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Abstract—With the recent proliferation of industries, traffic
and wildfires, the haze is becoming a common atmospheric
phenomenon which has a critical impact on the computer-vision
based acquisition systems. To address the image degradation due
to the hazy weather, we propose an improved physical model-
based single image dehazing method. The proposed dehazing
process includes the calculation of the atmospheric light value,
estimation of the transmission map and finally, the restoration of
scene radiance from the hazed image. The main contribution of
this work is to combine the recent advances in the atmospheric
light value calculation techniques with the utilization of refined
guided filter by employing a colour image as guidance for
the estimation of an optimized transmission map. The detailed
qualitative and quantitative analysis of our proposed method with
current state-of-the-art techniques, reveal that dehazed images
generated from our algorithm are of improved visual quality
with sufficient image details.

Keywords—Atmospheric light scattering model, haze, guided
image filter, koschmeider’s law, single image dehazing

I. INTRODUCTION

Haze is a natural atmospheric phenomenon in which smoke,
dust and other dry particulates accumulate in the air. As
these suspended small particles of different sizes result in the
scattering, reflection and refraction of the atmospheric light,
the haze has a critical impact on the image acquisition sys-
tems. Images acquired in the hazy weather have considerably
reduced visibility, dynamic range and contrast and, therefore,
may result in the loss of details. These factors can significantly
impact the human visual system and computer vision systems
recognition and matching capabilities due to difficulty in the
identification of crucial object features. Figure 1 illustrates the
examples of hazed and the corresponding dehazed images. The
hazy images, as shown in Figure 1 (top row), are of low visual
quality with reduced contrast and changed colours. Whereas,
the dehazed images by our method, as shown in the bottom
row of Figure 1, are of high contrast along with richer details
and better visibility. Therefore, with haze becoming a common
atmospheric phenomenon due to the recent proliferation of
industries, traffic and wildfires, image dehazing techniques can
play a pivotal role in areas such as astronomy, meteorology,
traffic surveillance and computer vision [1]–[4].

Considering the importance of image dehazing techniques
as mentioned above, a considerable amount of work has been
carried out in this area over recent decades. The initial image
dehazing methods were based on the conventional image
enhancement techniques such as gamma transformations, his-
togram equalization, homomorphic filters, curvelet transforms,

Fig. 1. Examples of images before (top row) and after dehazing (bottom row)
by our method.

and the Retinex method [5]–[8]. Due to the inherent limitations
like contrast and color distortion of the image enhancement
techniques, the dehazing effect of these methods was rather
limited. In this work, we present an effective single image-
based dehazing technique by using the atmospheric light
scattering physical model [7] which give more precise values
of atmospheric light compared to previous studies. First, the
atmospheric light value is estimated from the decision and
dark channel images. The transmission map is then learned
through an optimized guided image filter [28] due to its edge-
preserving property and low computational cost. Finally, the
dehazed image is obtained using the physical model. To the
best of the authors’ knowledge, no other technique has been
reported with the collection of steps that have been employed
in this work. In the end, a detailed evaluation of this proposed
methodology is presented.

The remaining sections of the paper are arranged as follows:
Section II first details the related image dehazing work. The
relevant concepts involved in the image dehazing techniques
are then described in Section III. Section IV presents the
proposed methodology for image dehazing. Results and dis-
cussions are discussed in Section V. Finally, Section VI
describes the conclusion and future work.

II. RELATED WORK

Three different types of image dehazing techniques relying
on physical light models have been proposed in the literature.
The first type of physical model-based dehazing methods



uses multiple images captured in varying weather conditions
or depth information. An atmospheric model-based binary
scattering model is proposed by Narasimhan et al. [9], [11]
and Nayar et al. [10]. It utilizes three-dimensional structural
information determined from two or more climate images to
reconstruct a true color dehazed image under unknown bad
weather conditions. Method of Shwartz et al. [12] is based on
the phenomena that light become partially polarized after scat-
tering by atmospheric particles. Therefore, images acquired
through a polarizer at different angles are utilized for image
dehazing. However, this strategy cannot meet the requirements
of a real physical model. These multiple images based methods
mentioned above are not convenient for utilization in wide
applications due to the need for multiple image acquisition
and additional structural information.

