
EasyChair Preprint
№ 7442

Towards Designing the Best Model for
Classification of Fish Species Using Deep Neural
Networks

Pranav Thorat, Raajas Tongaonkar and Vandana Jagtap

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

February 8, 2022



Towards Designing the Best Model for
Classification of Fish Species using Deep Neural

Networks
Pranav Thorat

Dept. of Computer Engineering
Maharashtra Institute of Technology

Pune, India
thoratpranav@gmail.com

Raajas Tongaonkar
Dept. of Computer Engineering

Maharashtra Institute of Technology
Pune, India

tonraaj@gmail.com

Prof. Vandana S. Jagtap
Dept. of Computer Engineering

Maharashtra Institute of Technology
Pune, India

vandana.jagtap@mitpune.edu.in

Abstract—Convolutional Neural Networks have become a pow-
erful tool for classification since 2012. The winners of the
ImageNet Challenge have been neural networks for a long
time now. Computer vision applications mostly resort to neural
networks. This paper extends its application to classify fishes of
23 different species using VGGNet algorithm. The fish images
used for training the network is obtained from a live video
dataset. We implemented the traditional VGG16 and tried a
scaled down version of if too. The results of training these
two algorithms were compared on the basis of micro average,
macro average and weighted average. VGG16 surpassed VGG8
in almost all parameters but not by a large margin as proved
in the results section. Smaller networks consume less memory
and take lesser time for training as well as prediction. Hence,
smaller networks can be used in simpler applications and can
run on a less dedicated hardware setup having restrictions of
memory and/or processing power. The reason behind specifically
choosing a network with 8 layers is because the number of layers
is halved from the well known VGG16 model having a total of
16 layers. Thus, it forms a good comparison problem which has
been addressed in the paper below.

Index Terms—Deep Learning, Convolutional Neural Networks,
Image Classification, VGGNet.

I. INTRODUCTION

Computer vision is an important topic of research nowadays
with an increased amount of work being done in robotics
and automation. Underwater image processing introduces ad-
ditional challenges absent otherwise. Underwater images are
essentially characterized by their poor visibility because light
is exponentially attenuated as it travels in water and the
resulting scenes are poorly contrasted and hazy. The study of
the marine ecosystem is important for biological researchers. A
subset in marine ecosystems includes the study of underwater
living organisms like fishes, crabs, octopuses, whales, seals,
etc. Monitoring these organisms in terms of their number and
type over time can be useful for the purpose of studying the
effect of environmental changes or human actions on these or-
ganisms. Hence, if any negative feedback is inferred from such
studies, corrective actions can be taken. Therefore the need of a
vision based system for the purpose of underwater surveillance

is much required. This has led us onto the path of building
one such robust system. Here, specifically we are targeting
a vision system capable of underwater fish specie detection.
These vision systems can be an integral part of underwater
vehicles like AUVs (Autonomous Underwater Vehicle) and
ROVs (Remotely Operated Vehicles) which can survey large
areas of the water bodies non-stop and can provide with useful
insights with minimum human intervention. Convolutional
Neural Networks have been a useful tool for image detection
and classification since 2012. Starting with models like the
AlexNet to the recently perceived models like YOLOv3,
there have been different CNN algorithms and architectures
which have successfully solved the problem of localization
and classification with ever increasing classification speed
or accuracy or both. In this paper we will describe our
approach in the classification of fish species using two different
convolutional neural network architectures.The first one is our
own Scaled-down VGG16 architecture and the other one is
the traditional VGG16 model. Our intention behind using two
different models is to compare the accuracy of the models
and the time required for training on our dataset. The dataset
we are using is called the Fish4Knowledge dataset which
belongs to School of Informatics, University of Edinburg, UK.
It consists of a total at 27303 images in total belonging to 23
different classes or species. These images have been extracted
from a video stream.

