
EasyChair Preprint
№ 4129

Design Policy Checking in ArchiMate. On the
Cases Technology Policies in a Medical Center

Stef Joosten, El Makki Haddouchi and Ella Roubtsova

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

September 2, 2020

Design Policy Checking in ArchiMate

On the cases technology policies in a Medical Center

Stef Joosten [0000-0001-8308-0189], El Makki Haddouchi, Ella Roubtsova [0000-0002-4067-3088]

Open University of the Netherlands, Valkenburgerweg 177, 6419 AT, Heerlen,

The Netherlands

Stef.Joosten@ou.nl,E.M.Haddouchi@umcutrecht.nl,

Ella.Roubtsova@ou.nl

Abstract. This paper presents the results of an investigation on the automatic verifi-

cation of organization-specific policies in the context of the Open Group enterprise

modeling language ArchiMate. This paper analyses a set of technical design policies

from a hospital, reformulating them for automated checking within the hospital’s own

architecture models. The policies have been modeled in a semantic language called

Ampersand, which is based on relation algebra. This investigation has used Ampersand

as an architecture checking tool. By analyzing 10 real-world policies from a hospital,

we demonstrate that policies can be verified automatically in ArchiMate models. This

work is a step towards the automated checking of architecture policies, which enhances

the possibilities of ArchiMate beyond visualization only.

Keywords: Enterprise Architecture, ArchiMate, policy, automated verification,

Ampersand tool

1 Introduction

The Open Group enterprise modeling standard language ArchiMate [2, 18, and 19] is

available to enterprise architects for visualizing and sharing ideas. Enterprise architects

create ArchiMate models, which consist of elements, relationships between those ele-

ments, and views. Each view corresponds to a diagram, which an enterprise architect

uses to visualize whatever she considers useful. However, the purpose of enterprise

architecture is not just to draw diagrams but to ensure coherence (i.e. consistency and

completeness) across the enterprise. Models and diagrams are instruments, not the re-

sults of enterprise architecture.

In practice, architects translate the enterprise’s visions to practical policies, to

guide the enterprise in the direction of the desired vision. This paper addresses the prob-

lem of verifying such policies in ArchiMate models, as a step towards automated veri-

fication of enterprise architecture.

This investigation addresses the question of whether we can formalize model-

ing policies of enterprise architects so that these policies can be verified automatically

on an entire ArchiMate model (i.e. across all diagrams together).

The fact that ArchiMate allows an enterprise architect to model almost any-

thing complicates things. Different architects use different modeling practices. A lack

mailto:Stef.Joosten@ou.nl
mailto:E.M.Haddouchi@umcutrecht.nl

2

of uniformity makes it hard to verify architecture policies, so automated support might

be very welcome. ArchiMate itself, however, provides little help because it is very per-

missive. And understandably so, because a tool should not prescribe how it is used.

To address this problem, we have formalized policies to verify an ArchiMate

model wrt these policies. This paper presents an experiment that was conducted to test

this method in practice, in a hospital. Section 2 describes the published attempts of

specification and verification of different policies in ArchiMate. Section 3 presents our

method for policy presentation and verification useful for ArchiMate enterprise models.

Section 4 presents the real policies found in documents of a hospital and shows their

preparation for automatic verification. The results of the verification are transformed

into reports about the conformance of enterprise models to policies. Section 5 discusses

the results of our experiment on policy specification and verification in ArchiMate.

Section 6 concludes the paper and presents future work.

2 Policies in ArchiMate

An Enterprise model presents an enterprise with the concepts and relations of different

layers of an enterprise [17]. Its purpose is to support architects to visualize structure in

different ways for different stakeholders. ArchiMate is a standard of Enterprise model-

ing [2]. The visual elements of ArchiMate are elements (visually represented by differ-

ent shapes with a surface) and relationships (visually represented by shapes without

surfaces, such as arrows and lines). The visual elements can be included in other ele-

ments, for example by aggregation, composition, and grouping relations. Elements are

categorized as strategic, business, application, technological, motivational, or imple-

mentation elements. One model contains an arbitrary number of diagrams (called

“view”). Different views can share elements and relationships, i.e. all views are scoped

in the namespace of the entire model.

In June 2016, the Open Group released version 3.0 of the ArchiMate Specifi-

cation [2]. Version 3.0 offers the modeling element in its motivation layer: Constraint

(Policy), shown in Fig. 1.

Fig. 1. Constraint (Policy) in ArchiMate® 3.1 Specification [2]

 This means that organization-specific constraints (policies) can be entered as

text in the ArchiMate language. Throughout this paper we use the word “constraint”

for a verifiable statement that is intended to be true all the time, e.g. “an invoice must

be paid within 30 days”. We use the word policy for an intention, which is not neces-

sarily verifiable, e.g. “Our company is transparent”. A constraint is a specialization of

a policy. This paper uses constraints in the context of enterprise models. They are ex-

pressed in terms of the elements and relationships of the enterprise model.

This paper assumes that policies are formulated by management, not by enterprise

architects. In practice, this means that:

https://en.wikipedia.org/wiki/Open_Group

3

● The policies are to be found in various documents scattered around the organ-

ization. An enterprise architect may have to track them down.

● For automatic verification, an enterprise architect must reformulate policies

into constraints. If a policy is not verifiable, the enterprise architect must

choose to make it verifiable or to ignore it.

● Reformulation of policies may involve some validation activity in collabora-

tion with management.

