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Abstract: A prime gap is the difference between two successive prime numbers. The nth prime gap,
denoted gn is the difference between the (n + 1)st and the nth prime numbers, i.e. gn = pn+1 − pn.
There isn’t a verified solution to Andrica’s conjecture yet. The conjecture itself deals with the
difference between the square roots of consecutive prime numbers. While mathematicians have
proven it true for a vast number of primes, a general solution remains elusive. The Andrica’s
conjecture is equivalent to say that gn < 2 · √pn + 1 holds for all n. In this note, using the divergence
of the infinite sum of the reciprocals of all prime numbers, we prove that the Andrica’s conjecture is
true.
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1. Introduction

Prime numbers, the building blocks of integers, have fascinated mathematicians for
centuries. Their irregular distribution, with gaps of seemingly random size between them,
is a source of ongoing intrigue. Andrica’s conjecture tackles this very irregularity, proposing
a relationship between the sizes of these prime gaps and the primes themselves. Andrica’s
conjecture (named after Dorin Andrica) is a conjecture regarding the gaps between prime
numbers [1]. The conjecture states that the inequality

√
pn+1 −

√
pn < 1

holds for all n, where pn is the nth prime number. If gn = pn+1 − pn denotes the nth prime
gap, then Andrica’s conjecture can also be rewritten as

gn < 2 · √pn + 1.

Imran Ghory has used data on the largest prime gaps to confirm the conjecture for n up to
1.3002 · 1016 [2].

Legendre’s conjecture, proposed by Adrien-Marie Legendre, states that there is a
prime number between n2 and (n + 1)2 for every positive integer n [2]. The conjecture is
one of Landau’s problems (1912) on prime numbers. If Legendre’s conjecture is true, the
gap between any prime p and the next largest prime would be O(

√
p ), as expressed in

big O notation. Oppermann’s conjecture is another unsolved problem in mathematics on
the distribution of prime numbers [2]. It is closely related to but stronger than Legendre’s
conjecture and Andrica’s conjecture. It is named after Danish mathematician Ludvig Op-
permann, who announced it in an unpublished lecture in March 1877 [3]. If the conjecture
is true, then the gap size would be on the order of gn <

√
pn.

This seemingly simple statement has profound implications for our understanding
of prime number distribution. Unfortunately, despite its apparent elegance, Andrica’s
conjecture remains unproven. Mathematicians have extensively verified it for a tremendous
number of primes, but a universal solution proving its truth for all primes continues to
be elusive. This lack of proof doesn’t diminish the significance of the conjecture. It
serves as a guidepost, nudging mathematicians towards a deeper understanding of prime
number distribution. The quest to solve Andrica’s conjecture pushes the boundaries of
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our knowledge and holds the potential to unlock new insights into the enigmatic world of
primes.

Whether the Andrica’s conjecture is true or not still remains as an open question. By
employing the divergence of the infinite sum of the reciprocals of all prime numbers and
delving into the properties of natural logarithm, we will demonstrate a crucial contradiction
under the assumption that there exists at least one prime gap gn0 such that gn0 ≥ 2 · √pn0 +
1. This contradiction will definitively prove the Andrica’s conjecture. In this way, we
provide a new step forward that could help us to find a better upper bound for prime gaps.

2. Materials and methods

We know the following inequality about the natural logarithm:

Proposition 1. For x > −1 [4]:

x
1 + x

≤ log(1 + x) ≤ x.

Therefore, we can prove the following Lemma:

Lemma 1. For x > 1:
1
x
≤ log

(
x

x − 1

)
≤ 1

x − 1
.

Proof. We know that

log
(

x
x − 1

)
= log

(
x − 1 + 1

x − 1

)
= log

(
1 +

1
x − 1

)
.

By Proposition 1, we have

log
(

1 +
1

x − 1

)
≤ 1

x − 1
.

