracking error is within the compact set according to 

(21), so �̇� will be bounded. 

V. RESULTS AND DISCUSION 

In this section, a fabricated platform for a robotic arm is 

utilized to evaluate the performance of the proposed method. 

In the proposed method, uncertainties and disturbances are 

treated as an extended state, and the link position information 



is used to estimate this state in conjunction with the angular 

velocity of the link states. The control system designed based 

on the proposed observer can adapt itself to real-world 

conditions and utilize sufficient information about 

uncertainties and disturbances. In addition to the unmodeled 

dynamics and disturbances presented in Eq. (6), we also 

consider a 10% parametric uncertainty in the inertia of the 

lever arm. 

The test equipment is shown in Fig. 3. According to this 

figure, the HN3806 two-phase encoder measures the angular 

displacement of the arm with an accuracy of 0.05 (Deg) at the 

50 Hz frequency. After measuring the sensor output, the 

control signal is calculated, and the pulse width modulation 

(PWM) of the motor is sent to the motor driver. Finally, a 12-

volt DC motor produces the proposed control input. To 

validate the proposed controller, the MATLAB-Simulink 

environment is used to read the sensors outputs, to calculate 

the control input and to send the control signals to the 

actuator. The platform setup parameters are presented in 

Table I. 

 

 
Fig. 3. Fabricated platform of the lever arm. 

TABLE I.  PARAMETERS OF THE FABRICATED PLATFORM 

Parameter Discreption Value 

𝑚1 lumped mass 1 0.5 kg 

𝑚2 lumped mass 2 0.55 kg 

𝑙1 Length of arm 1 0.15 m 

𝑙2 Length of arm 2 0.14 m 

𝐼𝑜 moment of inertia 0.0225 kg.m2 

At the first test called test-1, the performance of the ESO-

based FLC is evaluated for different values of 𝜖. Figure 4(a) 

illustrates that when the value of the free parameter is set to 

𝜖 = 0.09, the ESO can accurately estimate the perturbations, 

and the proposed control method provides significant 

performance in tracking the desired path. For larger values of 

𝜖, the robotic arm dynamics cannot be accurately captured 

and the estimation errors are increased. On the other hand, for 

smaller values of free parameters like 𝜖 = 0.05, despite faster 

responses, the system becomes sensitive to measurement 

noise and thus modeling errors, leading to fluctuations with 

high frequency and numerical errors. The control inputs 

related to the three different 𝜖 are shown in Fig. 4(c). The 

results reveal that the value of the free parameter 𝜖 should not 

be selected too large or too small to prevent large errors and 

high fluctuations in the responses and control inputs. It is 

concluded from the results that, a suitable value 𝜖 = 0.09 is 

selected for the present application. To compare the 

performance of the proposed approach for different values of 
𝜖, the root mean square (RMS) of tracking errors and control 

inputs are reported in Table II. When 𝜖 = 0.09, the RMS of 

tracking error and control input is the lowest in comparison 

with smaller and bigger values of  𝜖 

Figure 5 shows a comparison between the estimation of 

the angular velocity and unknown term (�̂�3) for three free 

parameters of 𝜖 . The superior accuracy of the proposed 

controller for 𝜖 = 0.09 in comparison to another magnitudes is 

clearly seen. 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 4. The experimental results of the ESO-based FLC in test-1 for 

different values of 𝜖. (a) Angular displacement, (b) Tracking error, (c) 

Control input. 

TABLE II.  THE RMS OF THE RESPONCES FOR DIFFERENT VALUES OF 

FREE PARAMETER IN TEST-1. 

Different values of 𝜖 𝝐 = 𝟎. 𝟎𝟓 𝝐 = 𝟎. 𝟎𝟗 𝝐 = 𝟎. 𝟐 

Tracking error (rad) 0.0259 0.0182 0.1582 

Control input (N.m) 0.8096 0.4141 0.5135 

 

(a) 



 
(b) 

Fig. 5. The experimental results in test-1 for different values of  𝜖  (a) 

Angular velocity, (b) Estimation of unknown term. 

In order to verified the proposed controller in different 
conditions, a time-varying reference trajectory is considered 
as test-2. The result of the proposed controller for different 
value of 𝜖 is shown in Fig. 6. Also, the RMS of the tracking 
errors and control inputs are reported in Table III. The results 
indicate the high efficiency of the proposed method for 𝜖 =
0.09. 

 
(a) 

 
(b) 

 
(c) 

Fig. 6. The experimental results of the ESO-based FLC in test-2 for 

different values of 𝜖  (a) Angular displacement, (b) Tracking error, (c) 

Control input. 

TABLE III.  THE RMS OF THE RESPONCES FOR DIFFERENT VALUES OF 

FREE PARAMETER IN TEST-2. 

Different values of 𝜖 𝝐 = 𝟎. 𝟎𝟓 𝝐 = 𝟎. 𝟎𝟗 𝝐 = 𝟎. 𝟐 

Tracking error (rad) 0.0294 0.0119 0.0751 

Control input (N.m) 0.8563 0.2244 0.2733 

Fig. 7 shows the effect of uncertainties estimation in the 
performance of the controller. When the uncertainties are not 

estimated, the controller design is based on the initial model 
of the system without updating. As demonstrated in Fig. 7, 
controller with uncertainty estimation is much better than the 
controller without uncertainty estimation. This is for the 
reason that the observer attempts to enhance the reliability of 
the initial model by adding the uncertainty term. Therefore, 
the controller that uses the updated model has a good 
performance in decreasing the tracking error.  

CONCLUSION 

In this paper, the perturbation of a robotic arm is 

considered as an additional state and estimated by extended 

state observer. Accordingly, a feedback linearization 

controller based on the updated model is designed for the 

trajectory tracking of a robotic manipulator. Different tests 

under various dynamical maneuvering are conducted to show 

the performance of the proposed algorithm. The experimental 

result indicates the efficiency of the proposed control method 

in reducing the tracking error in the presence of various 

sources of uncertainties and disturbances. 

 
(a) 

 
(b) 

 

(c) 
Fig. 7. The experimental results of the ESO-based FLC in test-2 with and 
without uncertainties estimation. (a) Angular displacement, (b) Tracking 

error, (c) Control input. 
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