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Abstract 

 

This paper reviews and introduces the strategies for testing a given dataset sampled from an unknown dynamic 

process to determine if it is sufficiently informative to model the system’s behavior. The presented tests should 

be done as the first step in data-driven modeling to avoid an endless search for a proper model which may not 

exist based on the available data. It is unrealistic that available data holds complete information about the 

system at hand. The tests also allow us to estimate how good the established model can be. Finally, the 

presented methodologies are applied to an actual process as the case study: modeling the decarbonization 

section in an ammonia plant. 

 

 

1. Introduction 

By model, we will mean anything for which an 

experiment can be used to answer questions about 

the system [1]. Modeling is the act of developing a 

model. In this definition, the model can be a 

physical instance of the system or a mathematical 

representation of the system. The latter is what the 

model means in this paper.  

In many engineering cases, modeling is the first 

step before other analysis techniques. Therefore, 

the quality of the model directly affects the solution 

of the final problem by putting an upper bound on 

its quality [2]. This fact makes modeling the 

bottleneck of many engineering problems and 

raises the need for putting more effort into finding 

high-quality models. 

Data-driven modeling is a rapidly evolving field 

with great potential to transform engineering 

science [3]. The concept of data-driven modeling 

contrasts with physics-based modeling. In the 

former methodology, the data is the core element 

that illustrates the behavior and expresses the 

properties of the regarded phenomenon or object. 

In data-driven modeling, the scientist does not need 

to know the underlying physical interactions. These 

physical interactions form the basis for and needs 

to be known in physics-based modeling. In the case 

of data-driven modeling, the relationship between a 

given set of available measurements (i.e., model 

input variables or features) and desired behaviors 

or values (i.e., model output variables or targets) is 

called the model of the process/system. The 

construction of a model for a process involves three 

basic entities: 

1. Dataset 
2. Model structure 
3. Rules for assessing the model from data 

The dataset comes first among the items mentioned 

above, indicating its importance and fundamental 

effects on the other two entities. The data can be 

recorded based on designing a proper experiment 

(e.g., [4]). However, it is not always possible to 

affect the experiment, and historical data from the 

plant’s operation must be used. Therefore, although 

the informativity of the data during experiment 

design is guaranteed, while dealing with a historical 

dataset, the informativity of data should be 

evaluated. In addition, the historical data often 

includes many measurements where only a few are 

useful for building a model. Therefore, feature 

selection is a way of reducing the size of the dataset 

by removing non-informative variables.  

This paper presents a method for determining (1) 

whether the available data is informative enough to 

develop models and (2) which features contain 

information about the target variable. The novelty 

of the paper comes from the informativity of the 

data. Without considering the fact that the data is 

informative, one may spend weeks/months to find a 

model which does not exist. Therefore, at a point, 

this struggle should be ended by a conclusion that 

“based on the current data, the process cannot be 

modeled” or “the data is not enough for the 

modeling”. The current paper helps to make this 

decision quickly.  
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The viewpoint of this paper is more practical than 

theoretical, and represents a walkthrough on how to 

start modeling given a dataset without any further 

knowledge about the process. A case study from an 

ammonia plant is used to illustrate the methods. 

The case study is an example of non-informative 

dataset which serves to illustrate the topic of this 

paper.  

In the sequel, Section 2 gives a brief presentation of 

the dataset. Section 3 reviews the tests for checking 

the informativity of the dataset and selecting the 

features. For each represented test, the result of 

applying it to the case study dataset is shown with 

further discussion on the results. The authors of the 

present paper suggest to apply the proposed 

methods to the dataset in the suggested order, and if 

applicable, the latest results from each step are used 

as the basis in the subsequent steps. Section 4 

provides a discussion on the results and the 

conclusion is given in Section 5. 

2. Case study dataset 

Yara International ASA, one of the largest 

ammonia producers globally [5], has provided the 

historical data used in this work. The data is 

coming from a conventional steam reforming 

ammonia plant with natural gas used as both feed 

and fuel. The production capacity is approximately 

400,000 tons/year.  

As mentioned above, the assumption in the 

following approaches is that no technical 

information about the data is available. In other 

words, it does not matter whether the data comes 

from an ammonia plant, a refinery, or any other 

industrial process. However, as the essence of the 

features and target is known, it is helpful for 

evaluation purposes. Therefore, let us briefly 

explain the process and data for a more 

straightforward interpretation of the results. 