The second type of physical model-based dehazing methods
relies on a single image for dehazing and has gained significant
achievements in recent years. Due to the single hazed image,
less prior information is available for dehazed scene structure,
making the image dehazing problem particularly challenging.
Tan et al. [13] enhanced the hazed images by maximizing
the local contrast. While this technique attains good results
in natural scenes or thick fog, the dehazed image often has
colour oversaturation with halos observed in depth variations
in the scene. The statistics of haze-free outdoor images with
soft matting interpolation technique are utilized by He et al.
[14] to restore a dehazed image. While the method achieves
good dehazing results, it has limitations when the object in
the scene is inherently near to the airlight. Sulami et al. [15]
addressed the problem of the automatic atmosphere optical
vector calculation as this value plays a critical role in the
performance evaluation of single image dehazing techniques.
Yadav et al. [16] utilized adaptive gamma correction approach
in order to minimize the colour distortion from hazed images.
A guided filter is utilized by He et al. [17], [30] to reduce halo
artifacts and refine a hazy image. A pixel-based dark channel
referred to as a weak dark channel prior is presented in [18]
for the transmission map and atmospheric light calculations.
The atmospheric light value is calculated in the same manner
as in the dark channel prior, but pixel-based guided filtering
is used to refine the transmission map. In Tang et al. [19]
method, guide images are designed to redress the bright region.
This method gives good results in terms of image quality
and detail as compared to classical methods. In the Salazar
et al. method [20], the dark channel before modified in terms
of computation resulted in fewer artifacts in restored images.
This method is also suitable for real-time video processing.
Airlight due to scattering, reflection and refraction changes
the scene information and also has a negative impact on the
dehazed image quality [21]. A multi-scale Retinex algorithm
is proposed by Wang et al. [22], which is further improved to
address the Retinex’s lack of adaptation to the image scenario,
which results in non-ideal dehazed image representation for
heterogeneous haze in the scene [23]. Keeping in view all the
discussion, it can be deduced that the physical model-based
techniques for image dehazing have their limitations.

Third type of image dehazing techniques are based on
deep learning. Many deep learning-based image dehazing
methods have been proposed recently; however, most of these
techniques ignore the atmospheric light estimation and fail
to produce accurate transmission maps leading to inaccurate
dehazing results [38]. An attenuation prior method is presented
by Zhu et al. [24], which uses colour information based
depth data attained through machine learning for building
the transmission map. In Cai et al. [25] method, convolution
neural network (CNN) based feature learning is performed
for hazed images. However, an inaccurate outcome map may
be obtained, leading to poor dehazing results in different
specified hazed conditions. A coarse-grained transmission map
estimation is performed using a coarse network in [26], which
is further refined by fine networks. The shortcoming of this
method is to adjust parameters manually for different hazed
density in the image. The performance of dehazing techniques
does not remain the same during different weather conditions
as the fog in the atmosphere is non-homogeneous. The size
of particles also varies, which badly affects the dehazing
performance. Airlight due to scattering, reflection, and refrac-
tion changes the scene information and also has a negative
impact on the dehazed image quality [27]. Therefore, there
is an essential need to develop more robust image dehazing
models that can retain full scene details and perform well in
all weather and lighting conditions.

III. PRELIMINARIES

Some basic concepts and methods which are used in this
work are discussed in this section. First of all, the introduc-
tion to the atmospheric light scattering model is presented.
Afterwards, we review the concepts of atmospheric light value
calculation, which are followed by the description of a guided
image filter in the end.

A. Atmospheric light scattering model

In image processing and computer vision, the visual attenua-
tion model is defined by Koschmeider’s law [29]. It elaborates
the formation of a hazy image in a hazed environment and is
given as

I(x) = J(x)t(x) +A(1− t(x)), (1)

where I(x) is the captured input hazed image, t(x) presents
the transmission map of the scene, J(x) is output dehazed
image, A is the atmospheric light value. The transmission map
keeps the information of a non-scattered portion of light. The
objective is to extract the scene radiance J(x) by estimating
t(x) and A from the hazed image I(x). The product t(x)J(x)
in (1) is the direct attenuation whereas the subsequent product;
(1− t(x))A, is the airlight which is the light scattered by the
particulates in the air. It can be observed that with reduced
t(x), the scene radiance diminishes and the airlight increases.
Therefore, scene radiance is reduced due to the presence of
haze and far objects and thereby, results in reduced image
quality.