The possible added value of including constraints and policies into enterprise models

is the possibility of their automated checks.

3 Related Work

Researchers have made numerous attempts to specify constraints for ArchiMate mod-

els. Often, these attempts concern access, security, and privacy.

For example, Korman, M., Lagerström, R., and Ekstedt, M. [12] report the results of

the graphical specification of five existing access policies in ArchiMate. “Generic meta-

models for expressing configurations of existing models of access control” are mapped

to ArchiMate. The use of models of access policies is “illustrated with a selection of

example scenarios and two business cases”. The constraints of the specified access poli-

cy are modeled but not subjected to automated verification.

Tepandi, J. et.al. [22] present architectural patterns for the EU Once-Only Principle

to ensure that citizens and businesses supply the same information only once to inter-

nally re-use this data. The authors propose a reference TOOPRA architecture based on

the Once-Only Principle and its scenario-based evaluation. The architecture, con-

straints, and policies are presented informally and not verified.

Security policies have got an ArchiMate meta-model extension proposed by Mayer,

N., Aubert, J., Grandry, E., Feltus, C., Goettelmann, E., & Wieringa, R. [13]. Assurance

security cases graphically modeled within the enterprise model by Zhi, Q., Yamamoto,

S., & Morisaki, S. [14]. A developed security policy extends the enterprise model, but

the policies are not used for the verification of enterprise architecture.

Privacy policies have been modeled in the ArchiMate by Blanco-Lainé G., Sottet J-

S, Dupuy-Chessa S. [15]. The authors have a global look on privacy policies and “ad-

dresses the modeling of a given regulation (GDPR) as an EAM fragment that needs to

be integrated into a more global EAM”. They have identified business services related

to the GDPR and modeled them in ArchiMate. The authors do not see their ArchiMate

models as a means for verification of enterprise models of organizations. A common

denominator in these (and many other) case studies is that ArchiMate modelers are

modeling policies and constraints without automated verification. This is not surpris-

ing, as ArchiMate tools offer little functionality for automated verification.

Automated constraint verification in models has a long history, especially in the con-

text of systems specification and enterprise architecture [1, 3]. Many tools for verifica-

tion are available as query systems and analyzers.

 In this work we are interested specifically in verification of the enterprise architec-

ture models. The current paper builds on earlier work with the Ampersand tool [8].

4

Ampersand uses relational algebra as a language to represent constraints, which allows

verification of enterprise architecture against constraints.

Like the current paper, Babkin, E. A., & Ponomarev, N. O. [6] take an approach

based on relation algebra. The MIT Alloy Analyzer searches for contradictions in the

enterprise architecture models. Babkin & Ponomarev propose a meta-model of the Ar-

chiMate specification. The authors use the standard case (coming with the ArchiMate

installation) ArchiSurance and one example of a constraint to illustrate the use of the

MIT Alloy Analyzer.: “If an application component uses data, it must have access to a

technology service that extracts that data.” This research found that the main difficulty

is to find the constraints that need to be checked in organizations.

Arriola, L., & Markham, A. [7] propose to use Z-notation to formulate design deci-

sions and control them on the enterprise architecture level. This is related in that Z is a

formal specification language (akin to relation algebra) which is used for architecture

specification. But automated verification is not the intention of Arriola & Markham.

The semantic web inspires researchers to represent constraints as OWL2 RL Axi-

oms. Kharlamov et.al. [4]). Marosin et.al. [5] report their experience in the ontological

specification of enterprise architecture and use queries for verification of architectural

specifications. They too found that “the main challenge that we encountered was to

capture the constraints of the models using ontological axioms”. The common ground

in these publications is that identification and formulation of constraints is the major

challenge.

A more generic way to represent constraints is to extend a concrete tool. The tool

Archi [11, 20] has recently been enriched with a JavaScript-based scripting plug-in

called jArchi [10]. It is built on the Oracle Nashorn engine. With jArchi, an enterprise

architect can write JavaScript to encode his own ArchiMate checker. That option is

more generic than constraint verification, since any plugin can be written. However, it

is confined to Archi.

In practice, organizations use combinations of design, security, privacy, and other

policies. In order to make sense to the business, these policies are formulated using the

language and jargon of the business. So capturing business language is required. Be-

sides, formality is required to do automated verification. Therefore this work uses a

formal language, Ampersand [8] in which an enterprise architect can capture the lan-

guage, i.e. the concepts and relations, of the business. Since ArchiMate has no embed-

ded constraint language, we have adapted the Ampersand compiler to read ArchiMate

repositories [9]. That work presents a parser that extracts the ArchiMate metamodel

from an ArchiMate repository and pours the ArchiMate models from that repository

into Ampersand. From that point onward, Ampersand takes over to do all the checking.

4 Research method to study the checking of policies

Our research method is based on the presentation of an enterprise architecture in

ArchiMate®Model Exchange File Format [18] and its compilation into a metamodel

with an Ampersand-compiler called ArchiChecker.

5

4.1 Our verification method in steps

1. Automated step. ArchiMate model importing and parsing.

The investigator imports an ArchiMate model. ArchiChecker parses the ArchiMate

model and generates a metamodel, which is populated by the contents of the ArchiMate

model.

Suppose the repository contains the following model fragment:

Fig. 2. A fragment of an ArchiMate model

Then the metamodel contains an ApplicationComponent Risis, a BusinessProcess Re-

turns and a relation realization. i.e the pair (Risis, Returns) ∈ realization.

