
EasyChair Preprint

№ 21

An Optimal Value Iteration Algorithm for Parity

Games

Nathanaël Fijalkow

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

March 23, 2018

An Optimal Value Iteration Algorithm for Parity Games

Nathanaël Fijalkow

CNRS, LaBRI, Bordeaux, France
Alan Turing Institute, London, United Kingdom

University of Warwick, United Kingdom

Abstract

The quest for a polynomial time algorithm for solving parity games gained momentum in 2017
when two different quasipolynomial time algorithms were constructed. In this paper, we further
analyse the second algorithm due to Jurdziński and Lazić and called the succinct progress meas-
ure algorithm. It was presented as an improvement over a previous algorithm called the small
progress measure algorithm, using a better data structure.

The starting point of this paper is the observation that the underlying data structure for both
progress measure algorithms are (subgraph-)universal trees. We show that in fact any universal
tree gives rise to a value iteration algorithm à la succinct progress measure, and the complexity
of the algorithm is proportional to the size of the chosen universal tree. We then show that both
algorithms are instances of this generic algorithm for two constructions of universal trees, the
first of exponential size (for small progress measure) and the second of quasipolynomial size (for
succinct progress measure).

The technical result of this paper is to show that the latter construction is asymptotically
tight: universal trees have at least quasipolynomial size. This suggests that the succinct progress
measure algorithm of Jurdziński and Lazić is in this framework optimal, and that the polynomial
time algorithm for parity games is hiding someplace else.

1 Introduction

The notion of parity games is fundamental in the study of logic and automata. Most often funda-
mental notions have very simple definitions and they clearly capture a key aspect of the general
problem of interest. This cannot be said of parity games: the definition takes a bit of time to
digest and once understood it is not clear how central it may be. Indeed, it took years, if not
decades, to formulate the right notion to look at.

Parity games first appeared in the context of automata over infinite trees. The first and nat-
ural idea to define automata over infinite objects is to have so-called Muller conditions, where to
determine whether a run is accepted one considers which states appear infinitely often. One
can develop a rich theory relating automata and logic over infinite trees using Muller auto-
mata, but some properties are very hard to prove, as witnessed for instance by the technical
“tour de force” of Rabin for proving the decidability of monadic second-order logic [Rab69]. The
parity condition appeared in an effort to better understand this proof, and its importance be-
came manifest: working with parity automata rather than Muller automata gives an arguably
short and understandable proof of Rabin’s celebrated result. It was introduced independently
by Mostowski [Mos84, Mos91], who called them “Rabin chain condition”, and Emerson and
Jutla [EJ91].

The crucial property making the technical developments easier is the positional determinacy
of parity games, which is the key result used in many constructions for parity automata. In a
precise sense, one can show that the parity objectives form the largest class of Muller objectives
enjoying positional determinacy, a result due to Zielonka [Zie98], see also [DJW97].

1

The main algorithmic problem about parity games is to solve them, i.e. to construct an al-
gorithm taking as input a parity game and determining whether the first player Eve has a winning
strategy. A strong motivation for constructing efficient algorithms for this problem is the works
of Emerson and Jutla [EJ91], who showed that solving parity games is linear-time equivalent to
the model-checking problem for modal µ-calculus. This logical formalism is an establised tool in
program verification, and a common denominator to a wide range of modal, temporal and fixpoint
logics used in various fields.

The literature on algorithms for solving parity games is vast. Up until 2017, the best al-
gorithms were subexponential. Two breakthroughs came in 2017: first the succinct counting
algorithm of Calude et al [CJK+17], and then the succinct progress measure of Jurdziński and
Lazić [JL17], both solving parity games in quasipolynomial time, more precisely in nO(log(d)), for n
the number of vertices and d the number of priorities.

The aim of this paper is to further analyse the second algorithm and to relate it to the notion
of universal trees. Under this new light, we construct a mildly improved algorithm and prove its
optimality within this framework.