B. Atmospheric light value

The atmospheric light value A describes the surrounding
light in the image. Generally, the value of A is calculated based
on a hypothesis value [13]. The dark channel prior technique
[14] uses the 0.100% of brightest pixels in the dark channel to
calculate its numeric value. However, there will be an error in
the estimation of A in the presence of white areas (e.g., snow)
in the hazy image. In Tarel et al.’s method [23], the white
balance of the hazed image is taken and white atmospheric
optical value is utilized for dehazing. An automatic method
for the computation of the atmospheric light value is presented
in [15].

C. Guided image filter

The guided image filter is a smoothing operator that pre-
serves the edges in the image considering the content of the
guidance image [30], [31]. The guided image filter can also
transfer the guidance image’s structure to the filtering output. It
is one of the fastest edge-preserving filter and non-approximate
algorithms in computer graphics and computer vision. Along
with filtering applications like guided feathering and dehazing,
guided image filter has many applications in HDR image
compression, detail enhancement, joint upsampling, edge-
aware smoothing, and image matting.s For an input image
p and the guidance image I , the output of the guided image
filter q is represented through a local linear model:

qi = bk + akIi, ∀i ∈ wk, (2)

where bk and ak are the linear constant coefficients in a square
window wk having radius r which is centered at the pixel k.
The cost function which is minimized in the guided filter for
seeking the coefficient values (ak, bk) is given by

E(ak, bk) =
∑
i∈wk

((akIi + bk − pi)
2) + ϵa2k), (3)

where ϵ is the regularizer having constant value 10−3. After
minimizing the above equation results in a least square prob-
lem with solution given by

ak =

1
|w|

∑
i∈wk

Iipi − µkp̄k

σ2
k + ϵ

and bk = p̄k − akµk, (4)

where σ2
k is the variance and µk is the mean of I in the window

wk where |w| is the number of pixels in the window. The final
filtered output is given by

qi =
1

|w|
∑

k|i∈wk

(bk + akIi). (5)

In the image dehazing work, the transmission map of the
input image is usually estimated from the dark channel prior,
which results in the significant loss of details and information
in some areas of the image [14]. To overcome these issues, we
have used the application of a guided image filter for dehazing
purposes. Here transmission map is estimated from the hazy
input image using a guided image filter.
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Fig. 2. Block diagram of the proposed single image dehazing method.

IV. PROPOSED METHODOLOGY

The proposed methodology for a single image dehazing al-
gorithm comprises several steps which involve the calculation
of the atmospheric light value, acquisition of the transmission
map and the utilization of the atmospheric light scattering
model. Figure 2 depicts the block diagram of our proposed
method and the details of the processing steps are presented
below.

A. Atmospheric light value

To compute the atmospheric light value A, we have opted
for the technique proposed in [22], which is less complex,
adaptive and content dependent in comparison to the previ-
ously proposed methods [14], [15], [23] for the atmospheric
light value calculation. It is a three-step solution involving
the computation of decision image f(x), dark channel image
Jd(x) and the calculation of atmospheric light value A.

1) Decision image: Represented by f(x), decision image
is computed as

f(x) =
√

(r2 + g2 + b2)− (r + g + b)2/3), (6)

where {r, g, b} are the values of red, green and blue pixels in
the colour channel. After setting a decision criterion threshold
∆ which is defined as, if f(x) ≤ ∆, the pixel value is treated
as bright inside the white section and is, therefore, discarded.
Only the pixel values for which f(x) > ∆, are used for the
correct measurement of the atmospheric light illumination. The
computed decision image f(x) through (6) can be observed
in the third column of Figure 3.

2) Dark channel image: Jdark(x) represents the dark chan-
nel image and is computed as [14], [32]

Jdark(x) = min
c∈{r,g,b}

( min
y∈Ω(x)

(Ic(y))), (7)

where Ic is a single channel of colour image I(x) in which
c ∈ {r, g, b}, Ω(x) is x centered pixel’s square patch. Jdark(x)
is given by the product of two min operators; minc∈{r,g,b}



Fig. 3. The first column from the left showing different real input hazed
images, i.e., A, B, C, and D. Second column showing dark channel images;
the third column showing decision images; the fourth column is a rough
transmission map obtained from guided image filter; the fifth column is
optimized transmission map, and the sixth column is output dehazed images
for A, B, C, and D, respectively.

