Modular Map of Collatz Sequence and Its Implications

Binh Ho

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

Modular Map of Collatz Sequence and Its Implications

Binh Ho

December 13, 2019

Abstract

Let $C: \mathbb{N}+1 \rightarrow \mathbb{N}+1$ and $C(n)=\frac{n}{2}$ if n is even and $C(n)=3 n+1$ if n is odd for all $n \in \mathbb{N}+1$. The Collatz Conjecture states that there exists a finite number k such that $C^{k}(n)=1$. In this paper, a modular map of Collatz sequence and several implications are presented, which serve as insights into the further analysis of the Collatz Conjecture.

1 Modular Map of Collatz Sequence

Figure 1: Modular Map of Collatz Sequence

Presented above is the modular map of any Collatz sequence. Every node on the map is a number that represents a specific term in a particular Collatz sequence by its congruence to a number $n \in \mathbb{N}+1,0 \leq n<$

6 in modulo 6 . For example, the Collatz sequence ($7,22,11,34,17, \ldots$) is represented on the modular map as $(1,4,5,4,5, \ldots)$.
In the modular map generated, 3 particular loops are identified. Firstly, the α side loop is the finite sequence ($5,4,5,4, \ldots$) on the map. Secondly, the β side loop is the finite sequence $(0,0,0,0, \ldots)$ on the map. Finally, the γ main loop is the sequence that is a combination of the sequences $(2,4,2)$ and $(2,1,4,2)$ on the map.
Last but not least, the relationships between the nodes are colorcoded. A blue arrow denotes an increasing relationship, in which $C(n)=3 n+1$. A red arrow denotes a decreasing relationship, in which $C(n)=\frac{n}{2}$.

2 Implications

2.1 Bounded Number of Iterations in the α Side Loop

Lemma 1. If k is the number of iterations of the first α side loop for a particular $n \equiv 5(\bmod 6)$, then k must has a finite value.

Proof. According to Theorem 2 in the article "An Analysis of Collatz Conjecture", for any positive integer $n, C^{t}(n)=6 z+2$, with finite $t, z \in \mathbb{N}+1$ [1]. In Lemma 1, although we set a particular rule for n in that it must be congruent to $5(\bmod 6)$, Theorem 2 in the article "An Analysis of Collatz Conjecture" still holds. From this information, we can infer that the modular sequence for such a number n is $(5,4,5,4, \ldots 5,4,2, \ldots)$, and therefore the α side loops must have been terminated after $k=\frac{t}{2}$ iterations. Since t is a finite positive integer, k must also be a finite positive integer as well.

Lemma 2. Let $\Phi(n)=\frac{3 n+1}{2}$ be a function that represents a full iteration of the α side loop. If k is the total number of iterations of the first α side loop and $n \equiv 5(\bmod 6)$, then

$$
\left(\frac{3}{2}\right)^{k}(n+1)-1 \equiv 2(\bmod 6)
$$

Proof. As demonstrated in the article "An analysis of Collatz Conjecture" [1],

$$
\Phi^{k}(n)=\left(\frac{3}{2}\right)^{k}(n+1)-1
$$

According to the modular map of the Collatz sequence presented in section, the sequence $5 \rightarrow 4 \rightarrow 5$ represents one full iteration of the α side loop. The operation Φ carries on k full iterations such that
the last iteration can be represented as $5 \rightarrow 4 \rightarrow 2$, which reaches a number that is congruent to $2(\bmod 6)$. Therefore, we can conclude that if $n \equiv 5(\bmod 6)$ and the corresponding α side loop iterates k full iterations, then

$$
\left(\frac{3}{2}\right)^{k}(n+1)-1 \equiv 2(\bmod 6)
$$

Through Lemma 1 and Lemma 2, we can conclude that the α side loop iterates finitely many times and achieves a finitely bounded value.

2.2 Special Cases Where n is a Prime Number

Lemma 3. If n is a prime, and its first α side loop in its modular map iterates k number of times, then

$$
\left(\frac{3}{2}\right)^{k+1}(n+1)-1 \equiv 2(\bmod 6)
$$

Proof. Let n be any prime number such that $n>3$. Because every prime can either be written in the form $6 p-1$ or $6 p+1$, with $p \in \mathbb{N}+1$, n must be starting from node 1 or 5 on the modular map of Collatz sequence in section 1 . Let us examine both cases as follows.
In the case that $n \equiv 1(\bmod 6), \frac{3 n+1}{2}$ is the first term of the first α side loop of its sequence, which represents the progression $1 \rightarrow 4 \rightarrow 5$. In fact, this progression can be treated as an additional iteration of Φ with n as the input, apart from the full iterations of the corresponding α side loop. After the α side loop has fully iterated k number of times, the sequence reaches a term that is congruent to $2(\bmod 6)$. As a result, if n is a prime number and $n \equiv 1(\bmod 6)$, then

$$
\begin{equation*}
\left(\frac{3}{2}\right)^{k+1}(n+1)-1 \equiv 2(\bmod 6) \tag{1}
\end{equation*}
$$