2 Definitions

The arena is the place where the game is played: the first component is a directed graph given
by a set V of vertices and a set E ⊆ V × V of edges. Additionally, an arena features two sets VE
and VA of vertices such that V = VE] VA: the set VE is the set of vertices controlled by Eve, and
the set VA is those controlled by Adam. We represent vertices in VE by circles, and vertices in
VA by squares, and also say that v ∈ VE belongs to Eve, and similarly for Adam. The relevant
algorithmic parameters are the number n of vertices and m of edges of the arena.

The interaction between the two players consists in moving a token on the vertices of the
arena. It is initially on the vertex v0, starting the game. When the token is in some vertex, the
player who controls the vertex chooses an outgoing edge and pushes the token along this edge to
the next vertex. To ensure not to get stuck we usually, although not always, assume that from
any vertex there is an outgoing edge. The outcome of this interaction is the infinite sequence of
vertices traversed by the token, called a play. Plays are usually written π, with πi the ith vertex of
π (indexed from 0), and π≤i the prefix up to length i. We let V ω denote the set of plays, i.e. infinite
sequences of vertices, and V ∗ the set of paths, i.e. finite sequences of vertices.

A strategy for a player is a full description of his or her moves in all situations. Formally, a
strategy is a function σ : V ∗ → E mapping any path to an edge. Traditionally, strategies for Eve
are written σ, and strategies for Adam are written τ . We say that a play π is consistent with a
strategy σ for Eve if for all i ∈ N such that πi ∈ VE, we have σ(πi) = (πi, πi+1). Once an initial vertex
v0, a strategy σ for Eve, and a strategy τ for Adam have been fixed, there exists a unique play
starting from v0 and consistent with both strategies, written πv0σ,τ .

So far we defined the rules for playing (the arena), the means to play (the strategy), it remains
to explain the goals to achieve (the objective).

We fix a set C of colours and equip the arena with a function c : V → C mapping vertices to
colours. An objective Ω is a subset Ω ⊆ Cω, which we interpret as the set of winning plays. Recall
that a play is an element of V ω, so thanks to the mapping c : V → C, it induces an element of
Cω. If the element of Cω induced by π is in Ω, we say that π satisfies Ω, or that π is winning. A
strategy σ for Eve is winning from v0 if for all strategies τ for Adam, the play πv0σ,τ is winning. We
sometimes say that the strategy σ ensures Ω, and that Eve wins from v0.

Definition 1 (Games). Let C be a set.

2

• An arena A is a tuple (V,E, VE , VA, c) where (V,E) is a directed graph with V = VE] VA and
c : V → C maps vertices to colours.

• An objective Ω is a subset Ω ⊆ Cω.

A game G is a pair (A,Ω) where A is an arena and Ω an objective. The generic algorithmic question
we address is the following decision problem, later refered to as “solving the game”:

INPUT: A game G and an initial vertex v0
QUESTION: Does Eve win from v0?

We let WE(G) denote the set of vertices from which Eve has a winning strategy in the game G.
When the arena is clear from the context and we consider different objectives over the same
arena, we write WE(Ω) for the set of vertices from which Eve has a strategy ensuring Ω.

We now define the parity objectives. Let d ∈ N be an even number defining the number of
priorities. The parity objective with parameter d use the set of colours {1, 2, . . . , d}, which are
referred to as priorities, and is defined by

Parity =

{
π ∈ V ω

∣∣∣∣ the largest priority appearing
infinitely often in π is even

}
.

We illustrate the definition on two examples.

1 2 4 7 5 7 5 3 6 3 6 3 6 3 6 · · · ∈ Parity
2 2 2 4 1 7 5 3 3 3 3 3 3 3 3 · · · /∈ Parity

In the first play the two priorities which appear infinitely often are 3 and 6, and the largest one is
6, which is even, and in the second play the only priority which appears infinitely often is 3 and
it is odd. Figure 1 presents an example of a parity game. The priority of a vertex is given by its
label.

Figure 1: An example of a parity game.