Moreover, we see that

log
(

1 +
1

x − 1

)
≥

1
x−1

1 + 1
x−1

=
1

(x − 1) ·
(

1 + 1
x−1

)
=

1
(x − 1) + 1

=
1
x

by Proposition 1.

It is well-known the Mertens’ second theorem:

Proposition 2. Mertens’ second theorem is

lim
n→∞

(
∑
p≤n

1
p
− log log n − B

)
= 0,

where B ≈ 0.261497 is the Meissel-Mertens constant [5].

Using the Mertens’ second theorem, we can prove the following result:
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Lemma 2. We define the following infinite sum

∑
p≥x

log
(

p
p − 1

)
over all prime numbers p that are greater than or equal to x. This infinite sum diverges.

Proof. By Lemma 1, we notice that

∑
p≥x

log
(

p
p − 1

)
≥ ∑

p≥x

1
p

=

(
∞

∑
n=1

1
pn

)
− ∑

p<x

1
p

≥
(

∞

∑
n=1

1
pn

)
− x

2

where pn is the nth prime. By Proposition 2, the expression(
∞

∑
n=1

1
pn

)
− x

2

diverges for every real number x.

The following limit was found using the mathematical computation of the "Wol-
fram|Alpha: Computational Intelligence" web site:

Proposition 3. We have [6]:

lim
x→∞

− x
√

a + x
√

b
− x
√

b + x
√

c
=

log(a)− log(b)
log(b)− log(c)

.

This is an important upper bound about prime numbers:

Proposition 4. Let us denote by pn the nth prime. Then, for pn ≥ 127, we have [7]:

pn+1

pn
≤ 149

139
.

The following is a key Lemma.

Lemma 3. If there exists a natural number n0 ≥ 1.3002 · 1016 such that

√
pn0+1 −

√
pn0 > 1

then √
pn0+2 −

√
pn0+1 > 1.

Proof. Suppose that √
pn0+2 −

√
pn0+1 < 1

under the assumption that √
pn0+1 −

√
pn0 > 1

for a natural number n0 ≥ 1.3002 · 1016. Putting both together yields

√
pn0+1 −

√
pn0 >

√
pn0+2 −

√
pn0+1
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that is √pn0+1 −
√pn0√pn0+2 −
√pn0+1

> 1.

We can show that
√pn0+1 −

√pn0√pn0+2 −
√pn0+1

=
4
√pn0+1 + 4

√pn0

4
√pn0+2 + 4

√pn0+1
·

4
√pn0+1 − 4

√pn0

4
√pn0+2 − 4

√pn0+1

such that
4
√pn0+1 + 4

√pn0

4
√pn0+2 + 4

√pn0+1
< 1.

Next, let’s take the new fraction

4
√pn0+1 − 4

√pn0

4
√pn0+2 − 4

√pn0+1
=

8
√pn0+1 + 8

√pn0

8
√pn0+2 + 8

√pn0+1
·

8
√pn0+1 − 8

√pn0

8
√pn0+2 − 8

√pn0+1

such that
8
√pn0+1 + 8

√pn0

8
√pn0+2 + 8

√pn0+1
< 1.

If we continue this iteration on and on, we arrive at:

1 > β =
4
√pn0+1 + 4

√pn0

4
√pn0+2 + 4

√pn0+1
·

8
√pn0+1 + 8

√pn0

8
√pn0+2 + 8

√pn0+1
·

16
√pn0+1 + 16

√pn0

16
√pn0+2 + 16

√pn0+1
· . . .︸ ︷︷ ︸

∞

.

Using the Proposition 3, we can calculate the remaining fraction whenever this iteration
prolongs to infinity:

lim
x→∞

− x
√pn0 + x

√pn0+1

− x
√pn0+1 + x

√pn0+2
=

log(pn0+1)− log(pn0)

log(pn0+2)− log(pn0+1)
.