2. Manual step. Policy formalization.

The researcher formalizes each policy in the language Ampersand as a constraint on

elements and relations accommodated in the metamodel of the ArchiMate model. This

requires involvement of a researcher mastering formalization of an informal policy into

an Ampersand constraint.

The policy in hands is formulated (1)in natural language; (2)presented as an ArchiMate

picture; (3)presented in Predicate Logic;(4) transformed into Ampersand language for

ArchiChecker.

3. Automated step. Checking process.

An ADL file is created as it is shown in Fig.3. The ArchiMate model and the set of

relations and the constraint corresponding to a policy are used in a constraint checking

process, in which the content of the relations is queried to find violations of the policy

in the metamodel of the ArchiMate model.

CONTEXT ArchiMate Model

INCLUDE “ArchiMate Model Name”

RELATION metamodel of the ArchiMate model

RULE policy in Ampersand language for ArchiChecker.
VIOLATION generated by the ArchiChecker

 ENDCONTEXT

Fig. 3. ADL File - the selected constraint in Ampersand for verification

In order to automatically detect violation, the Archi file is imported in Ampersand

using the following script in Docker:

docker run -it -v C:\(workdirectory):/scripts ampersandtarski/ampersand:(version)

check example.archimate

During the script execution, the files ‘ArchiCount.txt and ArchiMetaModel.adl’ will be

added to the workdirectory.

Then the ‘example.adl’ is imported using the following script in Docker:

docker run -it -v C:\(workdirectory):/scripts ampersandtarski/ampersand:(version)

check constraintexample.adl

6

The ArchiChecker generates the violations of the selected constraint (policy) in the se-

lected EA model.

4. Partially automated step. Analysis of violations.

ArchiChecker presents every violation in a human-readable form, which the researcher

has prepared in Ampersand. The analysis is fulfilled by the enterprise architect.

5 A case study of formalizing and checking of ten design

policies in two enterprise architecture models

5.1 Description of the case study

The Enterprise Architecture (EA) of the Utrecht Medical Center (UMC) in the Nether-

lands is partly derived from the Hospital Reference Architecture ZiRA [16]. It contains

a collection of policies and models for each layer. The guidelines formulated in the

organization and processes layer are based on the policy made by the Executive Board,

the divisions and the departments. These are generic policy statements that guide all

layers. Every project selects relevant policies (i.e. principles and guidelines) from the

EA. The selection is then included in the "Project Start Architecture" (PSA), to focus

the attention of all project members to these policies. To demonstrate our approach we

have selected (more or less randomly) two distinct models from distinct domains in the

actual enterprise architecture of the UMC. One was taken from the PSA “CS Pharmacy”

and the other from the PSA “Office 365”. Using two models can show which rules are

applicable to both models, even though these models are unrelated. Let us briefly dis-

cuss each model.

PSA: CS Pharmacy. In this existing project start architecture two information sys-

tems are used: MIRA (CGM Pharmacy) and Chipsoft HiX. The systems do not com-

municate with each other because of the separated Infrastructures. CGM and Chipsoft

HiX can be seen in Fig. 4. MIRA (CGM Pharmacy) runs completely separate from the

UMC Utrecht infrastructure. Management is carried out by the supplier. The aim of the

CS Pharmacy project is to change the enterprise architecture by deploying the applica-

tion HiX CS Pharmacy within the UMC Utrecht Lan to make available all necessary

functionality for the pharmacy.

PSA: Office 365. UMC Utrecht has developed a strategy that combines both CGM

and Chipsoft HiX. The combining needs a standardized platform enabling collaboration

with colleagues and people within and outside the organization. The chosen standard-

ized platform Office 365 meets the business needs of integral working within UMC

Utrecht. The enterprise architecture PSA: Office 365 is shown in Fig.5. It shows the

support of Personnel administration, Access facilities, Access to ICT, conferencing,

Suppl chat, e-mail, address, agenda.

Fig. 4. PSA: CS Pharmacy

Fig. 5. PSA: Office

Policies and Constraints. By analyzing 10 different policies we can obtain a sense of

the problems we encounter when formalizing architectural constraints in practice. The

selection consists of the following policies:

1. Only one information system is in use for each functionality.

2. Unambiguous and one-time recording of data (and multiple use).

3. Each business process should be realized by at least one application system.

4. A Business process has precisely one owner.

5. Healthcare providers and patients work with one shared file.

6. A data or data group uses one or more business objects.

7. The continuity of critical systems of the Medical Center is guaranteed.

8. The core of information provision is an Enterprise Data Warehouse (EDW).

9. Every data and data type has someone responsible.

10. Use of central applications is mandatory.

Our method for policy checks demands the formalization of constraints. The formali-

zation is presented in tables 1and 2 and in Appendix. Let us now present and discuss

the results, one by one.

5.2 Results of policy checking

Table 1. Policy 1 - Only one information system is in use for each functionality.

Reformulated in

natural lan-

guage

Every functionality must be realized by precisely one application.

ArchiMate
Practice

For every application function, there must be precisely one incoming realization re-
lation from an application component.

Predicate Logic (Policy 2.1)

∀f ∈ ApplicationFunction ∃c ∈ ApplicationComponent : c realization f

 (Policy 2.2)
∀f ∈ ApplicationFunction ∀a, c ∈ ApplicationComponent : a realization f ⋀

c realization f ⇒a=c

ArchiChecker

rules RULE "Policy 2.1":

I[ApplicationFunction] |- realization[ApplicationCompo-

nent*ApplicationFunction]~ ;

realization[ApplicationComponent*ApplicationFunction]

VIOLATION (TXT "ApplicationFunction \'", TGT name, TXT

"\' is not realized by any ApplicationComponent.")