This paper continues a long line of work aiming at constructing efficient algorithms for solving
parity games. Before starting the technical developments, let us discuss two important properties
of parity games:

• They are determined, meaning that from any vertex, either Eve has a winning strategy or
Adam has a winning strategy, which symbolically reads

WE(Parity) ∪WA(Parity) = V ;

3

• The are positionally determined, meaning that if Eve has a winning strategy, then she has
a positional one, i.e. of the form σ : V → E. Such a strategy is called positional, sometimes
memoryless, because it picks the next move only considering the current position, forgetting
about the path played so far.

The determinacy of parity games follows from very general topological theorems as for instance
Martin’s theorem [Mar75]. The positional determinacy is due to Emerson and Jutla [EJ91].

Organisation of the paper. In Section 3 we define signatures and show how analysing Zielonka’s
algorithm yields the existence of signatures. This result is used in Section 4 for constructing and
proving the correctness of the generic value iteration algorithm. Here generic means that the al-
gorithm is parameterised by an underlying data structure called a universal tree. We explain how
both the small progress measure and the succinct progress measure algorithms are instances of
this framework. Section 5 shows asymptotically tight bounds on the size of universal trees.

This paper is self-contained, in particular does not rely on two properties mentioned above
(determinacy and positional determinacy). More accurately, we obtain them both in the next
section as by-products of our analysis of Zielonka’s algorithm.

3 Signatures and Zielonka’s algorithm

In this section we revisit the notion of signatures for parity games, which will be the key ingredient
for the correctness proof of the generic value iteration algorithm in the next section.

The notion of signature was proposed by Büchi [Büc83] and independently by Streett and
Emerson [SE84]. Emerson and Jutla [EJ91] used them to give a proof of positional determinacy
for parity games.

Signatures

We work with tuples in [0, n]d/2 which we index by odd priorities in [1, d]. For instance for d = 8,
an example of a tuple x is

x = (2︸︷︷︸
7

, 2︸︷︷︸
5

, 3︸︷︷︸
3

, 0︸︷︷︸
1

).

We order tuples lexicographically, with the largest priority being the most important, so we have
(2, 2, 3, 0) >lex (1, 5, 5, 5). For a priority p and x a tuple in [0, n]d/2, we write x≥p for the tuple restricted
to priorities larger than or equal to p. For the tuple x above, we have x≥5 = (2, 2) and x≥2 = (2, 2, 3).

We consider functions µ : V → [0, n]d/2 ∪ {>}. It induces a set of orders on vertices called the
p-orders: for p a priority and v, v′ two vertices, we write µ(v) ≥p µ(v′) if µ(v)≥p ≥lex µ(v′)≥p and add
> as the largest element for all p-orders.

Definition 2 (Signatures). Let G be a parity game with n vertices and d priorities. A function
µ : V → [0, n]d/2 ∪ {>} is called a signature if it satisfies the following two properties:

• If v ∈ VE has priority p, then there exists (v, v′) ∈ E such that µ(v) ≥p µ(v′), and the inequality
is strict if p is odd;

• If v ∈ VA has priority p, then for all (v, v′) ∈ E we have µ(v) ≥p µ(v′), and the inequality is strict
if p is odd.

The notion of signatures is best explained by the following lemma, which reads: a signature is
both a strategy for Eve and a proof that it is winning.

Lemma 1. For all parity games with n vertices and d priorities, if µ : V → [0, n]d/2∪{>} is a signature
and for v ∈ V we have µ(v) 6= >, then Eve wins from v.

4

Proof. We first observe that µ induces a (positional) strategy σ on vertices v ∈ VE such that µ(v) 6=
>. Indeed, for v ∈ VE of priority p, by definition there exists (v, v′) ∈ E such that µ(v) ≥p µ(v′),
define σ(v) = v′.

We claim that σ is winning on the set of vertices v ∈ V such that µ(v) 6= >. To this end, consider
a cycle

v1, v2, . . . , vk, v1

consistent with σ, and assume for the sake of contradiction that the largest priority in the cycle
is odd. Without loss of generality we assume v1 has the largest priority in the cycle, say p. We
then have by definition of a signature, and noting c(vi) the priority of vi:

µ(v1) >p µ(v2) ≥c(v2) µ(v3) ≥c(v3) · · · ≥c(vk) µ(v1).

