
EasyChair Preprint

№ 439

Pointing to Private Names

Adrian Francalanza, Marco Giunti and António Ravara

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 17, 2018

Submitted to:
DCM 2018

c© A. Francalanza, G. Giunti & A. Ravara
This work is licensed under the
Creative Commons Attribution License.

Pointing to Private Names

Adrian Francalanza
Departement of Computer Science, ICT

University of Malta, Malta

Marco Giunti
Department of Informatics, Faculty of Sciences

University of Lisbon
NOVA Laboratory for Computer Science and Informatics

António Ravara
Department of Informatics, Faculty of Sciences and Technology

NOVA University of Lisbon
NOVA Laboratory for Computer Science and Informatics

Scoped channels, in the π-calculus, are not nameable, as they are bound and subject to alpha-
renaming. For program analysis purposes, however, to identify properties of these channels, it is
necessary to talk about them. We present herein a method for uniquely identifying scoped channels.

1 Introduction

In process calculi like the π-calculus [2, 3, 4], the new operator has two roles: it creates a fresh channel
and binds its occurrences in a declared scope. The usual semantic rules dealing with binders apply,
namely those of the λ -calculus [1].

A basic rule of the operational semantics is α-conversion, i.e., the simultaneous substitution of all
occurrences of a bound identifier in a given scope by another one, usually taking into account care to
avoid capturing free identifiers.

So, the identities of bound identifiers are actually meaningless, as they can change. However, to
develop program analysis methods like particular occurrences of a bound identifier to pinpoint program
defects, for instance, require the ability to name such occurrences of the bound identifier, what seems to
be a contradiction in terms. We address the problem by associating with each syntactic occurrence of an
identifier in a new operator

In short, our contribution is the following: a syntactic mechanism, simple to automatise, that gener-
ates unique identifiers associated with each scoped name. The uniqueness of these identifiers is preserved
by reduction, the usual operational semantics mechanism of the calculus. This mechanism is usefult for
program analysis purposes, like detecting deadlocks on scoped names.

2 Syntax and semantics

The syntax of the process language is inductively defined by the grammar in Figure 1. As usual, u,v
range over names and n,x over name variables. Moreover, h, i, j range over natural numbers.

The distinctive characteristic of our language is the use of labels to uniquely identify private names.
This paper is dedicated to show that the reduction semantics of our language indeed guarantees label
uniqueness.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Pointing to private names

Definition 2.1 (Process Labels). Let the following sets be inductively defined by the given rule and by
homomorphic rules on the remaining process constructs.

1. secLabs((newn : (h, i))P) = {i}∪ secLabs(P)

2. labelPairs((newn : (h, i))P) = {(h, i)}∪ labelPairs(P)

We work with well formed processes, where label pairs occur linearly. To define the concept pre-
cisely, we need to define the multiset of subprocesses of a process.

Definition 2.2 (Subprocesses). The multiset of the subprocesses of a process P is inductively generated
by the following rules.

subprocs(nil) = {nil}
subprocs(u!v.P) = {u!v.P}] subprocs(P)
subprocs(u?x.P) = {u?x.P}] subprocs(P)

subprocs(∗u?x.P) = {∗u?x.P}] subprocs(P)
subprocs((newn : (h, i))P) = {(newn : (h, i))P}] subprocs(P)

subprocs(P‖Q) = subprocs(P)] subprocs(Q)

We are now ready to define what is a well-formed process.

Definition 2.3 (Well-Formedness). A process P is well-formed (and we write wf(P)) if when there is a
set S ∈ subprocs(P) such that {(newn : (h, i))Q,(newn : (h′, j))Q′} ⊆ S then i 6= j .

From now on we simply say ’P well-formed’ whenever wf(P) holds. Notice that if a static (defined
below) and well-formed process uses labels (h1,h1), . . . ,(hn,hn), then h1, . . . ,hn are all distinct.1

Definition 2.4 (Static Processes). Let a process P be static if the predicate below, inductively defined by
the two rules and by homomorphic rules on the remaining process constructs, holds.

static(nil) = true and static((newn : (h, i))P) = (static(P)∧h = i)

So, in well-formed static processes no label pair occurs more than once – well-formedness implies
that labels are used linearly. Therefore, if a process is well-formed, so are all its subprocesses.

