Short Note on the Riemann Hypothesis

Frank Vega

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

Short Note on the Riemann Hypothesis

Frank Vega

CopSonic, 1471 Route de Saint-Nauphary 82000 Montauban, France

Abstract

Robin criterion states that the Riemann Hypothesis is true if and only if the inequality $\sigma(n)<e^{\gamma} \times$ $n \times \log \log n$ holds for all $n>5040$, where $\sigma(n)$ is the sum-of-divisors function and $\gamma \approx 0.57721$ is the Euler-Mascheroni constant. This is known as the Robin inequality. We know that the Robin inequality is true for all $n>5040$ which are not divisible by 2 . In addition, we prove the Robin inequality is true for all $n>5040$ which are divisible by 2. In this way, we show the Robin inequality is true for all $n>5040$ and thus, the Riemann Hypothesis is true.

Keywords: Riemann hypothesis, Robin inequality, sum-of-divisors function, prime numbers 2000 MSC: 11M26, 11A41, 11A25

1. Results

In mathematics, the Riemann Hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$ [1]. As usual $\sigma(n)$ is the sum-of-divisors function of n [2]:

$$
\sum_{d \mid n} d
$$

where $d \mid n$ means the integer d divides to n. Define $f(n)$ to be $\frac{\sigma(n)}{n}$. Say Robins (n) holds provided

$$
f(n)<e^{\gamma} \times \log \log n .
$$

The constant $\gamma \approx 0.57721$ is the Euler-Mascheroni constant and \log is the natural logarithm. The importance of this property is:

Theorem 1.1. Robins (n) holds for all $n>5040$ if and only if the Riemann Hypothesis is true [1].
It is known that Robins (n) holds for many classes of numbers n.
Theorem 1.2. Robins(n) holds for all $n>5040$ that are not divisible by 2 [2].
In addition, we know that:
Theorem 1.3. Robins(n) holds for all $10^{10^{10}} \geq n>5040$ [3].

[^0]Let $h(n)$ be defined as

$$
h(n)=\prod_{q \mid n} \frac{q}{q-1} .
$$

These are known results:
Theorem 1.4. [2]. For $n>1$:

$$
f(n)<h(n) .
$$

Theorem 1.5. [4]. For $n \geq 3$:

$$
h(n)<e^{\gamma} \times \log \log n+\frac{2.50637}{\log \log n} .
$$

Let's prove our main result:
Theorem 1.6. Robins(n) holds for all $n>5040$ that are divisible by 2 .
Proof. Let's assume that $n>5040$ is divisible by 2. We have that

$$
f(n) \leq f(2) \times f\left(\frac{n}{2}\right)
$$

since the function $f(n)$ is submultiplicative (that is $f(q \times r) \leq f(q) \times(r))$ [2]. We use that theorem 1.4 to show that

$$
f(2) \times f\left(\frac{n}{2}\right) \leq f(2) \times h\left(\frac{n}{2}\right)=\frac{f(2)}{h(2)} \times h(n)=\frac{3}{4} \times h(n)
$$

since $f(2)=\frac{3}{2}$ and $h(2)=2$. According to the theorem 1.5, we obtain that

$$
f(n) \leq \frac{3}{4} \times h(n)<\frac{3}{4} \times\left(e^{\gamma} \times \log \log n+\frac{2.50637}{\log \log n}\right) .
$$

Hence, it is enough to prove that

$$
\frac{3}{4} \times\left(e^{\gamma} \times \log \log n+\frac{2.50637}{\log \log n}\right) \leq e^{\gamma} \times \log \log n
$$

which is equivalent to

$$
\frac{3}{4} \times\left(1+\frac{2.50637}{e^{\gamma} \times(\log \log n)^{2}}\right) \leq 1
$$

after of dividing the both sides of the inequality by $e^{\gamma} \times \log \log n$. We know that Robins (n) holds for all $10^{10^{10}} \geq n>5040$ due to the theorem 1.3. Consequently, we would have that

$$
\left(\frac{3}{4}+\frac{3}{4} \times \frac{2.50637}{e^{\gamma} \times(\log \log n)^{2}}\right)<\left(\frac{3}{4}+\frac{3}{4} \times \frac{2.50637}{e^{\gamma} \times\left(\log \log 10^{10^{10}}\right)^{2}}\right)
$$

for $n>10^{10^{10}}$. In this way, it is enough to show that

$$
\left(\frac{3}{4}+\frac{3}{4} \times \frac{2.50637}{e^{\gamma} \times\left(\log \log 10^{10^{10}}\right)^{2}}\right) \leq 1
$$

which is the same as

$$
\frac{3}{4} \times \frac{2.50637}{e^{\gamma} \times\left(\log \log 10^{10^{10}}\right)^{2}} \leq \frac{1}{4}
$$

that is equal to

$$
\frac{3 \times 2.50637}{e^{\gamma} \times\left(\log \log 10^{10^{10}}\right)^{2}} \leq 1
$$

after of multiplying by 4 . Finally, we need to prove that

$$
3 \times 2.50637 \leq e^{\gamma} \times\left(\log \log 10^{10^{10}}\right)^{2}
$$

which is trivially true and therefore, the proof is complete.
This result implies the following consequences:
Theorem 1.7. Robins(n) holds for all $n>5040$.
Proof. This is a direct consequence of theorems 1.2 and 1.6
Theorem 1.8. The Riemann Hypothesis is true
Proof. This is true because of the theorems 1.1 and 1.7.

References

[1] G. Robin, Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann, J. Math. pures appl 63 (2) (1984) 187-213.
[2] Y. Choie, N. Lichiardopol, P. Moree, P. Solé, On Robin's criterion for the Riemann hypothesis, Journal de Théorie des Nombres de Bordeaux 19 (2) (2007) 357-372. doi:doi:10.5802/jtnb.591.
[3] A. Hertlein, Robin's Inequality for New Families of Integers, Integers 18.
[4] J. B. Rosser, L. Schoenfeld, Approximate Formulas for Some Functions of Prime Numbers, Illinois Journal of Mathematics 6 (1) (1962) 64-94. doi:doi:10.1215/ijm/1255631807.

[^0]: Email address: vega.frank@gmail.com (Frank Vega)