2.1. Ammonia plant process 

Ammonia plants normally use natural gas to 

produce ammonia. In the process, natural gas is 

converted into hydrogen, and then the hydrogen is 

combined with nitrogen to produce ammonia using 

the Haber-Bosch process [6]. Figure 1 illustrates 

the whole process with the main chemical reactions 

in each block. The process is described briefly in 

the following. 

Natural gas contains hydrogen sulfide components 

that can deactivate the catalysts used in the further 

steps of the process. Therefore, the first step is to 

remove sulfur components from the inlet gas; the 

so-called desulfurization. The sulfur-free natural 

gas is then sent to the primary reformer to react 

with super-heated steam, where H2, CO, and CO2 

are the products. Then, the gas, called synthesis gas 

or syngas, is mixed with air in the second reformer. 

The air’s nitrogen is needed in the final synthesis, 

and the oxygen reacts with syngas to produce more 

hydrogen. To convert the CO contents of the 

syngas into CO2, it is sent to the shift converter 

section. At this point, the residual water is also 

removed from the syngas. Then, in the 

decarbonization section, CO2 is absorbed from the 

syngas. Next, the outlet of the decarbonization 

section passes through another purification section 

called the methanator to remove small traces of 

residual CO/CO2 from the syngas by converting 

them to methane. Finally, to produce ammonia, the 

purified syngas (which now contains almost only 

H2 and N2) enters the ammonia converter or 

synthesis section, where the ammonia is the final 

product.  

2.2. Target variable: CO2 slip 

In the methanator, the reaction between CO/CO2 

and H2 is extremely exothermic. Therefore, high 

amounts of CO/CO2 supplied to the methanator can 

increase the reactor temperature leading to a series 

of complex reactions where the consequence is 

temperature runaway [7]. In addition, removing 

higher amounts of CO2 in the methanator consumes 

more power and reduces the efficiency of the plant. 

Therefore, it is crucial to control the CO2 residual 

in the syngas that enters the methanator (/leave the 

decarbonization column) below a desired limit. 

This value is the so-called CO2 slip, the target 

variable for modeling in the case study dataset.  
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Figure 1: Overview of ammonia typical production steps 
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2.3. Features 

Based on experts’ knowledge1, 45 values from 

historical data are provided for the modeling. 

Although the selected variables are initially 

assumed to be promising, there is no guarantee 

whether they carry sufficient information about the 

target. In addition, there is a possibility that some 

variables are redundant, which means they have 

almost identical information. Using two redundant 

features does not help the modeling process and 

may make the model problematic by wrongly 

assuming the redundant information too important 

in the training phase. Interestingly, this is the case 

regarding the dataset used here.  

The values of 39 features come from 13 controllers 

(C1-C13). For each controller, three measurements 

are available: (1) set-point (SP), (2) sub-process 

output measurement (PV), and (3) control signal 

(OUT). If the controller is doing its job well (the 

case in most running plants), the PV value tracks 

SP, which means they are almost identical. In some 

cases, if a simple PID controller is used, the OUT 

value is nearly proportional to the PV values. 

However, this is not always true because of non-

linearity and saturation, or in the case of cascade 

controllers. All 13 controllers with a brief 

explanation are listed in Table 1. 

Code Type SP/PV OUT 

C1 Flow  Steam flow (plant load) Valve 

C2 Ratio Steam-to-carbon ratio Ctrl (gas flow) 

C3 Ratio Gas-to-air ratio Ctrl (air flow) 

C4 Temp. 
Prim. reformer temp. (last 
1/3, near outlet) 

Ctrl (pressure of last 
burner nozzle) 

C5 Temp. 
Prim. reformer temp. (first 
1/3, near inlet) 

Ctrl (pressure of first 
burner nozzle) 

C6 Δpressure 
between air and syngas 
inlets, sec. reformer  

Valve  

C7 Flow  Semi-lean solution Valve 

C8 Flow  Semi-lean solution Valve 

C9 Flow  Purge gas into unit Valve 

C10 Flow  
Purge gas into prim. 
reformer 

Valve 

C11 Pressure Syngas compressor suction Ctrl (compressor) 

C12 Flow Lean solution Valve 

C13 Flow Lean solution Valve 

The remaining six variables (S1 to S6) are 

measured signals from sensors, where five of them 

are temperature sensors, and one is a gas sensor. 