II. RELATED PREVIOUS WORK

Underwater object detection poses some challenges which
are absent otherwise. We have referred to a few research
documents which have attempted to work on efficient under-
water image processing. Some of them have been described
below: Some of the non Machine learning based approaches
like imaging sonar have also been used by researchers to
detect, track and classify fishes. The performance of the fish
detector is evaluated using a set of manually annotated sonar
images. The detection results show good agreement with the
annotations, although some challenges for future improvement



Fig. 1. VGG-16 architecture

of the detector [1] still remain. Some previous research work
has been described below:

Many researchers have utilized neural networks to detect
fish. Ramani, et al. [2] used parallel networks of three per-
ceptron layers to identify 4 species of fish in sonar images.
Storbeck, et al. [3] used a three-layer CNN to devise a
way of classifying moving fish. Marburg et al. [4] detected
and identified ten classes of benthic macrofauna in optical
underwater images using a stack of CNNs. Some researchers
have performed detection of underwater objects using neural
networks. Byeongjin et al. [5] used AdaBoost algorithm and
Haar-like features for object detection in water. Juhwan et al.
[6] detected and tracked small ROV in sonar images using a
convolutional neural network design. We have also referred to
the Google colabatory paper [7] which explains the hardware
specification of Colabatory along with its implementation.
Also provides a performance review of deploying computer
vision, deep learning, classification and other applications on
colab.

For object detection many researchers have used very deep
convolutional network models like the VGG16 [8], which
forms the base of our project, have used networks of increasing
depth with small convolutional filters which performed ex-
tremely well in the ImageNet Challenge of 2014. The official
VGG based models like VGG16 and VGG19 performed the
classification task better than its predecessor AlexNet.

Some researchers [9] have performed real-time fish detec-
tion on images from actual fish videos using convolutional
neural network based techniques based on You Only Look
Once algorithm. The network recorded 93% classification
accuracy and outperformed older non-CNN based models like
classifier trained with histogram of oriented gradient features
and support vector machine and sliding window algorithm.

The drawback of YOLO classifier is that the accuracy is
compromised at the expense of better detection speed.

As mentioned earlier, here we are using two CNN based
architectures for classification. Following is the detailed ex-
planation of our network for the fish specie classification.

A. Previous Architecture

With reference to [8], we have implemented the traditional
VGG16 architecture by Visual Geometry Group at the Uni-
versity of Oxford. While training, the input images to our
network are re-sized 64 * 64 RGB images. These images
are passed through stacked convolutional layers which are
thirteen in number with the number of filters varying in an
increasing order in each layer as defined in the original paper
and shown in the adjoining figure. The number of filters for
each convolutional layer are mentioned in the architecture
diagram. Parameter to each convolutional layer includes a
small 3 * 3 filter or kernel. Rectified Linear Unit or ReLU
is the activation function used. The convolutional stride set to
1 pixel throughout. Five max-pooling layers perform spatial
pooling. It is performed over a 2 * 2 pixel window.

The convolutional layers are then followed by a set of three
Fully-Connected layers. The first two have 4096 channels each
and the third one has 23 channels (one for each class). This
final layer is the soft-max layer. Softmax is implemented using
a layer just before the output layer. The Softmax layer must
have the same number of nodes as the output layer.

III. PROPOSED METHOD

In CNN like architecture, selection of parameters like num-
ber of layers and arrangement of layer plays an important
role in the efficiency, accuracy and performance of our model.
Selecting the optimum value of these parameters gives us



the best model and helps us avoid tackling problems like
model overfitting and excessive time and memory usage during
training the neural network. Here we are using a scaled down
version of the VGG16 architecture. The similarity between
our architecture and the VGG16 architectures is that both of
them are uniform and use a small 3 * 3 kernel (or filter) in
the convolutional layer. Here the size of the filter (or kernel
) is the same (i.e. 3 * 3 ) throughout the architecture for
each convolutional layer which results in reduced number of
parameters as compared to a layer of larger using filters of
larger size like 7 * 7 (parameters = 47) or 11 * 11 (parameters
= 121). Hence, we call it the VGG like architecture.

Also the layers in the architecture are such arranged that
the initial layers are the combination of convolutional layers
(along with their activation function ReLU) and the pooling
layer, in the end, followed by a fully connected layer for class
prediction along with its probability value.