10

RULE "Policy 2.2":

realization[ApplicationComponent*ApplicationFunction]~

 ; -I[ApplicationComponent]

 ; realization[ApplicationComponent*ApplicationFunc-

tion] |-

-I[ApplicationFunction]

VIOLATION (TXT "ApplicationFunction \'", SRC name, TXT

"\' is realized by an ApplicationComponent ", SRC reali-

zation[ApplicationComponent*ApplicationFunction]~;name,

TXT ".")

Violations from
Archichecker

There are 11 violations of RULE "Policy 2.1":

1) ApplicationFunction 'HR registration' is not realized

by any ApplicationComponent.(the reader may see in Fig.4)
2)ApplicationFunction 'Identity provisioning' is not re-

alized by any ApplicationComponent. Fig.4
3)ApplicationFunction 'Access management' is not real-

ized by any ApplicationComponent. Fig.4
4)ApplicationFunction 'Account administration' is not

realized by any ApplicationComponent.Fig.4
5)ApplicationFunction 'Groups administration' is not re-

alized by any ApplicationComponent. Fig.4
6)ApplicationFunction 'Application distribution Office'

is not realized by any ApplicationComponent. Fig.4
7)ApplicationFunction 'Exchange management' is not real-

ized by any ApplicationComponent.Fig.4
8)ApplicationFunction 'Manage user profiles' is not re-

alized by any ApplicationComponent. Fig.4
9)ApplicationFunction 'Site management SharePoint' is

not realized by any ApplicationComponent. Fig.4

10)ApplicationFunction 'Skype Business Management’ is

not realized by any ApplicationComponent. Fig.4

11)ApplicationFunction 'CS Poli-Apotheek ' is not real-

ized by any ApplicationComponent. Fig.3

The reasons of violations need to be discussed with enterprise architects. It may be that not all

functions have been implemented.

Table 2. Policy2: Unambiguous and one-time recording of data (and multiple use).

Reformulated in

natural lan-
guage

Store once and use manifold, to prevent data pollution and ensure that users get cor-

rect data.

11

ArchiMate

Practice
(Policy 1.1) When an application accesses a data object, it must do that through the

(unique) application that manages these types of objects.

(Policy 1.2) For every type of DataObject we must know the store(s) in which ob-
jects are stored. For example, “Personnel records will be stored in the HRM-

database”. Let us agree to model the store as a Node, and let us relate the data object

type with the node by means of an association relationship called “stores”.
(Policy 1.3) Access to a specific data object type is channelled through a single ap-

plication component, whose responsibility it is to keep that data set in order. Let us

model this by a “serving” relationship between the stores and the data management
applications.

Note that data can be stored on multiple nodes. Access is given through one specific

application component, which controls the integrity of all data objects of that type.

Note too that Policy 1.2 follows logically from Policy 1.1 because of the way we
chose to model this in ArchiMate. As a consequence, there is no need to check pol-

icy 1.2 in Ampersand.

Predicate Logic (Policy 1.1)

∀a ∈ ApplicationComponent,d ∈ DataObject :

∃s ∈ Node, store ∈ ApplicationComponent :a access d ⇒ n stores d ⋀ n serv-

ing store ⋀ store serving a

(Policy 1.2)

∀d ∈ DataObject : ∃s ∈ Node : ∃a ∈ ApplicationComponent : n stores d ⋀
n serving store

(Policy 1.3)

∀d ∈ DataObject : ∀n, n′∈ Node : ∀s, s′∈ ApplicationComponent :n

stores d ⋀ n serving s ⋀ n′ stores d ⋀ n′ serving s′ ⇒ s = s′

12

ArchiChecker

rules
RULE "Policy 1.1":
 access[ApplicationComponent*DataObject]~ |- stores~ ;

serving[Node*ApplicationComponent] ; (serving~ \/ I)
VIOLATION (TXT "Application component \'", TGT name, TXT

"\' has access to objects of type \'", SRC name, TXT

"\'but there is nothing in which to store \'", SRC name,

TXT "\'.")

RULE "Policy 1.3":
 stores~ ; serving ; -I[ApplicationComponent] ; serv-

ing[Node*ApplicationComponent]~ ; stores |- -I[DataOb-

ject]

VIOLATION (TXT "Data objects of type \'", SRC name, TXT

"\' are stored in ", SRC stores~ ; serving[Node*Applica-

tionComponent]

Violations from

ArchiChecker
This script of ArchiMate contains no violation

In both EA models, the selected policy does not constitute any violation. This does not

mean that the included rule for checking on the EA model does not constitute a viola-

tion. But in this case it is because the recorded objects are not visualized in the EA

models. The architects have not chosen to visualize the rule in the models.

The ArchiCheck tables for other 8 policies are shown in the Appendix.

Table 3 presents the numbers of violations found per policy.

Table 3. Numbers of violations found per policy.

Policy N

violations

1. Only one information system is in use for each functionality. 11

2. Unambiguous and one-time recording of data (and multiple use). 0

3. Each business process should be realized by at least one application sys-

tem.

12

4. Every Business process has precisely one owner. 18

5. Healthcare providers and patients work with one shared file. 1

6. A data or data group uses one or more business objects. 0

7. The continuity of critical systems of the Medical Center is guaranteed. 12

8. The core of information provision is an Enterprise Data Warehouse

(EDW).