Table 2 summarizes the features, including the 

responsibilities of controllers and sensors.  

Code Type Description 

S1 Temp. Cooling water temperature 

S2 Temp. Ambient temperature 

S3 Temp. Secondary reformer catalyst temperature 

S4 Temp. Secondary reformer outlet temperature 

S5 Gas Secondary reformer methane slip 

S6 Temp. Syngas temperature exits shift convertor 

 
1 Engineers at Yara International ASA 

 

2.4. Samples 

The process historical data is stored in one-minute 

intervals. The dataset consists of data from 30 

consecutive days in August and September 2020. 

Therefore, there are 43200 samples, each having 46 

measurement values (i.e., 45 features + target). 

Note that, for secrecy, the actual values of the 

variables are normalized into range [0,1].  

3. Step-by-step methodology 

Assume a dataset from an unknown industrial 

process is given, and the desired output (i.e., target) 

is pre-defined. Therefore, the rest of the variables 

are inputs to the model (i.e., features). In this 

section, a practical walkthrough for the starting 

phase of modeling is presented to check the 

informativity of data and select the useful features.  

The walkthrough consists of three main steps: (1) 

data visualization, (2) data splitting and initial 

modeling, and (3) feature selection. The feature 

selection itself, is divided into two steps.  

Note that, for the computations, data science 

packages in Python such as NumPy, Pandas, scikit-

learn, Seaborn, etc., are used. 

3.1. Data visualization 

Data visualization is data representation by 

employing visual elements like charts, graphs, and 

maps, which helps to comprehend the trends, 

outliers, and patterns in data. Therefore, it is 

recommended to start data-driven modeling by data 

visualization prior to the other steps.  

As we are dealing with time-series data, the first 

essential plot is a simple time plot of each variable. 

To save space, only the target variable and C9_SP 

are shown in Figure 2. In addition, the weekends 

are highlighted in the plot, which sometimes helps 

to realize if they have different trends.  

In this example plot, one obvious outlier in target 

data can be seen on Sep. 9. Another visible issue is 

a rise in the mean values of both variables after 

Sep. 12, which suggests the usefulness of C9_SP 

for modeling CO2 slip. Note that this relevancy is 

not the case for all features. Several sharp peaks in 

Table 1: List of controllers in the dataset 

Table 2: List of sensors in the dataset 

  
Figure 2: Time-series plot of the target variable (CO2 Slip) 

and one feature (C9_SP) 



SIMS 63  Trondheim, Norway, September 20-21, 2022 

CO2 slip values indicate a skewed probability 

distribution of this variable.  

Suggestion: It is beneficial to plot the time-series 

data using interactive plots. Python, for instance, 

has rich libraries for interactive plots where the 

programmer can plot all features and targets 

together. Then it is possible to switch on/off any 

variable or zoom in/out to have better comparison 

and inspection.  

Another helpful visualization technique is the 

histogram plot which reveals the data distribution. 

For instance, Figure 3 depicts the histogram for 

CO2 slip where the data bins before and after Sep. 

12 are shown in different colors. In addition, the 

skewness of the data during the whole period is 

also shown, which is a relatively high number.  

Suggestion: Most linear system identification 

methods (e.g., ARX, FIR, etc.) assume normally 

distributed data and Gaussian noises [8]. In cases 

similar to this example, it may be beneficial to try 

different models for each part. Later, using a 

clustering method can define which model should 

be used in each situation.  

Several other charts and plots (e.g., bar chart, radar 

chart, etc.) can give an initial insight into the data. 

However, for saving space, this is skipped here.  

3.2. Initial regression and dataset split 

Before examining the features and selecting the 

promising ones, making an initial regression model 

is beneficial. This model reveals if the data has the 

potential to predict the target variable. In addition, 

the regression results can help for feature selection 

later.  

In data-driven modeling, splitting data to train and 

test sets is a routine. However, instead of breaking 

the dataset into two simple parts, let us divide it 

into four parts with the following breaking dates: 

Aug. 28, Sep. 5, and Sep. 12. Then, four train-test 

pairs are made by taking each part as the test set 

and the rest as the train set (Table 3).  