However, we can prove that

4
√pn0+1 + 4

√pn0

4
√pn0+2 + 4

√pn0+1
·

8
√pn0+1 + 8

√pn0

8
√pn0+2 + 8

√pn0+1
·

16
√pn0+1 + 16

√pn0

16
√pn0+2 + 16

√pn0+1
· . . .︸ ︷︷ ︸

∞

=

4
√pn0+1 ·

(
1 +

4√pn0
4
√

pn0+1

)
4
√pn0+2 + 4

√pn0+1
·

8
√pn0+1 ·

(
1 +

8√pn0
8
√

pn0+1

)
8
√pn0+2 + 8

√pn0+1
·

16
√pn0+1 ·

(
1 +

16√pn0
16
√

pn0+1

)
16
√pn0+2 + 16

√pn0+1
· . . .︸ ︷︷ ︸

∞

= Υ
√

pn0+1 ·

(
1 +

4√pn0
4
√

pn0+1

)
4
√pn0+2 + 4

√pn0+1
·

(
1 +

8√pn0
8
√

pn0+1

)
8
√pn0+2 + 8

√pn0+1
·

(
1 +

16√pn0
16
√

pn0+1

)
16
√pn0+2 + 16

√pn0+1
· . . .︸ ︷︷ ︸

∞

=
√

pn0+1 ·

(
1 +

4√pn0
4
√

pn0+1

)
4
√pn0+2 + 4

√pn0+1
·

(
1 +

8√pn0
8
√

pn0+1

)
8
√pn0+2 + 8

√pn0+1
·

(
1 +

16√pn0
16
√

pn0+1

)
16
√pn0+2 + 16

√pn0+1
· . . .︸ ︷︷ ︸

∞

where

Υ =
∞

∑
n=2

1
2n =

1
2

.
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Indeed, we can prove the value of Υ using the properties of the following geometric series

∞

∑
n=0

1
2n = 2.

In this way, we verify that
√pn0+2 +

√pn0+1√pn0+1 +
√pn0

· 1
√pn0+1

> β.

Certainly, we deduce that
1

pn0+1
=

∞

∏
n=1

1
2n√pn0+1

where

1
y
√pn0+1

>

(
1 +

y√pn0
y
√

pn0+1

)
y
√pn0+2 + y

√pn0+1

holds for all y ≥ 2. Consequently, we can assure that

1
pn0+1

>

(
1 +

√pn0√
pn0+1

)
√pn0+2 +

√pn0+1
·

(
1 +

4√pn0
4
√

pn0+1

)
4
√pn0+2 + 4

√pn0+1
·

(
1 +

8√pn0
8
√

pn0+1

)
8
√pn0+2 + 8

√pn0+1
· . . .︸ ︷︷ ︸

∞

We claim that

log(pn0+1)− log(pn0)

log(pn0+2)− log(pn0+1)
<

√
pn0+1 ·

√pn0+1 +
√pn0√pn0+2 +
√pn0+1

and thus,
log(pn0+1)− log(pn0)

log(pn0+2)− log(pn0+1)
· β < 1.

We only need to prove that

√pn0+2 +
√pn0+1√pn0+1 +
√pn0

· 1
√pn0+1

=

√
pn0+2√
pn0+1

+ 1
√pn0+1 +

√pn0

<
2.037

√pn0+1 +
√pn0

due to √pn0+2√pn0+1
+ 1 <

√
149
139

+ 1 < 2.037

by Proposition 4. So, we would have

0.14259
log(pn0+2)− log(pn0+1)

<
√

pn0+1 +
√

pn0

because of
0.07 · 2.037 = 0.14259

where
log

pn0+1

pn0

< log
149
139

< 0.07
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by Proposition 4. Hence, it is enough to show that

0.14259 < 1 <

(
pn0+2

pn0+1

)√pn0+1+
√pn0

for proving our claim since

0.14259
log(pn0+2)− log(pn0+1)

= log( pn0+2
pn0+1

) 0.14259

using the properties of natural logarithms. Since that implies the inequality 1 > 1 by
transitivity, we reach a contradiction. Based on a proof by contradiction, we are able to
affirm that √

pn0+2 −
√

pn0+1 > 1.