Fig. 4. Results are obtained for different values of ∆. The first column is
input images, and the second to fifth columns are output dehazed images for
∆=1, 2, 3, 4, respectively.

applied on every pixel in given RGB channel plane and
miny∈Ω(x) is the minimum filter having patch size of 15×15
. Third column of Figure 3 shows the dark channel images
Jdark(x) computed through (7) for different input images.

3) Atmospheric light value solution: Dark channel image
Jd(x) and the decision image f(x) are utilized for the com-
putation of the atmospheric light value. For this, the brightest
0.100% pixels of the Jd(x) are initially picked. Then, among
these pixels, the ones with having corresponding f(x) value
higher than the threshold ∆ are chosen. In the end, the
atmospheric light value A is calculated by averaging of these
chosen pixels. Figure 4 shows the results for different values of
∆. The threshold value of ∆ = 2 was utilized in the proposed
algorithm, which was deemed sufficient for the efficient image
dehazing results compared to other results.

B. Transmission map

The transmission map t(x) is an alpha mapping which is a
type of visible surface encompassing edges boundaries and
depth of the scene objects for the estimation of the haze

Fig. 5. Dehazing results of the aerial cityscape images. The top and
bottom rows depict input hazed and corresponding output dehazed images,
respectively.

Fig. 6. Dehazing results of the sky and thick fog images. The first and third
column shows input hazed images. The corresponding dehazed images are
presented in the second and the fourth column.

concentration. We have employed a guided image filter for the
estimation of the transmission map because of its good colour
constancy, dynamic range and colour balancing results in the
output dehazed colour image. However, a rough transmission
map T (x) is obtained from guided image filter is shown in
fourth column of Figure 3. Accuracy of the transmission map
is further increased by the max filter of size 5×5 followed by
the mean filter of size 3×3 in order to get the final optimized
transmission map t(x) shown in fifth column of Figure 3.

C. Restoration of scene radiance in the hazy image

Dehazed image is acquired from the atmospheric light
scattering model by rewriting (1) as

J(x) =
I(x)−A

max(t0, t(x))
. (8)

We have set t0 to 0.05 for the optimized transmission map
to avoid the random noise which can arise in the images.
For example, the sky region of the first image in Figure 3
is partially white in the hazy (first image of the first row)
and the dehazed representation (last image of the first row).
Therefore, the shade of the sky will be closer to the computed
atmospheric light value A. Hence, when the transmission map
t(x) of the sky region is nearly zero, the dehazed image will
include random noise. The final dehazed images J(x) are
shown in the last column of Figure 3.



Fig. 7. Dehazing results of the real-world hazy images from the RESIDE
dataset [35]. The top and bottom rows depict input hazed and corresponding
output dehazed images, respectively.

Fig. 8. Dehazing results of remote surveillance and forest images. The top
and bottom rows depict input hazed and corresponding output dehazed images,
respectively.

Fig. 9. Qualitative comparison of the hazy images. Most left column shows
input hazy scenes and most right column is output results from our method.
While second to fourth column show results obtained from, Haouassi et al.
[38], Galdran et al. [36] and Dat et al. [37] method, respectively.

V. RESULTS AND DISCUSSIONS

The proposed dehazing algorithm is coded in MATLAB
on the Windows OS desktop Intel Core i5 CPU@2.80 GHz
processor. The evaluated images were taken from the standard
datasets employed in the previous image dehazing works [13]–
[15], [22], [33], RESIDE dataset [35] and from the public im-
age library of the internet. Qualitative analysis of our algorithm
with the recent state-of-the-art single image dehazing methods
is presented in this section. Then, to contrast and compare the
performance objectively, the quantitative analysis is presented
along with the details of evaluation metrics employed for the
performance comparison.

A. Qualitative analysis

For qualitative comparison and analysis of our proposed
single image dehazing algorithm, the dehazed images are
categorized into three classes based on the scene information.
These classes include dehazed images of (i) aerial cityscapes,

Fig. 10. Dehazing results of the synthetic images from the RESIDE dataset
[35]. The first and fourth row shows the ground truth images, and the second
and fifth row depicts hazed images. The third and sixth row presents dehazed
output images from our proposed method, respectively.

(ii) large sky area or dense fog, and (iii) forest images or
remote surveillance.