Index Train Test 

1 Part 1 + Part 2 + Part 3 Part 4 

2 Part 1 + Part 2 + Part 4 Part 3 

3 Part 1 + Part 3 + Part 4 Part 2 

4 Part 2 + Part 3 + Part 4 Part 1 

* Part 1: Aug. 21~Aug. 28, part 2: Aug. 29 ~ Sep. 5, part 3: Sep. 6 ~ Sep. 

12, part 4: Sep. 13 ~ Sep. 19 

The idea comes from k-fold cross-validation [4]. 

Here, one may be concerned about the test sets’ 

validity as the system is dynamic and the prediction 

needs the data to be continuous in time. However, 

as each train set has more than 30,000 samples, and 

typically not more than 100 past values are used in 

the models, this will not cause any problem.  
The form of the ordinary linear regression (OLS) 

model for a dataset with 𝑛 features and 𝑁 samples 

is as follows: 

𝑦(𝑘) = 𝜃0 + ∑ 𝑥𝑖(𝑘)𝜃𝑖

𝑛

𝑖=1

 (1) 

Using the extended feature vector 𝑋(𝑘) =
[1, 𝑥1(𝑘), 𝑥2(𝑘), … , 𝑥𝑛(𝑘)] allows writing Eq. (1) 

in the following compact form: 

𝑦(𝑘) = 𝑋(𝑘)𝜃 (2) 

where 𝜃 = [𝜃0, 𝜃1, … , 𝜃𝑛]𝑇 is the coefficient 

vector. The coefficient vector 𝜃 can be 

calculated by minimizing the mean square error 

(MSE) between model prediction and measured 

values: 

𝜃 = (𝑿𝑇𝑿)−1𝑿𝑇𝑌 (3) 

Here, 𝑿𝑁×𝑛 is the feature matrix where each 

row presents one measured sample, and 𝑌𝑁×1 is 

a column vector containing values of the target.  
While dealing with dynamic systems, it is 

beneficial to use the finite impulse response (FIR) 

instead of a simple (static) OLS. From one point of 

view, FIR is the dynamic version of static OLS 

where shifted values of the features are added as 

new features to the model. Therefore, the FIR 

model has the following structure: 

𝑦(𝑘) = 𝜃0 + ∑ ∑ 𝑥𝑖(𝑘 − 𝑗)𝜃𝑖𝑗

𝑚

𝑗=0

𝑛

𝑖=1

 (4) 

where 𝑚 is called the order of the model and 

represents the maximum backward shifts for 𝑥. 

To calculate the coefficients 𝜃𝑖𝑗, Eq. (3) can 

still be used. However, the coefficient vector 𝜃, 

feature matrix 𝑿, and target vector 𝑌 should be 

constructed as follows: 

𝜃1×(nm+1) = [𝜃01, 𝜃02 , … , 𝜃0𝑚 , … , 𝜃𝑛1, … 𝜃𝑛𝑚]𝑇 (5) 

𝑿(N−m)×(nm+1)

= [𝑋1
(0)

 , 𝑋1
(1)

, … , 𝑋1
(𝑚)

, … , 𝑋𝑛
(0)

, … , 𝑋𝑛
(𝑚)

] 
(6) 

𝑌1×(N−m) = [𝑦(𝑚 + 1), 𝑦(𝑚 + 2), … , 𝑦(𝑁)]𝑇 (7) 

where: 

 
Figure 3: Histogram plot for the target variable 

Table 3: Four train-test pairs 
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𝑋𝑖
(𝑗)

= [𝑥𝑖(𝑚 + 1 − 𝑗), 𝑥𝑖(𝑚 + 2 − 𝑗), … , 𝑥𝑖(𝑁

− 𝑗)]𝑇 
(8) 

for 𝑖 = 1, … , 𝑛 and 𝑗 = 0, … , 𝑚. 

The advantage of FIR compared to static OLS 

is that the past values of features affect the 

current target prediction. Therefore, if some 

features affect the target with delay, FIR model 

includes those delays in the correspondence 

coefficients.  

Now, let us build three models for each train-

test pair. The first model is a static OLS, the 

second and the third are FIR with orders 10 and 

30, respectively.  

As we want to make a linear model for the 

process, the dataset is informative enough if 

the residual values have zero mean. Therefore, 

for each model, the distributions of residuals in 

the prediction of test sets are plotted in Figure 

4.  

The above plots show that the trends in the first 

part (i.e., train-test 4) and the last part (i.e., train-

test 1) of the data are not wholly similar to the 

other parts. However, using a FIR model of higher 

order makes it possible to predict the mean value 

change discussed earlier, which occurred on Sep. 