Since p is the largest priority in the loop we have c(vi) ≥ p, so in particular these inequalities hold
for the coarser p-order ≥p:

µ(v1) >p µ(v2) ≥p µ(v3) ≥p · · · ≥p µ(v1).

i.e. µ(v1) >p µ(v1), a contradiction. We just proved that all cycles consistent with σ have a largest
even priority, which implies that σ is indeed winning for the parity objective.

Theorem 1 (Existence of signatures for parity games [EJ91]). For all parity games with n vertices
and d priorities, there exists a signature µ : V → [0, n]d/2 ∪ {>} such that for all v ∈ V , we have
µ(v) 6= > if and only if Eve wins from v.

The original proof is due to Emerson and Jutla [EJ91]. In the remainder of this section we re-
visit Zielonka’s algorithm with one objective in mind: obtaining an alternative proof of Theorem 1.

Zielonka’s algorithm

We revisit the first algorithm constructed to solve parity games due to Zielonka [Zie98], adapting
ideas from [McN93].

The reader familiar with parity games may jump to the next section; this section does not
contain any new results. We hope that the mildly unusual presentation of Zielonka’s algorithm
can give the non-expert reader some insights into parity games, and help reading the rest of the
paper.

We introduce some notations. For a set of vertices U ⊆ V , we let Pre(U) ⊆ V be the set of
vertices from which Eve can ensure to reach U in one step:

Pre(U) = {u ∈ VE | ∃(u, v) ∈ E, v ∈ U}
∪ {u ∈ VA | ∀(u, v) ∈ E, v ∈ U} .

We use Pre(U) for the complement of Pre(U). For a colour c, the objective Reach(c) is satisfied by
plays visiting some vertex of colour c at least once, and Safe(c) by plays never visiting any vertex
of colour c.

Let us consider a parity game G with d priorities. We construct two recursive procedures,
which take as input a (small variant of a) parity game with priorities in [1, p] and two additional
colours: {WIN, LOSE}, and output the winning set for Eve. The vertices with colours WIN or LOSE

are terminal: when reaching a terminal vertex, the game stops and one of the players is declared
the winner. Formally, the objective is

(Parity ∪ Reach(WIN)) ∩ Safe(LOSE).

We write Vp for the set of vertices of priority p.

5

If the largest priority is even

Lemma 2. Consider a parity game G with priorities in [1, p] with p even.
Then WE((Parity ∪ Reach(WIN)) ∩ Safe(LOSE)) is the greatest fixed point of the operator

Y 7→WE

 Parity ∪ Reach [WIN ∪ (Vp ∩ Pre(Y))]
∩

Safe
[
LOSE ∪ (Vp ∩ Pre(Y))

]
 .

In words (for the sake of explanation, we assume that WIN = LOSE = ∅): WE(Parity) is the largest
set of vertices Y such that Eve has a strategy ensuring that

• either the priority p is never seen, in which case the parity objective is satisfied with lower
priorities,

• or the priority p is seen, in which case Eve can ensure to reach Y in one step.

Proof. We let W denote
WE((Parity ∪ Reach(WIN)) ∩ Safe(LOSE)).

The fact that W is included in the greatest fixed point follows from the fact that it is itself a
fixed point, which is easy to check.

To prove that W contains the greatest fixed point, we observe that any fixed point Y is con-
tained in W . Indeed, if Y is a fixed point, the strategy described above ensures parity: either it
visits finitely many times p, and then from some point onwards the parity objective is satisfied
with lower priorities, or it visits infinitely many times p, and then the parity objective is satisfied
because p is maximal and even. Note that this strategy is positional, as disjoint union of two
positional strategies, one for vertices of priorities less than p and the other for Vp ∩ Pre(W).