12

9. Every data and data type has someone responsible. 1

10. Use of central applications is mandatory 7

13

6 Discussion of the case study of specification and verification

of policies in ArchiMate

Although there is no specific viewpoint “constraint” in ArchiMate, yet we were able to

express all constraints in ArchiMate graphically. We were able to formalize all con-

straints and this means that we can validate them in an Enterprise Model using the Ar-

chiChecker. In this sense, the formalization of a constraint (policy) can be used as a

pattern for EA modeling.

Tables 1, 2 and the tables in the Appendix demonstrate the results of the application

of our method to a combination of two EA models and ten constraints (policies). All

constraints-polices were applied to both models. The rules were expressed in the Ar-

chiMate language (i.e. using phrases such as “application component” and “realiza-

tion”) rather than phrases from the business (with words such as “Autopharma”, and

“Chipsoft HiX”). But since the ArchiMate models are used to populate Ampersand’s

relations, the violations come out in the language of UMC, yielding meaningful viola-

tion statements.

The ArchiChecker identifies relatively large amounts of violations of organizational

policies (Table 3). These violations do not necessarily mean that something is wrong

with the architecture. An enterprise architect may use a rule just to notify peculiar situ-

ations or situations that deserve a little extra attention. So both the input (the formalized

rules) and the output (the list of violations) cannot be shared verbatim with the business.

In both directions the interpretation of the enterprise architect is needed to qualify the

implications for other stakeholders.

If violations turn out to have unexpected results, it can mean many things. One op-

tion is that the policies have not been precisely formulated and have not been under-

stood. Another possibility is that the enterprise architect has erred when formalizing the

policy. Hence it is wise to inspect all violations by hand and try to find out in the model

why this violation occurs.

The understanding of policies is a specific point of attention. The enterprise model

can use one set of concepts, but the policies can be formulated using another set of

concepts. The understanding and interpretation of policies by different professionals

demands communication between policymakers and enterprise architects.

Also, we have observed that some policies do not contain sufficient information for

formalization. For example, policy 5 –“ Healthcare providers and patients work with

one shared file” (Appendix) has been refined to a set of statements “For every patient,

there must be one file called “Patient’s files”. Each patient must have access to his or

her patient file. Each health worker directly involved in medical care for a patient must

have access to that patient’s file. Others have no access to this file.” Only after this

refinement, policy 5 can be verified on enterprise models. This means that the policies

should be refined and precisely formulated.

A remarkable observation is that all policies are merely multiplicity constraints. We

can only speculate why there are so few more complicated constraints. Future investi-

gation of organization-specific policies is needed to answer this question.

 The formalized constraints, their automatic verification and found violation of poli-

cies may give policies another value in the organization. We have experienced some

14

support of our research and interest both from management and enterprise architects,

motivated as follows:

 Conformance to automatically verified policies can be easily reported and valued

by management;

 Violation of policies triggers the improvement of enterprise architecture. If verifi-

cation shows a violation of a policy in an enterprise model, it localizes the place in

the EA model that does not conform to the policy. So, the reasons for violation can

be analyzed and this may result in the correction of the Enterprise Architecture or

to a refinement of the policy.

7 Conclusion and Future Work

This paper presents the results of an exploration of automatic verification of organiza-

tion-specific constraints (policies). We have shown that this is possible in ArchiMate,

which offers IT-architects new possibilities for consistency checks in Enterprise Archi-

tectures.

 Verification demands both the verified architecture and the rules (policies) to be

checked. Our approach consists of formalizing organizational policies to enable an ar-

chitecture checker to compute violations of those policies in ArchiMate models.

 We found that most of the time is spent in formulating the constraints, because

policies are often too ambiguous to compute violations. This experience corresponds

with findings in related research.

 We have also found that constraints are largely organization specific, because

they constrain ArchiMate models. So, what we measured were modeling conventions

rather than corporate policies. Architects were needed to interpret policies and produce

constraints to be checked. This produces organization specific constraints, so we cannot

claim that this set of constraints is reusable over an entire domain (e.g. “Hospitals).

 We expect that our tool will prompt enterprise architects to think about their

modeling conventions, which has the obvious benefit of yielding more consistent mo-

dels. Further research is needed to see how architects work with such a tool. A question

is whether architects will benefit enough to invest time in learning how to formalize

policies.

 Our research is based on the EA models and design policies from one single or-

ganization. Further work is needed to find ways to reuse constraints in other organiza-

tions. We expect that this approach works similarly for other domains than healthcare,

but more experience is needed to confirm that.

Acknowledgement

The authors thank the Utrecht Medical Center (UMC) for access to documents and sup-

port of our research.

15

References

1. Chatzikonstantinou, G., & Kontogiannis, K. Policy modeling and compliance verification in

enterprise software systems: A survey. In 2012 IEEE 6th International Workshop on the

Maintenance and Evolution of Service-Oriented and Cloud-Based Systems (MESOCA) (pp.

27-36). IEEE. . (2012, September).

2. ArchiMate® 3.1 Specification © The Open Group. (2012-2019)

3. Chapurlat, V., & Braesch, C. Verification, verification, qualification and certification of en-

terprise models: Statements and opportunities. Computers in Industry, 59(7), 711-721.

(2008).