12. In contrast, for the first part of data, it is almost 

impossible to accurately predict the target values 

using either FIR or static OLS models.  

As mentioned earlier, redundant or irrelevant 

features can also cause the above problem. 

Therefore, let us examine the features and select 

the promising ones in the following subsections.  

3.3. Feature selection: filter methods  

Up to this point, we have some idea about the 

dataset. However, we need some metrics to select 

valuable features. Generally speaking, feature 

selection methods are classified into three major 

groups [9]: 

1. Filter methods 
2. Wrapper methods 
3. Embedded methods 

Going through all feature selection methods is out 

of the scope of this part. Instead, a few filter 

methods are explained and applied to the data in 

this subsection. The next subsection briefly reviews 

the wrapper methods. The embedded methods are 

not discussed in this paper.  

Filter methods are simple statistical tests 

independent of the model structure. They are 

computationally cheap and easy to apply to big 

datasets. Therefore, it is suggested to use them 

before other methods.  

The first and most important filter method is the 

Pearson correlation coefficient test which measures 

the linear relationship between variable pairs. The 

correlation of two random variables is the division 

of the covariance by their standard deviations: 

corr(𝐴, 𝐵) =
cov(𝐴, 𝐵)

𝜎𝐴𝜎𝐵
 (9) 

The correlation values are in the range [-1,1] (if the 

variances of both variables are non-zero2), where 

the value of 1/-1 means that the variables are 

positively/negatively proportional. Several 

modeling methods use linear regression as the 

assessment rule. Hence, a feature that has a near-

zero correlation with the target variable almost 

contains no information about the target.  
In addition, if two features are highly correlated 

(e.g., |corr|>0.95), they almost contain identical 

information, making one of them redundant.  

The correlation matrix is a symmetric matrix that 

presents the correlation values of each variable 

pair. For the case study, the matrix is 46 by 46 and 

is massive to show here. However, the matrix for 

the first 24 variables is shown in Figure 5 using a 

heatmap. The correlations between SP and PV 

values for all controllers are almost 1.0. This was 

expected, as discussed earlier. Therefore, from each 

pair, one of them is redundant. In addition, SP/PV 

values of controllers C4 and C5 are also correlated. 

C4 and C5 control the temperature of the last 1/3 

and first 1/3 of the primary reformer, respectively. 

Therefore, it is logical that both temperatures are 

kept proportional. The same thing is true about 

controller pairs C7-C8 and C12-C13. C7 and C8 

are two parallel controllers for the semi-lean 

solution, and C12 and C13 are two parallel 

 
2 A random variable with zero variance has no 
information and can be removed from the dataset. 

 

 

 
Figure 4: CO2 slip prediction residual using in (a) OLS 

model, (b) FIR model m=10, FIR model m=30 
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controllers for the lean solution. Therefore, 

identical set-point settings and their correlations 

make sense. 

Also, as expected, some OUT values have high 

correlations with their corresponding SP/PV values. 

However, we keep all of them. 

A correlation test can also be done between the 

target and each feature. Figure 6 depicts the 

correlations between the target and all features.   

The correlations shown in Figure 6 help the 

selection between redundant features. SP is kept for 

each controller except C2 and C4, and PV is 

removed from the dataset based on correlations. 

Regarding the C2 and C4, PVs are kept instead of 

SPs as they have higher correlations with the target. 

Therefore, the number of features is reduced to 32.  

3.4. Feature selection: wrapper methods  

In contrast to filter methods, wrapper methods 

depend on the type of final model in evaluating the 

performance of features. Therefore, let us assume 

the model to be OLS or FIR. Although this 

assumption may lead to removing features with 

valuable non-linear information about the target, 

these models make a fair basis for feature selection 

for linear modeling in general.  

Two common general ideas of wrapper methods 

are backward and forward feature selection. In 

addition to these standard methods, two innovative 

algorithms are also used in this paper. Let us 

explain the methods in brief: 

Forward selection: several models, each including 

one of the features, are made. Then the feature 

corresponding to the best-performed model is 

selected as the most promising one. In the next 

rounds, the same procedure is used where all 

models include the selected variable(s) from the 

previous round. Finally, the algorithm stops when 

adding new features does not increase the model 

performance.  