Figure 5 shows the dehazing results from our proposed
algorithm for flying cityscape images. These images generally
have green spaces, structures and earth in the background
with nearly no sky region. It can be observed that the de-
hazed images have an aesthetic effect, a noticeable structure
restoration, extraordinary scene information, and fine colours
with high brightness and contrast. Figure 6 and Figure 7
depicts the dehazing results for the images having a large
sky area or thick fog. The dehazed images have a high
picture differentiation contrast, an appropriate white balancing
in the gray scene objects and clear structures with fine details.
Further, gray sky areas in images; Road and Tiananmen,
are also dehazed effectively by this proposed algorithm. In
these images, the original gray sky is restored directly to
a white sky as blue sky areas cannot be recovered by only
using the physical models. This is due to the consistent gray
level values in the sky area which results in RGB channel
difference close to zero due to the zero value of f(x). Figure
8 demonstrates the haze removing results from the forest and
remote surveillance images. The impact is evident for the
remote surveillance images. Although the first three images
are effectively dehazed, fog and clouds are observed in the last



Fig. 11. Qualitative comparison of our proposed dehazing algorithm with
other methods. The first column presents input hazed images A and B from
left; the second, third and fourth column shows the dehazed images by He’s
[14], Wang’s [22] and our proposed method.

two images. It can be seen that dehazing is more significant
in the fog regions in comparison to the thick mist regions.
In Figure 9, qualitative comparison of real world images is
made between Haouassi et al. [38], Galdran et al. [36], Dat et
al. [37] and our method, respectively. Better dehazing results
are obtained by our method in all three images of Figure
9. In Figure 10, synthetic images are used from RESIDE
dataset [35]. Resulted images obtained from our method are
more close to ground truth images as shown. Based on the
given results, we can infer that our proposed algorithm can be
utilized for effective dehazing.

We have compared our work with the latest state-of-the-art
single image dehazing methods [8], [13], [14], [22]–[24], [33],
[34]. Among these methods, the techniques proposed by the
Tan’s [13], He’s [14] and Wang’s [22] are the most established
and accepted ones. Figure 11 shows the dehazed images from
the He’s, Wang’s and our proposed methods. In comparison,
it can be seen that the image tone of the dehazed images
from Wang et al.’s technique is better in comparison to the
He et al.’s and our proposed method. However, colour cast
can be observed in the blue box for input image B. Further,
for input image A, the overall slightly red tone of the image
is not preserved in the dehazed representation of the Wang’s
method. These shortcomings are not present in the He’s and
our method. In addition, our method is better in preserving
the structure detail information in comparison to the He’s
technique as depicted in the green box for both input images
A and B.

In Figure 12, we compare our dehazed images with Wang’s
and Tan’s methods. While the dehazed images from both
methods have improved visibility and image details, colours
are oversaturated in the red boxes for both output images.
Although the oversaturation is less in Wang’s method, it cannot
restore effectively the mountain part and pattern on the wood
bark, as shown in the green boxes. In comparison, our method
does not show any colour cast phenomena and the dehazed
images are clear with details recovered. Finally, in Figures 13
and 14, we present the dehazed images from different single
image dehazing methods. It can be observed that all of these
techniques generally produce good dehazing results. However,

Fig. 12. Qualitative comparison of our proposed dehazing algorithm with
other methods. The first column presents input hazed images A and B from
left; the second, third and fourth column shows the dehazed images by Tan’s
[13], Wang’s [22] and our proposed method.

Fig. 13. Qualitative comparison of our proposed dehazing algorithm with
different latest methods. Left to right; input hazed images A and B; cor-
respondingly output dehazed images by Kopf’s [8], He’s [14], Zhu’s [24],
Wang’s [22], Fattal’s [33], Nishino’s [34] and our proposed method.

Fig. 14. Qualitative comparison of our proposed dehazing algorithm with
different latest methods. Left to right; input hazed images A and B; cor-
respondingly output dehazed images by Kopf’s [8], He’s [14], Zhu’s [24],
Wang’s [22], Tarel’s [23], Fattal’s [33] and our proposed method.

some of these methods are superior in removing haze, avoiding
oversaturation and colour cast, and in retaining details in
comparison to the others. These differences can be better
quantified through quantitative analysis by using objective
metrics as the qualitative analysis can also be influenced by
the viewer’s artistic choice.

B. Quantitative analysis

In this section, evaluation metrics are first introduced and
then the analysis of the objective dehazing results is presented.