ALGORITHM 1: The recursive algorithm when the largest priority is even.
Data: A parity game with priorities in [1, p] with p even and WIN, LOSE two additional colours
Y−1 ← V ;
k ← 0 ;
repeat

WINk ← Vp ∩ Pre(Yk−1) ;
LOSEk ← Vp ∩ Pre(Yk−1) ;

Yk = WE

 Parity ∪ Reach(WIN ∪WINk)
∩

Safe(LOSE ∪ LOSEk)

 ;

k ← k + 1 ;
until Yk = Yk−1;
return Yk

Algorithm 1 fleshes out the fixed point computation described in Lemma 2, which shows that
it outputs

Yk = WE((Parity ∪ Reach(WIN)) ∩ Safe(LOSE)),

with WINk = Yk ∩ Vp and LOSEk = (V \ Yk) ∩ Vp.
For each k the computation of Yk is a recursive call: in the new game, vertices with priorities p

are marked terminal, and declared winning if in Pre(Yk−1) (i.e. color WIN), losing otherwise (color
LOSE). So in this game the priorities are in [1, p− 1].

6

Figure 2: The two recursive procedures: even on the left and odd on the right.

If the largest priority is odd

Remark 1. At this point it is very tempting to say that the odd case is symmetric to the even
case, swapping the role of the two players. We do not take this road, because it requires assuming
determinacy of parity games which we want to avoid in this presentation, and obtain as a corollary.
It is also convenient to have the odd case spelled out for the construction of signatures.

Lemma 3. Consider a parity game G with priorities in [1, p] with p > 1 odd.
Then WE((Parity ∪ Reach(WIN)) ∩ Safe(LOSE)) is the least fixed point of the operator

X 7→WE

 Parity ∪ Reach [WIN ∪ (Vp ∩ Pre(X))]
∩

Safe
[
LOSE ∪ (Vp ∩ Pre(X))

]
 .

Proof. We let W denote
WE((Parity ∪ Reach(WIN)) ∩ Safe(LOSE)).

The fact that W contains the least fixed point follows from the fact that it is itself a fixed point,
which is easy to check.

To prove that W is included in the least fixed point is the interesting and non-trivial bit. It
follows from the observation that any fixed point X contains W . We show that

V \X ⊆WA((Parity ∪ Reach(WIN)) ∩ Safe(LOSE)) ⊆ V \W.

Note that here we are not relying on the determinacy of parity games: the second inclusion is
very simple and always true, it only says that Eve and Adam cannot win from the same vertex.

Indeed, if X is a fixed point, from V \X Adam has a strategy ensuring that

• either the priority p is never seen, in which case the parity objective is violated with lower
priorities,

• or the priority p is seen, in which case Adam can ensure to reach V \X in one step.

This strategy violates parity: either it visits finitely many times p, and then from some point
onwards the parity objective is violated with lower priorities, or it visits infinitely many times p,
and then the parity objective is violated because p is maximal and odd.

The base case p = 1 is easily dealt with by computing WE(Reach(WIN)∩Safe(LOSE)). Zielonka’s
algorithm alternates greatest and least fixed point computations, in total d − 1 of them. Each of
them computes subsets of the vertices, hence stabilises within at most n steps. A careful analysis
gives a time complexity bound of O(m · (n/d)d) [Jur00].

7

ALGORITHM 2: The recursive algorithm when the largest priority is odd.
Data: A parity game with priorities in [1, p] with p > 1 odd and WIN, LOSE two additional

colours
X−1 ← ∅ ;
k ← 0 ;
repeat

WINk ← Vp ∩ Pre(Xk−1) ;
LOSEk ← Vp ∩ Pre(Xk−1) ;

Xk = WE

 Parity ∪ Reach(WIN ∪WINk)
∩

Safe(LOSE ∪ LOSEk)

 ;

k ← k + 1 ;
until Xk = Xk−1;
return Xk

The construction of signatures

We now analyse the structural decomposition unearthed by Zielonka’s algorithm. We fix a parity
game G. For an odd priority p, consider the the non-decreasing sequence of sets of vertices

X0(p) ⊆ X1(p) ⊆ X2(p) ⊆ · · ·

computed by running the algorithm with inputs G and

WIN = WE(Parity) ∩ V≥p ; LOSE = WA(Parity) ∩ V≥p.