Backward selection: the algorithm starts with a 

model that includes all features. Then in each step, 

one variable whose removal leads to the highest 

performance of the model is selected and removed 

from the dataset. This procedure continues until 

removing none of the variables leads to a better 

model.  

Backward-forward ver. 1: in each round, one 

complete forward selection procedure follows by 

one complete backward selection. If the forward or 

backward selection in one of the rounds does not 

change the selected set, the algorithm stops.  

Backward-forward ver. 2: after each round of 

adding a variable to the list, one backward round is 

run. Therefore, each backward or forward round 

removes or adds only one feature.  

Note that both backward-forward algorithms (i.e., 

ver. 1 and 2) can start from an empty or complete 

set. Therefore, each algorithm has two variants 

(i.e., empty set start and full set start).  

A metric is needed for the model’s performance to 

decide on adding or removing features in all the 

above-mentioned algorithms. The most common 

metric is the mean square error (MSE) between 

predicted and actual values of the target in the test 

set.  

MSE =
1

𝑁
∑(𝑦(𝑘) − �̂�(𝑘))

2
𝑁

𝑘=1

 (10) 

where �̂�(𝑘) is the model prediction for 𝑘th 

sample in the train/test set.  

Another helpful metric is the R2-Score which is 

the proportion of the variation in the target 

variable that is predictable from the features:  

R2-Score = 1 −
MSE

1
𝑁

∑ (𝑦(𝑘) − �̅�)2𝑁
𝑘=1

 (11) 

where �̅� is the total mean of the target.  
Using each algorithm (i.e., 6 in total) with the two 

mentioned metrics (i.e., MSE and R2-Score) on 

each train-test pair yields 12 different sets for the 

features. For instance, using the forward selection 

algorithm and MSE metric on train-test set 1 gives 

the following features as the promising ones: 

C13_SP, C9_OUT, C6_SP, C10_OUT, C12_SP, 

S3. To save space, the full results are not shown 

here. Instead, the appearance counts of the features 

in the final models separated by the train-test sets 

are shown in Figure 7.  

 
Figure 5: Correlation matrix of the first 24 features 

 
Figure 6: Correlations between the target and features 
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Figure 7: Appearance count of features 
 

One first observation is that the occurrence of some 

features does not really show their importance. For 

example, feature S2 (i.e., ambient temperature) is 

in the final models 10, 3, 6, and 8 times. Obviously, 

the ambient temperature has almost no meaningful 

effect on the CO2 slip values. Therefore, this 

suggest that most other variables do not contain 

more information about CO2 slip than the ambient 

temperature.  

Table 4 lists all variables present in more than half 

of the final models on average. Based on the 

information given in Table 4, the most important 

feature is C8_SP (i.e., set-point value for semi-lean 

solution controller), which is reasonable. The other 

important features are C4_OUT (i.e., primary 

reformer temp.), C9_SP (i.e., purge gas flow into 

the unit), C10_OUT (i.e., purge gas into the 

primary reformer), C11_OUT (i.e., syngas 

compressor suction pressure), and C2_OUT (i.e., 

steam-to-carbon ratio), where all relate to the plant 

load and affect the average of CO2 slip rather than 

its trends. The rest of the features, as mentioned, 

are not more informative than ambient temperature.  

Another observation from Table 4 is the difference 

between train-test set #2 and the other sets. This 

suggests a different operation regime in the plant 

between Sep. 6 and Sep. 12.  

 Number of occurrences 

Feature 
Train-test 

1 
Train-test 

2 
Train-test 

3 
Train-test 

4 
Average 

C1_SP 4 7 8 8 6.75 

C2_PV 8 2 8 8 6.50 

C2_OUT 10 2 8 8 7.00 

C3_SP 6 4 6 10 6.50 

C3_OUT 8 6 8 4 6.50 

C4_OUT 5 8 5 12 7.50 

C6_SP 10 8 4 5 6.75 

C7_OUT 6 6 10 4 6.50 

C8_SP 10 4 10 8 8.00 

C9_SP 10 1 11 8 7.50 

C10_OUT 7 6 10 6 7.25 

C11_OUT 6 10 5 8 7.25 

C12_OUT 4 8 10 4 6.50 

S2 10 3 6 8 6.75 

4. Discussion 

Based on the features found in previous section, let 

us make our final models for each train-test set. 