Lemma 2.5 (Label freshness). Let wf(P) hold. Then,

1. if P = (newn : (h, i))Q then i /∈ secLabs(Q);

2. if P = (Q‖R) then secLabs(Q)∩ secLabs(R) = /0;

3. wf(Pσ), being σ be a substitution of a name for a variable;

4. for any Q ∈ S, for some S ∈ subprocs(P), it holds that wf(Q);

5. for any Q and R such that {Q,R} ⊆ S, for some S ∈ subprocs(P), it holds that wf(Q‖R);

6. if wf(Q) and secLabs(P)∩ secLabs(Q) = /0 then wf(P‖Q).

Proof. Immediate, due to the definition of well-formed processes.

Let π1 denote the first pair projection function. The set S contains the labels to avoid when renaming
the labels of the process.

1This result is an immediate consequence of Lemma A.2 in Page 7.

A. Francalanza, G. Giunti & A. Ravara 3

Static Process Syntax

P,Q,R ∈ PROC ::=nil (inert) | (P‖Q) (composition)

| u?x.P (input) | ∗u?x.P (replication)

| u!v.P (output) | (newn : (h,h))P (hiding)

Dynamic Process Syntax Let i ∈ N.

P,Q,R ∈ PROC ::= ... | (newn : (h, i))P (hiding)

Figure 1: The process language: syntax

Definition 2.6 (Process Relabelling). Let the (partial) binary function relabelling, taking a process and
a set of labels and returning a process and a set of labels, be inductively defined by the rules below (the
remaining cases being homomorphic). Consider S⊆H .

1. if S⊇ {i}∪ secLabs(P) and j /∈ S then

let (P′,S′) = relabelling(P,S∪{ j}) in

relabelling((newn : (h, i))P,S) = ((newn : (h, j))P′,S′)

2. let (P′,S′) = relabelling(P,S) and (Q′,S′′) = relabelling(Q,S′) in

relabelling(P‖Q,S) = (P′ ‖Q′,S′′)

Note that the first label in label pairs is not affected by relabelling. The relevant results are that
labels obtained by relabelling are fresh and relabelling preserves well-formedness. The proofs are in
Appendix A.2.

Proposition 2.7 (Relabelling preserves label freshness). Let P be well-formed. Then, for any set of labels
S⊆H such that S⊇ secLabs(P),

1. relabelling(P,S) is defined;

2. secLabs(P)∩ secLabs(π1(relabelling(P,S))) = /0 ;

3. π1(relabelling(P,S)) is well-formed.

3 Reduction semantics

Considering, as usual, processes indistinguishable up to α-conversion, the operational semantics of the
language is defined with two relations: structural congruence and reduction. Figure 2 presents the rules
inductively defining both relations.

Note that labels, being constants, are not subject to α-conversion (naturally, only variables are).
Labels are thus a mechanism to identify places where bound channels (variables) are used.

4 Pointing to private names

Structural Congruence

SNIL P‖nil ≡ P SCOM P‖Q ≡ Q‖P SASS P‖(Q‖R) ≡ (P‖Q)‖R

SSWP (newn : (h, i))(newn′ : (h′, j))P ≡ (newn′ : (h′, j))(newn : (h, i))P

SEXT P‖(newn : (h, i))Q ≡ (newn : (h, i))(P‖Q) if n /∈ fn(()P)

Reduction system

COM
n!v.P‖n?x.Q n−→ P‖Q[v/x]

REP
Q′ = π1(relabelling(Q,secLabs(P‖Q)))

n!v.P‖∗n?x.Q ∗n−→ P‖Q[v/x]‖∗n?x.Q′

HID
P n−→ Q

(newn : (h, i))P
(h,i)−→ (newn : (h, i))Q

HIDREP
P ∗n−→ Q

(newn : (h, i))P
∗(h,i)−→ (newn : (h, i))Q

RES
P o−→ Q o 6= n

(newn : (h, i))P o−→ (newn : (h, i))Q
PAR

P o−→ Q secLabs(Q)∩ secLabs(R) = /0

P‖R o−→ Q‖R

STR
P≡ P′ P′ o−→ Q′ Q′ ≡ Q

P o−→ Q

Figure 2: The process language: operational semantics

Remark 3.1 (Notation).
• We write P−→ Q in lieu of ∃o .P o−→ Q.

• Let =⇒ be the reflexive and transitive closure of −→.

• For simplicity sake, in the examples and in some statements, we just write (newn : h)P, instead of
(newn : (h,h))P.

Notice that reduction preserves the first label in any label pair.

Lemma 3.2 (Label preservation). Let P −→∗ Q. For any (h, j) ∈ labelPairs(Q) there is an i such that
(h, i) ∈ labelPairs(P).

Proof. Straightforward.

Relabelling at work. A simpler mechanism to generate fresh labels would be to increase the second
label each time a new thread is spawned. The idea, however, does not guarantee label uniqueness.