Putting all together, we show that the Andrica’s conjecture is true.

3. Results

This is the main theorem.

Theorem 1. The Andrica’s conjecture is true.

Proof. There is not any natural number n′ such that

√
pn′+1 −

√
pn′ = 1

since this implies that gn′ = 2 · √pn′ + 1. For every n, gn is a natural number and 2 · √pn + 1
is always irrational. In fact, all square roots of natural numbers, other than of perfect squares,
are irrational [8]. So, there exists a natural number n0 ≥ 1.3002 · 1016 such that

√
pn0+1 −

√
pn0 > 1

when we assume that the Andrica’s conjecture is false. By Lemma 3, we are capable to
assure that √

pn+1 −
√

pn > 1

holds for all n ≥ n0 whenever √
pn0+1 −

√
pn0 > 1.

That is the same as √
pn+1 − 1 >

√
pn

which is
1

√
pn+1 − 1

<
1

√
pn

for all n ≥ n0. This is equivalent to
√

pn+1√
pn+1 − 1

<

√
pn + 1
√

pn

after adding the number 1 to the both sides and simplifying the terms when
√

pn+1√
pn+1 − 1

=

(
1 +

1
√

pn+1 − 1

)
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and √
pn + 1
√

pn
=

(
1 +

1
√

pn

)
.

Now, let’s try to solve the equation
√

pn√
pn − 1

· x =

√
pn + 1
√

pn
.

We solve this equation as

x =

√
pn + 1
√

pn
·
√

pn − 1
√

pn

=
(
√

pn + 1) · (√pn − 1)
√

pn ·
√

pn

=
pn − 1

pn
.

In this way, we obtain that
√

pn+1√
pn+1 − 1

<

√
pn√

pn − 1
· pn − 1

pn

which is
pn

pn − 1
<

√
pn√

pn − 1
·
√

pn+1 − 1
√

pn+1

after distributing the terms. Finally, we obtain that

log
(

pn

pn − 1

)
< log

( √
pn√

pn − 1

)
− log

( √
pn+1√

pn+1 − 1

)
after of applying the natural logarithm. For the previous inequality, we deduce that

∞

∑
n=n0

log
(

pn

pn − 1

)
<

∞

∑
n=n0

(
log
( √

pn√
pn − 1

)
− log

( √
pn+1√

pn+1 − 1

))
.

We check that

∞

∑
n=n0

(
log
( √

pn√
pn − 1

)
− log

( √
pn+1√

pn+1 − 1

))
= log

( √pn0√pn0 − 1

)
+

∞

∑
n=n0+1

(
log
( √

pn√
pn − 1

)
− log

( √
pn√

pn − 1

))
= log

( √pn0√pn0 − 1

)
≤ 1

√pn0 − 1

by Lemma 1. While the fraction 1√pn0−1 is a real number, the following infinite sum

∞

∑
n=n0

log
(

pn

pn − 1

)
= ∑

p≥pn0

log
(

p
p − 1

)

diverges by Lemma 2. Since this implies that a real number is greater than the infinity,
we reach a contradiction. Consequently, by reductio ad absurdum, we conclude that the
Andrica’s conjecture is true.
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4. Conclusion

Further exploration about large prime gaps may involve:

• Developing new techniques in analytic number theory, the branch of mathematics that
studies the distribution of prime numbers.

• Leveraging advanced computational methods to test the conjecture for even larger
prime ranges and potentially uncover patterns.

• Investigating connections between Andrica’s conjecture and other unsolved prob-
lems in prime number theory such as the Legendre’s conjecture and Oppermann’s
conjecture.

To sum up, this solution for the Andrica’s conjecture could be a significant advancement in
our understanding of prime number distribution.
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