4. Kharlamov, E., Grau, B. C., Jiménez-Ruiz, E., Lamparter, S., Mehdi, G., Ringsquandl, M.,

& Horrocks, Capturing industrial information models with ontologies and constraints. In In-

ternational Semantic Web Conference (pp. 325-343). Springer, Cham. (2016, October).

5. Marosin, D., Ghanavati, S., & Van Der Linden, D. A Principle-based Goal-oriented Re-

quirements Language (GRL) for Enterprise Architecture. In iStar (2014).

6. Babkin, E. A., & Ponomarev, N. O. Analysis of the consistency of enterprise architecture

models using formal verification methods. Business Informatics, (3), 30-40. (2017).

7. Arriola, L., & Markham, A. Towards an enterprise architecture controlling framework. In

Proceedings of the 12th European Conference on Software Architecture: Companion Pro-

ceedings (pp. 1-7). (2018, September).

8. Joosten, S. Relation Algebra as a programming language using the Ampersand compiler.

Journal of Logical and Algebraic Methods in Programming, 100, 113-129. (2018).

9. Filet, P., van de Wetering, R., & Joosten, S. ENTERPRISE ARCHITECTURE

10. ALIGNMENT. (2019).

11. Beauvoir, P. jArchi . https://github.com/archimatetool/archi-scripting-plugin/wiki. (2019).

12. Beauvoir, P. Archi, archimate modelling tool. http://www.archimatetool.com/. (2018).

13. Korman, M., Lagerström, R., & Ekstedt, M. Modeling enterprise authorization: a unified

metamodel and initial verification. Complex Systems Informatics and Modeling Quarterly,

(7), 1-24. (2016).

14. Mayer, N., Aubert, J., Grandry, E., Feltus, C., Goettelmann, E., & Wieringa, R. An inte-

grated conceptual model for information system security risk management supported by en-

terprise architecture management. Software & Systems Modeling, 18(3), 2285-2312. (2019).

15. Zhi, Q., Yamamoto, S., & Morisaki, S. IMSA-Intra Model Security Assurance. J. Internet

Serv. Inf. Secur., 8(2), 18-32. (2018).

16. Blanco-Lainé G., Sottet J-S, Dupuy-Chessa SUsing an enterprise architecture model for

GDPR compliance principles. 12th IFIP Conference on Practice of Enterprise Modeling,

POEM’2019, Nov 2020, Luxembourg, Luxembourg. hal-02482761. (2020).

17. ZiRA. https://sites.google.com/site/zirawiki/ (2019).

18. Lankhorst M. M., Proper, H. A. and H. Jonkers H. The Anatomy of the ArchiMate Lan-

guage. IJISMD, 1(1):1-32. (2010).

19. ArchiMate® Model Exchange File Format: Schema Documentation for ArchiMate®

2.1 (2015)

20. Binding; Document Number: C154A; Published by The Open Group, (August 2015).

21. Archi@ Version 4.6.0. Archi User Guide. (2019)

22. Tepandi, Jaak, et al. "Towards a cross-border reference architecture for the once-only prin-

ciple in Europe: An enterprise modelling approach." IFIP Working Conference on the Prac-

tice of Enterprise Modeling. Springer, Cham, (2019).

https://sites.google.com/site/zirawiki/

16

Appendix. Formalization and ArchiChecks of polices 3-10.

Policy 3: Each business process should be served by at least one application system

Reformu-
lated in natu-
ral language

Each business process is served by at least one application component.

ArchiMate
Practice

For every business process, there is an application component that serves the
business process by means of a serving relation.

Predicate
Logic

∀b ∈ BusinessProcess ∃c ∈ApplicationComponent : c serving b

Ampersand
language for
Ar-
chiChecker

RULE "Policy 3":
 I[ApplicationComponent]
 |- serving ; serving[ApplicationComponent*BusinessPro-

cess] ; serving~
VIOLATION (TXT "Application component \'", TGT name, TXT

"\' is not serving a Business process.")

Violations
from Ar-
chichecker

There are 12 violations of RULE "Policy 3":
 Application Component 'Brocacef supplier (orders)'

is not serving a Business Process.
 Application Component 'Central application (Chipsoft

HiX)' is not serving a Business Process.
 Application Component 'Autopharma ' is not serving a

Business Process.
 Application Component 'Tenant management Office 365'

is not serving a Business Process.
 Application Component 'App-V/ThinApp' is not serving

a Business Process.
 Application Component 'MIRA (CGM Pharmacy) ' is not

serving a Business Process.
 Application Component 'ServiLocker' is not serving a

Business Process.
 Application Component 'Azure AD' is not serving a

Business Process.
 Application Component 'National Exchange Point ' is

not serving a Business Process.
 Application Component 'SCCM' is not serving a Busi-

ness Process.
 ... (2 more)

Comment Among the violations mentioned above, 4 are about figure 6 (case: pharmacy)
and 6 violations are about figure 7 (case: office 365).
In both models (Figure 6, Figure 7) there are 12 application components that
are not serving any business process. The conclusion is equal to policy 1. In
this case all the applications do not serve any business process. It does not
mean that the included rule for checking on the EA model does not constitute
a violation. The architects have not chosen to visualize the rule in both mo-
dels.

17

Policy 4. Every business process has precisely one owner.

Reformulated
in natural lan-
guage

Every business process must have precisely one owner.

ArchiMate
Practice

Every business actor relates to precisely one business process by means of
an association relation called “owner”.