With respect to the convolutional layers, our model is partly
made up of repetitive stacking of a convolution layer followed
by the activation layer and batch normalization. Batch Normal-
ization is used for the purpose of normalizing the activations of
the previous layer at each batch. For representational purposes
this set is referred to as one unit. Each unit is followed by
a pooling layer of window size 2 * 2. After each pooling
layer a dropout of 0.25 states the fraction of dropped input
unit from the previous layer. After the stack of convolutional
layers, next are the two fully connected layer. The first fully
connected layer has 512 channels. A dropout of 0.5 in this
layer resembles the fraction of input units which are to be
dropped. The last layer is the softmax implemented through
a fully connected layer just before output layer. The softmax
layer has same number of nodes as the output layer, in our
case 23 as we dealing with 23 classes.

This algorithm / model we used for the classification of
fish species was a scaled down version of the known VGG16
algorithm. The VGG16 architecture has a total of 16 layers
but our scaled down VGG16 used a mere 8 layers, 6 con-
volutional layers and 2 fully connected layer. This particular
model can be termed as VGG8. The reason behind using
a smaller network is to significantly reduce the time and
memory required during training, taking into consideration that
the accuracy is not compromised massively as compared to

Fig. 2. VGG-8 Architecture

larger convolutional neural network architectures. Also smaller
networks are easier and faster to train, hence can be built where
hardware resources are a major constraint.

IV. METHODOLOGY

Our dataset has been taken from the Fish4Knowledge
Project at the University of Edinburgh, School of Informatics,
UK. This fish data is acquired from a live video dataset
resulting in 27370 verified fish images in total belonging to
23 different fish species.

Following are the steps in which we train our model on the
dataset. Initially we load our dataset in the primary memory
and resize each image to a 64 * 64 pixel resolution. Next, we
split our dataset into training and testing sets, with 75% of the
total in training and remaining 25% of the dataset for testing.
Next we initialize our CNN model with appropriate parameters
and define the hyperparameters and train the network. We have
used Google Colaboratory for training purpose. Google cola-
batory is a cloud service based on Jupyter Notebooks which
provides access to a robust GPU. The hardware available is
comparable to a mainstream workstation and a robust Linux
server equipped with 20 physical cores. For our application,
in Google Colabatory, we trained our model on the Python 2
Google Compute Engine Backend (GPU) and a total of 12.72
GB of RAM and 358.27 GB of disk space was allocated.

Two paths were taken -
1) VGG-8: This was basically a smaller version of the
VGGnet algorithm. It had 6 convolutional layers and 2
fully connected layer
2) VGG-16 : This was the implementation of the actual
VGG-16 algorithm. It has 13 convolutional layers and 3
fully connected layers.

In both these implementations, the number of epochs was the
same, 75. We kept the batch size 32 with an initial learning rate
of 0.01 The activation function for both implementations was
Rectified Linear Unit (ReLU), with the final fully connected
layer having Softmax activation function.

Epochs Batch Size Learning Rate
75 32 0.01

TABLE I
HYPERPARAMETERS

V. RESULTS

It can be observed from both the graphs that as the iterations
during training increases there is a gradual decrease in the loss
parameters i.e. the training loss and validation loss values. On
the other hand, accuracy parameters like the training accuracy
and the validation accuracy increase gradually as the number
of epochs increase. We have also tried to choose the optimum
value of the hyperparameters such that the model does not
overfit.

VGG16 had a higher initial training loss than VGG8. Loss
value implies how poorly or how well a certain model behaves
after each iteration of optimization. Training loss is the average



Fig. 3. Dataset

of the losses over each batch of training data. Testing or
validation loss is computed using the model as it is at the
end of an epoch. It was almost equal to training loss for
VGG16, and lower than training loss for VGG8. Both achieved
a training accuracy and validation accuracy greater than 0.95
by the 50th epoch. Overall, VGG-16 performed better than
VGG-8. However, the increase in performance was marginal.
VGG-8 is thus a better option in situations where there is a
restriction on the resources available for training the model.
The table shows the average value for the given metric for the
23 classes. Macro average computes the metric independently
for each class and then takes the average. Hence, all classes are
treated equally. Micro average on the other hand will aggregate
the contributions of all classes to compute the average metric.
In weighted average, instead of each data point contributing
equally to the average, some data points contribute more than
others. VGG-8 has a marginally higher macro average value of
the performance metric of precision. VGG-16 scores higher in
all other metrics. VGG-16 is thus only marginally better than
VGG-8.