1) Evaluation metrics: We tested three objective quality
metrics for the quantitative performance comparison and anal-
ysis of the proposed image dehazing algorithm. These metrics
were applied to the gray-scale conversions of the colour
dehazed images.

Information entropy (IE) indicates the amount of random-
ness present in an image and its value quantifies image



information. IE in [22] is defined as

IE = −
N∑
i=0

P (xi) log2(P (xi)), (9)

where n is the image bit depth and its value is 8, N = 2n−1
and P (xi) is the probability of image gray values obtained
from the gray-scale histogram. IE value is maximum for the
non-uniform images as the probability of all gray-values is the
same. However, for hazy and gray-scale consistent images, the
IE value is very low.

TABLE I
IMAGES EVALUATION METRIC OUTCOMES OF THE HE’S [14], WANG’S

[22] AND OUR PROPOSED METHOD FOR FIGURE 11.

No. Indicators Input He Wang Proposed
Input(A) IE 6.4075 7.5790 7.6233 7.3095

AG 0.0077 0.0211 0.0271 0.0329
RMSE —– 63.920 73.058 79.157

Input(B) IE 7.2301 7.6169 7.2041 7.6690
AG 0.0225 0.0382 0.0728 0.0561
RMSE —– 59.972 85.575 87.274

TABLE II
IMAGES EVALUATION METRIC RESULTS OF THE TAN’S [13], WANG’S [22]

AND OUR PROPOSED METHOD FOR FIGURE 12.

No. Indicators Input Tan Wang Proposed
Input(A) IE 7.4738 7.1784 7.4325 7.6599

AG 0.0158 0.0380 0.0353 0.0395
RMSE —– 81.715 78.139 54.978

Input(B) IE 6.7363 5.9215 4.8847 7.0034
AG 0.0112 0.0294 0.0264 0.0153
RMSE —– 49.664 55.089 57.369

Average gradient (AG) can detect the variations in detail for
an image and describe its clearness. For a hazy image, AG in
[22] is characterized as

AG =
1

M.N

M∑
x=1

N∑
y=1

√(
δI(x, y)

δx

)2

+

(
δI(x, y)

δy

)2

/2,

(10)
where M is the width and N is the height of the picture and
1 ≤ x ≤ M , 1 ≤ y ≤ N . For retaining better image details in
the output dehazed image, value AG should be higher.

Root mean square error (RMSE) represents the precision
between the contrast images that evaluates the amount of the
image’s data variation and is defined as

RMSE =

√√√√ 1

MN

M∑
x=1

N∑
y=1

(I(x, y)− J(x, y))2, (11)

where J(x, y) is the output dehazed image and I(x, y) is
the corresponding reference hazy image. The value of RMSE
should be higher for good image quality and dehazing results
in some extent [22], [39].

2) Objective results: For comparative quantitative analysis
of the proposed dehazing algorithm with other methods, we
have tabulated the evaluation metrics in Tables I, II, III, and
IV. The objective is to achieve a high value of AG, IE and
RMSE which is an indication of a clear, haze-free, accurate
and detailed dehazed image representation. The highest quality
in these tables is indicated in bold numbers.

In Table I, we have compared our proposed method with He
et al.’s [14] and Wang et al.’s [22] methods. The high value
of AG and RMSE for our proposed method indicates that this
methodology can restore more details and retain high contrast
in the dehazed images. The same can be inferred from the
Table II, which presents the comparison with the Tan et al.’s
[13] and Wang et al.’s [22] techniques. Finally, Table III and IV
tabulates the evaluation metric results of different single image
dehazing algorithms. Based on the three evaluation parameter
values, which in most cases are the highest for our method,
it can be established that our proposed single image dehazing
method works well in comparison to the other techniques.

VI. CONCLUSION

In this paper, we have implemented a single image dehazing
algorithm dependent on the physical atmospheric light scatter-
ing model and luminance components of an image, utilizing
the guided image filter for the transmission map calculation.
The effectiveness of this algorithm has been measured sub-
jectively as well as objectively in terms of three evaluation
parameters: IE, AG, and RMSE. The results obtained from
our method demonstrate that it can successfully improve the
nature of hazed images and synthetic images as well. However,
there are few shortcomings when the hazed image has greenery
along with the sky area but this method gives comparable
results. While there are several approaches based on deep
learning, the proposed method does not require a large number
of training data and enables efficient processing which is
suitable for embedded and mobile applications and systems.
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