Predicate
Logic

(Policy 4.1)

∀s ∈ BusinessProcess ∃a ∈ BusinessActor : a owner s

(Policy 4.2)

∀s ∈ BusinessProcess ∀a, b ∈ BusinessActor : a owner s ⋀ b owner s ⇒ a =
b

Ampersand
language for
ArchiChecker

RULE "Policy 4.1":
 I [BusinessProcess] |- owner[BusinessActor*BusinessPro-

cess]~ ; owner[BusinessActor*BusinessProcess]
VIOLATION (TXT "Business Process \'", SRC name, TXT "\'

does not have an owner.")

RULE "Policy 4.2":
 owner[BusinessActor*BusinessProcess] |- -(-I[Busi-

nessActor] ; owner)
VIOLATION (TXT "Business Process \'", TGT name, TXT "\'

has multiple owners.")

Violations
from Ar-
chichecker

There are 18 violations of RULE "Policy 4.1":
 Business Process 'User deprovisioning' does not have

an owner.
 Business Process 'Self-service SharePoint' does not

have an owner.
 Business Process 'Access exchange' does not have an

owner.
 Business Process 'License management' does not have

an owner.
 Business Process 'Distribution Outlook client' does

not have an owner.
 Business Process 'BSN and COV check insurance data'

does not have an owner.
 Business Process 'Termination of employment' does not

have an owner.
 Business Process 'User provisioning' does not have an

owner.
 Business Process 'User provisioning Exchange' does

not have an owner.
 Business Process 'Capacity management' does not have

an owner.
 ... (8 more)

18

Comment

Policy 4.1: To visualize an owner for each business process, ensure that the
models are displayed extensively. To a certain extent, it is assumed that an
owner has been assigned for each business process. In the case of PSA CS
Pharmacy (Figure 6) a role / owner has been assigned for a crucial process,
namely ‘medication monitoring’.

Policy 4.2: This script of ArchiMate contains no violations

Policy 5. Healthcare providers and patients work with one shared file.

Reformu-
lated in nat-
ural lan-
guage

For every patient, there must be one file called “Patient’s File”.
Each patient must have access to his or her patient file.
Each health worker directly involved in medical care for a patient must have
access to that patient’s file.
Others have no access to this file.

ArchiMate
Practice

The rule “A patient’s file is accessible only to the patient himself and all health
workers directly involved in medical care for that patient.” cannot be modeled
in ArchiMate in a direct fashion. Therefore it is entered textually in a constraint
element. For every business actor named “Patient”, we make sure to model a
data object named “Patient’s File”. The patient and health workers have an ac-
cess relationship (read/write) to the patient’s file.

Predicate
Logic

Let be patient a predicate on BusinessActor .

Let patientfile be a predicate on BusinessObject .

Let fileof be a function BusinessActor → BusinessObject .

Let caretaker be a relation BusinessActor × BusinessActor that relates

health workers to

their own patients.

∀a ∈ BusinessActor ∃o ∈ BusinessObject :

patient{a} ⇒ patientfile{o} ⋀ a access o ⋀ o = fileof(a)

∀a, b ∈ BusinessActor ∀o ∈ BusinessObject :

a caretaker b ⋀ b access o ⇒ a access o

Ampersand
language for
Ar-
chiChecker

CLASSIFY PatientFile ISA BusinessObject
CLASSIFY Patient ISA BusinessActor
CLASSIFY Patient ISA Person

19

I[Patient] = name;"Patient";name~
I[PatientFile] = name;"Patient’s File";name~
[Patient] |- access[Patient*PatientFile] ; access[Pa-

tient*PatientFile]~
careTaker;access = access[Patient*PatientFile]~

RULE "Policy 5":I [BusinessObject] |- access [BusinessOb-

ject*BusinessActor]; access [BusinessObject*Busi-

nessActor]~

MEANING "If (a,b) is in the relation caretaker, then per-

son a is a health worker directly involved in medical care

for patient b."
VIOLATION (TXT "PatientFile (Business Object) \'", SRC

name, TXT "\' is not accessed by a caretaker/Patient

(Health worker")

Violations
from Ar-
chichecker

RELATION access[BusinessObject*BusinessActor]
There is one violation of RULE "Policy 5":
 PatientFile (Business Object) 'Patient file ' is not accessed by a care-
taker/Patient (Health worker)

Comment
In Figure 6, a violation has been detected by ArchiChecker. This is because of
the omitted visualization that the caretaker has access to the patient file. The
architecture was visualised to replace the existing pharmacy system, so that
the visualization of the access of a caretaker to the file of his patient was not
important.

Policy 6: A data or data group uses one or more business objects.

Reformulated in
natural language

Every Data Object realizes one or more Business Objects

ArchiMate Practice

Predicate Logic ∀b ∈ DataObject ∃c ∈ BusinessObject : c realization b

20

Ampersand lan-
guage for Ar-
chiChecker

RULE "Policy 6": I[DataObject] |- realiza-

tion[DataObject*BusinessObject];realization[DataOb-

ject*BusinessObject]~
VIOLATION (TXT "Data Object \'", SRC name, TXT "\'

does not realize any Business Object")

Violations from Ar-
chichecker

This script of ArchiMate containts no violations

Comment There is just one data object, 'Patient data', which resides in Figure 6.
Since it is connected to Business object ‘Patient file’ by a realization re-
lation, there are no violations of this policy.

Policy 7. The continuity of critical systems at the Medical Centre is guaranteed

Reformulated
in natural lan-
guage

Each IT system has an owner. The owner is responsible for ensuring continu-
ity and taking adequate measures.