VGG-16 VGG-8
Micro average Precision: 0.99 Precision: 0.98

Recall: 0.99 Recall: 0.98
F1-score: 0.99 F1-score: 0.99

Macro average Precision: 0.94 Precision: 0.96
Recall: 0.89 Recall: 0.86

F1-score: 0.90 F1-score: 0.90
Weighted average Precision: 0.99 Precision: 0.98

Recall: 0.99 Recall: 0.98
F1-score: 0.98 F1-score: 0.98
TABLE II

PERFORMANCE METRICS

For testing purpose, following is a random image of the fish
specie Amphiprion Clarkii downloaded from Google Images
and tested on our model, which it correctly classifies and

Fig. 4. VGG-16

Fig. 5. VGG-8



Fig. 6. Amphiprion Clarkii (Source:Google Images)

Species Precision Recall f1-score Support
Abudefduf vaigiensis 1.00 0.91 0.95 22

Acanthurus nigrofuscus 0.88 0.67 0.76 64
Amphiprion clarkii 1.00 1.00 1.00 1007

Balistapus undulatus 1.00 0.70 0.82 10
Canthigaster valentini 0.87 0.98 0.92 41
Chaetodon lunulatus 1.00 1.00 1.00 618
Chaetodon trifascialis 0.98 0.98 0.97 46

Chromis chrysura 0.99 0.99 0.99 900
Dascyllus reticulatus 0.98 0.99 0.99 3039

Hemigymnus fasciatus 0.95 1.00 0.97 57
Hemigymnus melapterus 1.00 0.33 0.50 12

Lutjanus fulvus 1.00 1.00 1.00 52
Myripristis kuntee 0.99 0.99 0.99 105

Neoglyphidodon nigroris 1.00 0.50 0.67 4
Neoniphon sammara 1.00 0.99 0.99 74

Pempheris vanicolensis 1.00 1.00 1.00 6
Plectroglyphidodon dickii 0.99 0.99 0.99 677
Pomacentrus moluccensis 1.00 1.00 1.00 45

Scaridae 0.88 1.00 0.93 14
Scolopsis bilineata 0.89 1.00 0.95 16
Siganus fuscescens 0.67 0.86 0.75 4
Zanclus cornutus 0.67 0.86 0.75 7
Zebrasoma scopas 0.87 0.57 0.68 23

TABLE III
VGG16 RESULTS

gives a significant accuracy of 98.25% on the VGG8 model.
Whereas, the same image when tested using the VGG16 classi-
fier correctly classified the specie but with a lesser accuracy of
96.07%. One of the possibility that might explain this result is
that a larger network might have lead to overfitting. Hence, we
can can conclude that a larger network might not always lead
to better results as observed in this case. Thus, our proposed
architecture is better suited for this dataset than the standard
VGG16 model. Following is a comparative study of the two
models.

VI. CONCLUSION AND FUTURE SCOPE

In this paper, a CNN based approaches for fish classification
were implemented and analysed. Specifically, two models,
VGG16 and VGG8 were trained on our dataset. Both models
showed similar performance in terms of various performance
measures. The differentiating factor between both the models
is the time required for training and the amount of space used
up. The VGG8 model is better than VGG16 considering time

Species Precision Recall f1-score Support
Abudefduf vaigiensis 0.91 0.91 0.91 22

Acanthurus nigrofuscus 0.94 0.52 0.67 64
Amphiprion clarkii 1.00 1.00 1.00 1007

Balistapus undulatus 1.00 0.70 0.82 10
Canthigaster valentini 0.88 0.93 0.90 41
Chaetodon lunulatus 0.99 1.00 1.00 618
Chaetodon trifascialis 1.00 0.87 0.93 46