Example 3.3 (Why increment doesn’t work).

∗a?.∗b?.(newn : (l,1))nil‖a!.nil‖a!.nil‖b!.nil−→
∗b?.(newn : (l,1))nil‖∗a?.∗b?.(newn : (l,2))nil‖a!.nil‖b!.nil−→

∗b?.(newn : (l,1))nil‖∗b?.(newn : (l,2))nil‖∗a?.∗b?.(newn : (l,3))nil‖b!.nil−→
(newn : (l,1))nil‖∗b?.(newn : (l,2))nil‖∗b?.(newn : (l,2))nil‖∗a?.∗b?.(newn : (l,3))nil

The relabelling mechanism defined actually guarantees that label uniqueness is preserved by reduc-
tion. An elaborate example is below.

A. Francalanza, G. Giunti & A. Ravara 5

Example 3.4 (Relabelling works). Consider

P = a!.(newn : (l1, l1))nil‖Q0 with

Q0 = ∗a?.Q00 and Q00 = ∗b?.(newn : (l0, l0))nil

By rule REP, we have P−→ Q, where

Q = (newn : (l1, l1))nil‖Q00 ‖∗a?.relabel(Q00)

and relabel(Q00) = ∗b?.(newn : (l0, l4))nil with a fresh label l4. Notice how(
secLabs((newn : (l1, l1))nil‖Q0) = {l0, l1}

)
∩
(
{l4}= secLabs(relabel(Q00)))

)
= /0

Consider now

R = a!.(newn : (l2, l2))nil‖b!.(newn : (l3, l3)nil)

Since secLabs(Q) = {l0, l1, l4} and secLabs(R) = {l2, l3} (they are disjoint), we conclude, by rule PAR,

P‖R =

{
a!.(newn : (l1, l1))nil‖∗a?.∗b?.(newn : (l0, l0))nil
‖a!.(newn : (l2, l2))nil‖b!.(newn : (l3, l3))nil

−→

Q‖R =

{
(newn : (l1, l1)nil)‖∗b?.(newn : (l0, l0))nil‖∗a?.∗b?.(newn : (l0, l4))nil
‖a!.(newn : (l2, l2))nil‖b!.(newn : (l3, l3))nil

The same reasoning applies now for the subsequent reduction step:

• Assuming relabel(∗b?.(newn : (l0, l4))nil) = ∗b?.(newn : (l0, l5))nil with l5 fresh, by rule REP we
have:

∗a?.∗b?.(newn : (l0, l4))nil‖a!.(newn : (l2, l2))nil −→
∗b?.(newn : (l0, l4))nil‖∗a?.∗b?.(newn : (l0, l5))nil‖(newn : (l2, l2))nil

• thus, by rule PAR, P′ = Q‖a!.(newn : (l2, l2))nil−→ Q′, where

Q′ =

{
(newn : (l1, l1))nil‖(newn : (l2, l2))nil‖∗b?.(newn : (l0, l0))nil
‖∗b?.(newn : (l0, l4))nil‖∗a?.∗b?.(newn : (l0, l5))nil

So, Q‖R−→ Q′ ‖b!.(newn : (l3, l3))nil, and again, reasoning as above, we get

Q′ ‖b!.(newn : (l3, l3))nil −→{
(newn : (l1, l1))nil‖(newn : (l2, l2))nil‖(newn : (l3, l3))nil
‖∗b?.(newn : (l0, l6))nil‖∗b?.(newn : (l0, l4))nil‖∗a?.∗b?.(newn : (l0, l5))nil

Notice that all labelled pairs are different.

6 Pointing to private names

4 Label uniqueness.

A crucial property of our language is that the uniqueness of labels is preserved by reduction. The preci-
sion of our deadlock detection analysis relies on this fact.

An example of relabelling at work is in Appendix 3. From it it is simple to understand why using
only one label (or an indexing mechanism) would not work.

Preservation of label uniqueness by reduction. A key property to ensure the soundness of our dead-
lock detection algorithm is the preservation of well-formedness by reduction. The proof is in Ap-
pendix A.3.

Lemma 4.1. If P is well-formed and P−→ Q then Q is well-formed.