Similarly, in the case that $n \equiv 5(\bmod 6), 3 n+1$ is the first term of the first α side loop of its sequence. Applying the same logical reasoning as above, we can say that if n is a prime number and $n \equiv 5(\bmod 6)$, then

$$
\begin{equation*}
\left(\frac{3}{2}\right)^{k+1}(n+1)-1 \equiv 2(\bmod 6) \tag{2}
\end{equation*}
$$

Finally, it is observed that the results gathered in (1) and (2) are identical, which allow us to make the conclusion that for any prime number $n>3$,

$$
\left(\frac{3}{2}\right)^{k+1}(n+1)-1 \equiv 2(\bmod 6)
$$

2.3 Special Cases Where n is an Odd Multiple of 3

Lemma 4. If n is an odd multiple of 3, and its first α side loop in its modular map iterates k number of times, then

$$
\left(\frac{3}{2}\right)^{k+1}(n+1)-1 \equiv 2(\bmod 6)
$$

Proof. It is clear that any odd multiple of 3 is congruent to $3(\bmod 6)$. Based on the modular map of Collatz sequence in section 1, in which the progression $3 \rightarrow 4 \rightarrow 5$ is similar to the progression $1 \rightarrow 4 \rightarrow 5$ and $5 \rightarrow 4 \rightarrow 5$, we can apply the same reasoning from the proof of Lemma 3 into this proof in that the progression $3 \rightarrow 4 \rightarrow 5$ represents an additional iteration of Φ and say that if n is an odd multiple of 3 , then

$$
\left(\frac{3}{2}\right)^{k+1}(n+1)-1 \equiv 2(\bmod 6)
$$

Lemma 5. Let n be an odd multiple of 3 and x be the first number that is congruent to $2(\bmod 6)$ such that $C^{k}: n \rightarrow x$ for some $k \in \mathbb{N}+1$, then x is unique for every n.

Proof. Let n be an odd multiple of 3 and S be the sequence of its modular map. Based on the modular map of Collatz sequence in section 1,

$$
S=(3,4,5,4,5, \ldots, 4,5,2, \ldots)
$$

Because node 4 , considering only the α and β side loops, can either be reached from node 3 or node 5 , if we start from $x=S_{2 k+2}$ and deduce backwards, the α side loop will be exited after k full iterations and the β side loop is immediately entered, leading us to node 3 . From here, we can only reach node 0 if we continue to go backwards, and thus we can conclude that x is unique for n.

Lemma 6. Let n be a number that is congruent to $2(\bmod 6)$ and x be the first odd multiple of 3 such that $C^{-k}: n \rightarrow x$, in which C^{-1} is the inverse of C, for some $k \in \mathbb{N}+1$, then x is not necessarily unique for every n.

Proof. In this proof, we are moving in the reverse direction of the arrows in Figure 1. If node 2 is preceded by an α side loop that is in turn preceded by node 1, then this particular α side loop cannot be entered from node 3 , as an odd number simply cannot be congruent
to $1(\bmod 6)$ and $3(\bmod 6)$ at the same time. Therefore, to reach x, we must exit this α side loop, past another number that is congruent to $2(\bmod 6)$, denoted n^{\prime}, and enter another α side loop. If this α side loop is preceded by node 3 , then n and n^{\prime} share the same x, with x being the first odd multiple of 3 if we map the arrows backwards from either n or n^{\prime}. If this α side loop is not preceded by node 3 , then we repeat the process of mapping backwards, and as a result, many numbers that are congruent to $2(\bmod 6)$ will share the same x, or not reaching such a number x at all. Thus, we can conclude that x is not necessarily unique for every n, with $n \equiv 2(\bmod 6)$.

Lemma 7. Every number $n \equiv 3(\bmod 6)$ must be able to be mapped forwards to a distinct number $x \equiv 2(\bmod 6)$, but every number $x \equiv$ 2 (mod6) is not necessarily be able to be mapped backwards to a distinct number $n \equiv 3(\bmod 6)$.

Proof. Lemma 7 naturally flows from lemma 5 and lemma 6.

References

[1] Francis Charles Motta, Henrique Roscoe de Oliveira, Thiago Aparecido Catalan, and Eduardo Gueron. An analysis of the collatz conjecture.