The models are made based on the train sets, and 

prediction results on the test set are shown in 

Figure 8, together with the measured values. The 

initial OSL model predictions (section 3.2) are also 

plotted for better comparison.  

The plot’s first conclusion is that the feature 

selection procedure leads to models with better 

predictions. The second conclusion is that the 

models suffer from noise that is not white. In other 

words, some other crucial variables are not 

Table 4: The most important features based on wrapper 
methods 

 

 

 

 
Figure 8: Performance of different models on test sets 
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available in the given dataset. This makes linear 

modeling almost impossible.  

Additional attempts were made on this dataset to 

evaluate the correctness of above-mentioned 

conclusions. For example, some pre-processing 

methods used before applying the feature selection 

methods. Among them:  

• the data was smoothed using moving 
average filter,  

• Hampel filter used for detecting and 
removing outliers, and 

• non-scaled and standardized data (i.e., 
scale to data to have mean of 1 and 
standard deviation of 0) were used 
instead of normalized data.  

None of the pre-processing methods changed 
the results noticeably.  
In addition, instead of Eq. (3), partial least 
square (PLS) method was used for finding 
coefficients in both static OSL and FIR models. 
PLS automatically reduces the number of features 

using SVD decomposition. However, those features 

would be transformed features that have no 

physical interpretation. Also, using PLS did not 

contribute to the performance of the models.  

To find out how non-linear models perform on this 

dataset, deep learning methods such as long short-

term memory (LSTM) and convolutional neural 

networks (CNNs) models were also tried. However, 

all of the models failed to follow the trends in the 

data. Therefore, “missing feature(s)” is the best 

description for the case study dataset.  

5. Conclusions  

The outset of this work was to develop a data-

driven model for use in model predictive control 

(MPC). When considering such models, it is vital 

to know whether the data contain sufficient 

information for such a model. In other words: 

whether the data is informative. In this paper, a 

walkthrough for feature selection given a historical 

dataset measured from a process was reviewed. In 

addition, the informativity of the data is also 

checked during the feature selection process. The 

step-by-step method was applied to a case study 

dataset from an ammonia plant. However, the fact 

that irrelevant features such as ambient temperature 

are among the selected features suggests the dataset 

is not informative enough to predict the target 

variable. In addition, the prediction results show 

some trends that the models cannot follow. Further 

works (i.e., non-linear modeling approaches – not 

presented in the current paper) illustrate the 

correctness of the presented walkthrough and non-

informativity of the data for modeling the process.  

 

 

References 

[1] P. Fritzson, Introduction to modeling and 

simulation of technical and physical systems with 

Modelica: John Wiley & Sons, 2011. 

[2] O. Nelles, Nonlinear System Identification: 

From Classical Approaches to Neural Networks, 

Fuzzy Models, and Gaussian Processes: Springer 

Nature, 2020. 

[3] J. N. Kutz, S. L. Brunton, B. W. Brunton, and J. 

L. Proctor, Dynamic mode decomposition: data-

driven modeling of complex systems: SIAM, 2016. 

[4] K. H. Esbensen, D. Guyot, F. Westad, and L. P. 

Houmoller, Multivariate data analysis: in practice: 

an introduction to multivariate data analysis and 

experimental design: Multivariate Data Analysis, 

2002. 

[5] Yara Fertilizer Industry Handbook, Yara 

International ASA, Oslo, 2018. 

[6] V. Pattabathula, and J. Richardson, 

“Introduction to ammonia production,” CEP 

magazine, vol. 2, pp. 69-75, 2016. 

[7] J. Gao, Y. Wang, Y. Ping, D. Hu, G. Xu, F. Gu, 

and F. J. R. a. Su, “A thermodynamic analysis of 

methanation reactions of carbon oxides for the 

production of synthetic natural gas,” vol. 2, no. 6, 

pp. 2358-2368, 2012. 

[8] V. Stojanovic, N. Nedic, D. Prsic, and L. 

Dubonjic, “Optimal experiment design for 

identification of ARX models with constrained 

output in non-Gaussian noise,” Applied 

Mathematical Modelling, vol. 40, no. 13-14, pp. 

6676-6689, 2016. 

[9] I. Guyon, and A. Elisseeff, “An introduction to 

variable and feature selection,” Journal of machine 

learning research, vol. 3, no. Mar, pp. 1157-1182, 

2003. 

 