ArchiMate
Practice

The architects can choose to model an owner for every application compo-
nent, by making an association relationship called “owner” from every appli-
cation component to its owner (a Business Actor). We let the checker test
whether the owner is unique, because we don’t want multiple owners for one
application component.

Predicate
Logic

∀a ∈ ApplicationComponent ∃b ∈ BusinessActor : b owner a

Ampersand
language for
ArchiChecker

RULE "Policy 7.1":
 I [ApplicationComponent] |- owner[BusinessActor*Appli-

cationComponent]~ ; owner[BusinessActor*ApplicationCompo-

nent]
VIOLATION (TXT "Application Component \'", SRC name, TXT

"\' does not have an owner.")
RULE "Policy 7.2":
 owner[BusinessActor*ApplicationComponent] |- -(-I[Busi-

nessActor] ; owner)
VIOLATION (TXT "Application Component \'", TGT name, TXT

"\' has ", SRC name, TXT " an owners.")

21

Violations
from Ar-
chichecker

 There are 12 violations of RULE "Policy 7.1":
 Application Component 'Brocacef supplier (orders)'

does not have an owner.
 Application Component 'Central application (Chipsoft

HiX)' does not have an owner.
 Application Component 'Autopharma ' does not have an

owner.
 Application Component 'Tenant management Office 365'

does not have an owner.
 Application Component 'App-V/ThinApp' does not have

an owner.
 Application Component 'MIRA (CGM Pharmacy)' does not

have an owner.
 Application Component 'ServiLocker' does not have an

owner.
 Application Component 'Azure AD' does not have an

owner.
 Application Component 'National Exchange Point' does

not have an owner.
 Application Component 'SCCM' does not have an owner.
 ... (2 more)

Comment Policy 7.2: This script of ArchiMate contains no type errors.
The figure 6 and 7 show 13 application components, none of which has an
owner. So whatever the ArchiMate practice and whatever the formalization,
there will always be 13 violations of this policy as long as owners are not be-
ing modelled.

Policy 8 - The core of information provision is an Enterprise Data Warehouse (EDW).

Reformulated in
natural language

Enable integrated data and information provision on various domains.

ArchiMate Prac-
tice

Predicate Logic ∀ ∈ A ∃c ∈ Node : c serving b

Ampersand lan-
guage for Ar-
chiChecker

RULE "Policy 8": I[ApplicationComponent] |- serving

[ApplicationComponent*Node]; serving [ApplicationCom-

ponent*Node]~
VIOLATION (TXT "Application MIRA\'", SRC name, TXT

"\'has no access with the Data Warehouse")

22

Violations from
Archichecker

There are 12 violations of RULE "Policy 8":
 Application 'Brocacef supplier (orders)'has no

access with the Data Warehouse
 Application' Central application (Chipsoft HiX)'

has no access with the Data Warehouse
 Application 'Autopharma' has no access with the

Data Warehouse
 Application 'Tenant management Office 365' has no

access with the Data Warehouse
 Application 'App-V/ThinApp'has no access with the

Data Warehouse
 Application 'MIRA (CGM Pharmacy)' has no access

with the Data Warehouse
 Application 'ServiLocker' has no access with the

Data Warehouse
 Application 'Azure AD' has no access with the Data

Warehouse
 Application 'National Exchange Point' has no ac-

cess with the Data Warehouse
 Application 'SCCM' has no access with the Data

Warehouse
 ... (2 more)

Comment In both models, it was decided not to visualize the Data Warehouse
(EDW). As a result, we cannot assess whether an application has access
to the EDW.

Policy 9 - Every data and data type has someone responsible.

Reformulated in
natural language

Every data object must have precisely one owner.

ArchiMate Prac-
tice

For each data group / data domain, an administrator has been appointed
who is (ultimately) responsible for definitions and content.

Predicate Logic ∀b∈ DataObject ∃c ∈ BusinessActor : c association b

Ampersand lan-
guage for Ar-
chiChecker

RULE "Policy 9": I [DataObject] |- association

[DataObject*BusinessRole]; association [DataOb-

ject*BusinessRole]~
VIOLATION (TXT "DataObject\'", SRC name, TXT "\'a

data object has no responsible")

23

Violations There is one violation of RULE "Policy 9":
 DataObject' Patient data' a data object has no

responsible

Comment The visualized data object in figure 6 has no responsible.

Policy 10 - Use of central application is mandatory.

Reformulated
in natural lan-
guage

The use of preferred central applications is mandatory.

ArchiMate
Practice

Predicate
Logic

∀b ∈ApplicationComponent ∃c ∈ ApplicationComponent : c association b

Ampersand
language for
ArchiChecker

RULE "Policy 10": I [ApplicationComponent] |- association

[ApplicationComponent*ApplicationComponent]; association

[ApplicationComponent*ApplicationComponent]~
VIOLATION (TXT "Application\'", SRC name, TXT "\'is not

connected to the central application")

Violations There are 7 violations of RULE "Policy 10":
 Application'Azure AD'is not connected to the central

application
 Application'Autopharma 'is not connected to the cen-

tral application
 Application'App-V/ThinApp'is not connected to the

central application
 Application'Active Directory local'is not connected

to the central application
 Application'SCCM'is not connected to the central ap-

plication
 Application'ServiLocker'is not connected to the cen-

tral application
 Application'Tenant management Office 365'is not con-

nected to the central application

Comment For the applications in both figures there is no connection visualized with the
central application Chipsoft HiX.