Chromis chrysura 0.98 0.99 0.98 900
Dascyllus reticulatus 0.98 0.99 0.99 3039

Hemigymnus fasciatus 0.97 1.00 0.98 57
Hemigymnus melapterus 1.00 0.67 0.80 12

Lutjanus fulvus 1.00 1.00 1.00 52
Myripristis kuntee 1.00 0.98 0.99 105

Neoglyphidodon nigroris 1.00 0.50 0.67 4
Neoniphon sammara 0.99 0.99 0.99 74

Pempheris vanicolensis 1.00 1.00 1.00 6
Plectroglyphidodon dickii 0.99 0.99 0.99 677
Pomacentrus moluccensis 1.00 1.00 1.00 45

Scaridae 1.00 0.86 0.92 14
Scolopsis bilineata 0.78 0.88 0.82 16
Siganus fuscescens 1.00 1.00 1.00 4
Zanclus cornutus 0.83 0.71 0.77 7
Zebrasoma scopas 0.82 0.39 0.53 23

TABLE IV
VGG8 RESULTS

and memory utilization. Hence, models like the VGG8 can
be used when there is a restriction in the hardware resources
available with the user. Also, such lighter models can be used
in simple classification problems in which not much detailing
in the images is required for classification, whereas, denser
models like VGG16 can be used in much problems requiring
much precise detailing/analysis of images for classification.
We have also tested our model on images which are outside of
the dataset and the results are pretty satisfactory and accurate
which is the first step in building a robust system. Hence, the
above model can be deployed on an AUV or ROV wherein as
the underwater vehicle moves around it will pick up images
and if fishes present will be correctly classified and these
results can be used for analysing the water body by the
biological researchers. We have recently built our own AUV
in collaboration with another team and will soon deploy our
classification module on the AUV.

In future, the above model can be tested more rigorously.
The system can be trained to work efficiently in more chal-
lenging background environments and also in low lighting
conditions. Also, this model can be improved to be built on a
more uniformly distributed images in the dataset with respect
to each class.

REFERENCES

[1] L. M. Wolff, S. Badri-Hoeher ”Imaging sonar-based fish detection in
shallow waters” 2014 Oceans - St. John’s Please number citations
consecutively within brackets

[2] Ramani, Narayan, and Paul H. Patrick. ”Fish detection and identification
using neural networks-some laboratory results.” IEEE journal of oceanic
engineering 17.4 (1992): 364-368.

[3] Storbeck, Frank, and Berent Daan. ”Fish species recognition using
computer vision and a neural network.” Fisheries Research 51.1 (2001):
11-15.



[4] Kim, Byeongjin, and Son-Cheol Yu. ”Imaging sonar based real-time
underwater object detection utilizing AdaBoost method.” Underwater
Technology (UT), 2017 IEEE. IEEE, 2017.

[5] Kim, Juhwan, and Son-Cheol Yu. ”Convolutional neural network-
based real-time ROV detection using forward-looking sonar image.”
Autonomous Underwater Vehicles (AUV), 2016 IEEE/OES. IEEE, 2016.

[6] Marburg, Aaron, and Katie Bigham. ”Deep learning for benthic fauna
identification.” OCEANS 2016 MTS/IEEE Monterey. IEEE, 2016.

[7] Tiago Carneiro, Raul V. Medeiros Da Nbrega, Thiago Nepomuceno,
Gui-bin Bian, Victor Hugo C. De Albuquerque , and Pedro P. Rebouas
Filho ”Performance Analysis of Google Colaboratory as a Tool for
Accelerating Deep Learning Applications” IEEE Access (Accepted but
unpublished).

[8] Karen Simonyan Andrew Zisserman. ”Very Deep Convolutional Neural
Networks for Large Scale Image Recognition” ICLR 2015.

[9] Minsung Sung and Son-Cheol Yu Yogesh Girdhar. ”Vision based Real-
time Fish Detection Using Convolutional Neural Network” OCEANS
2017 - Aberdeen.

[10] ”Convolutional Neural Network” Wikipedia - The Free Encylopedia