5 A standard reduction semantics.

Notice that, for well-formed processes, our semantics coincides with a standard one. To state this prop-
erty, consider the auxiliary function labErasure on processes that removes the label pairs from the hiding
constructor (hence producing standard π-calculus processes). The function is inductively defined by ho-
momorphic rules on all process constructs but on hiding, where the function is defined by the following
rule:

labErasure((newn : (h, i))P) = (newn)labErasure(P)

The usual relation→ on standard processes is obtained by removing the side condition secLabs(Q)∩
secLabs(R) = /0 from rule REP in Figure 2 and by replacing rule REP with the following axiom:

n!v.P‖∗n?x.Q ∗n−→ P‖Q[v/x]‖∗n?x.Q

Obviously, labErasure(P)→ labErasure(Q), if P−→ Q. The opposite direction does not work only due
to the side condition of the PAR rule.

6 Conclusions

We devised a simple mechanism to uniquely identify scoped names in the π-calculus. This approach is
useful to support the analysis of properties of scoped names, an example being identify which ones are
leaked.

References
[1] Henk Barendregt (1981 (1st ed.), revised 1984): The Lambda Calculus - Its Syntax and Semantics. North-

Holland.
[2] Robin Milner (1999): Communicating and mobile systems - the Pi-calculus. Cambridge University Press.
[3] Robin Milner, Joachim Parrow & David Walker (1992): A Calculus of Mobile Processes, parts I and II.

Information and Computation 100(1), pp. 1–77.
[4] Davide Sangiorgi & David Walker (2001): The Pi-Calculus: A Theory of Mobile Processes. Cambridge

University Press.

A. Francalanza, G. Giunti & A. Ravara 7

A On ensuring label uniqueness

A.1 No label clashes

Consider the following function, inductively defined by the given rules.

nLabels nLabels(nil) = 0, nLabels(P‖Q) = nLabels(P)+nLabels(Q),

nLabels(u?x.P) = nLabels(∗u?x.P) = nLabels(u!v.P) = nLabels(P), and

nLabels((newn : (h,h′))P) = 1+nLabels(P)

Obviously, #labelPairs(P)≤ nLabels(P).

Let σ be a substitution of a name for a variable. One easily sees that the sets labels and nLabels
are preserved by substitutions and by alpha-congruence on names and variables (i.e., labels are like
constants). Moreover, both sets might increase with reduction (labels are never removed).

Lemma A.1 (Reduction preserves labels).

nLabels(P) = nLabels(Pσ) (1)

labelPairs(P) = labelPairs(Pσ) (2)

(P≡α Q) ⇒ (nLabels(P) = nLabels(Q)∧ labelPairs(P) = labelPairs(Q)) (3)

(P−→ Q) ⇒ (nLabels(P)⊆ labelPairs(Q)∧ labelPairs(P)⊆ labelPairs(Q)) (4)

Proof. Immediate.

Consider the following predicate, stating that all pairs of labels in a given process are different.

noLabelClashes(P) = (#labelPairs(P) = nLabels(P))

The predicate above provides an alternative characterisation of well-formedness.

Lemma A.2 (No label clashes). wf(P) if and only if noLabelClashes(P)

Proof. Immediate, due to the definition of well-formed processes.

A.2 Relabelling

Let π2 denote the second pair projection functions.

Lemma A.3 (Monotonicity). If P is well-formed and S′ = π2(relabelling(P,S)) then S⊆ S′ .

Proof. Immediate, due to the definition of well-formed processes.

Lemma A.4 (Relabelling preserves label freshness). Let P be well-formed and consider a set of labels
S⊇ secLabs(P). Then, the following results hold.

nLabels(π1(relabelling(P,S))) = nLabels(P) (5)

S∩ secLabs(π1(relabelling(P,S))) = /0 (6)

8 Pointing to private names

Proof. The proofs are by structural induction on P. The first equation is straightforward to prove – it
ensures that rellabelling preserves the number of labels.

In the proof of the second equation, two cases matter. Let first P = (newn : (h, i))Q Since by hy-
pothesis wf(P), Lemma 2.5.2 ensures i /∈ secLabs(Q). Take j 6= i such that j /∈ secLabs(Q). Then,
as j /∈ ({i}∪ secLabs(Q)) = secLabs(P), taking a set S ⊇ {i}∪ secLabs(Q) where j /∈ S, the function
relabelling gives the following result.

let (Q′,S′) = relabelling(Q,S∪{ j}) in

relabelling(P,S) = ((newn : (h, j))Q′,S′) .

So, as S⊇ secLabs(P), we have

secLabs(π1(relabelling(P,S∪{ j}))) = { j}∪ secLabs(Q′) .

Since wf(Q) by Lemma 2.5.4, by induction hypothesis,

S∪{ j}∩ secLabs(π1(relabelling(Q,S∪{ j}))) = /0,

so, as S ⊇ {i}∪ secLabs(Q) and Q′ = π1(relabelling(Q,S∪{ j})) and furthermore j 6= i, we conclude
S∩ ({ j}∪ secLabs(Q′)) = /0 as required.

Consider now P=(Q‖R). Since by hypothesis wf(P), Lemma 2.5.2 ensures secLabs(Q)∩secLabs(R)=
/0. As both wf(Q) and wf(R) by Lemma 2.5.4, by induction hypothesis, we have S∩secLabs(Q′) = /0 and
S′∩ secLabs(R′) = /0 where (Q′,S′) = relabelling(Q,S) and R′ = π1(relabelling(R,S′)) . So, since S⊆ S′

by Lemma A.3, we conclude

S∩ secLabs(Q′ ‖R′) =

S∩ (secLabs(Q′)∪ secLabs(R′)) =

(S∩ secLabs(Q′))∪ (S∩ secLabs(R′)) =

/0∪ /0 = /0

as required.

Lemma A.5 (Relabelling preserves well-formedness). Let P be well-formed and consider a set of labels
S⊇ secLabs(P). Then, π1(relabelling(P,S)) is well-formed.

Proof. The proof is by structural induction on P. All homomorphic cases in the definition of relabelling
are either straightforward or following by the induction hypothesis, using Lemma 2.5.4. So, two cases
matter. Let first P = (newn : (h, i))Q. As P is well-formed, so is Q (again, by the previous lemma). By
definition,

relabelling((newn : (h, i))Q,S) = ((newn : (h, j))Q′,S′)

where (Q′,S′) = relabelling(Q,S ∪ { j}), considering i ∈ S and j /∈ (S ∪ secLabs(P)). By induction
hypothesis, Q′ is well-formed. Since by hypothesis, S ⊇ secLabs(P), obviously j /∈ S and i 6= j, so
(newn : (h, j))Q′ is also well-formed.

Consider now P = (Q‖R). As P is well-formed, by the same lemma, so are Q and R. By definition,

relabelling(Q‖R,S) = (Q′ ‖R′,S′′)

A. Francalanza, G. Giunti & A. Ravara 9

where (Q′,S′) = relabelling(Q,S) and (R′,S′′) = relabelling(R,S′). Since by hypothesis S⊇ secLabs(P),
obviously S ⊇ secLabs(Q), so by induction hypothesis, Q′ is well-formed. It is also the case that
S ⊇ secLabs(R), and since by Lemma A.3, S′ ⊇ S, by induction hypothesis, R′ is also well-formed.
Since Lemma A.4.6 ensures that S∩ secLabs(Q′) = /0 and S′∩ secLabs(R′) = /0, we have secLabs(Q′)∩
secLabs(R′) = /0, thus by Lemma 2.5.6 we conclude that Q′ ‖R′ is well-formed.

A.3 Reduction preserves label uniqueness

Lemma A.6. If P is well-formed and P−→ Q then Q is well-formed.

Proof. Notice first that structural congruence preserves label uniqueness, as no relabelling happens. To
prove that well-formedness is preserved by reduction, we proceed by induction of the derivation of
P−→ Q.

Base cases. The only base case that changes the labels is the REP rule:

REP
P′2 = π1(relabelling(P2,secLabs(P1)))

n!v.P1 ‖∗n?x.P2
∗n−→ P1 ‖P2[v/x]‖∗n?x.P′2

As P = n!v.P1 ‖ ∗n?x.P2, let P′ = P1 ‖ P2[v/x]. By hypothesis P is well-formed, thus by Lem-
mas 2.5.4, 2.5.3 2.5.5, and A.4.3, both P′ and Q′′ are well-formed. Moreover, by definition of
well-formedness, ∗c?x.Q′′ is also well-formed.
Since by Lemmas 2.5.2 and A.4.2 we conclude that secLabs(P′ ‖Q′[v/x])∩ secLabs(Q′′) = /0, and
obviously secLabs(Q′′) = secLabs(∗c?x.Q′′), we attain the result using Lemma 2.5.6.

Inductive steps. The only relevant case is the PAR rule.
Let P = P1 ‖P2 and Q = P′1 ‖P2. By hypothesis,

P1 −→ P′1 and secLabs(P′1)∩ secLabs(P2) = /0

Since by induction hypothesis, P′1 is well-formed, we attain the result – Q is well-formed – using
again Lemma 2.5.6.

	Introduction
	Syntax and semantics
	Reduction semantics
	Label uniqueness.
	A standard reduction semantics.
	Conclusions
	On ensuring label uniqueness
	No label clashes
	Relabelling
	Reduction preserves label uniqueness