We define a function µ : V → [0, n]d/2 ∪ {>} as follows: for p an odd priority, µ(p)(v) is the smallest
k such that v is in Xk(p), and > if it does not belong to any of these sets.

Lemma 4. The function µ defined above is a signature such that for all v ∈ V , we have µ(v) 6= > if
and only if Eve wins from v.

Proof. We let σ be the positional strategy constructed in the proof of Lemma 3. Let v ∈ V of priority
p, we make two observations.

• If v ∈ Xk(p′) with p′ > p, the strategy σ ensures to remain in Xk(p′) in the next step.

• If p is odd and v ∈ Xk(p), the strategy σ ensures to reach Xk−1(p) in the next step.

These two properties imply that µ is a signature. The equivalence between µ(v) 6= > and the fact
that Eve wins from v is a corollary of the correctness of the algorithm given by Lemma 2 and
Lemma 3.

4 A generic value iteration algorithm

In this section, we define the notion of universal trees, and show how given a universal tree one
can construct a value iteration algorithm for parity games. Both the small progress measure and
the succinct progress measure algorithms are instances of this generic value iteration algorithm.

4.1 Universal trees

Let us fix two parameters n and h. The trees we consider have the following properties:

• There are totally ordered, meaning that each node has a totally ordered set of children;

• They have a designated root and all leaves have depth exactly h.

8

We say that a tree embeds into another if the first one can be obtained by removing nodes
from the second, mapping root to root: in graph-theoretic terms, the first tree is a subgraph of
the second. We say that a tree T is (n, h)-universal if all trees with at most n leaves embed into
T . (Equivalently, it is enough to require that all trees with exactly n leaves embed into T .) An
example of a (n, h)-universal tree is the complete tree of height h with each node of degree n, it
has nh leaves, as illustrated in Figure 3.

Figure 3: On the left, the naive (5, 2)-universal tree with 25 leaves. On the right, a tree with 5
leaves and height 2, and one possible embedding into the naive universal tree.

The size of a tree is the number of leaves it has. We show in Figure 4 the smallest (5, 2)-
universal tree. It has 11 leaves, which is less than the naive one (25 leaves).

Figure 4: The smallest (5, 2)-universal tree has 11 leaves.

4.2 Signatures as trees

The small progress measure algorithm casts the problem of constructing a signature as a least
fixed point computation. It assigns to each vertex a tuple in [0, n]d/2 and updates the values of
the vertices in order to satisfy the local constraints of signatures. In other words the algorithm
manipulates functions µ : V → [0, n]d/2, which can equivalently seen as trees as illustrated in
Figure 5. Each vertex is given by its path from the root, which has length d/2, and each direction
is labeled by a number in [0, n].

Figure 5: A function µ : V → [0, n]d/2 induces a tree. Here n = 7 and d = 4.

9

The tree representation naturally induces the p-orders ≥p. Indeed, indexing the levels from
bottom to top by odd priorities as in Figure 5, whether µ(v) ≥p µ(v′) can be read off the tree: it
is equivalent to saying that the ancestor of v at level p is to the left of the ancestor of v′ at level p
(if p is even, the corresponding level is p+ 1). For instance in Figure 5 we have µ(v3) >1 µ(v7) but
µ(v3) =3 µ(v7), and µ(v2) >2 µ(v1).

Now, recall that the end goal of the algorithm is to construct a signature. A closer inspection
at the definition of signatures reveals that the choice of values for the direction is immaterial:
the definition only uses the orders ≥p. In other words, being a signature is a property of the
underlying (totally ordered) tree, and [0, n] is just a total order among others.

4.3 Existence of signatures for universal trees

Theorem 1 considers functions µ : V → [0, n]d/2 ∪ {>}, which as we explained can be seen as
trees. In the following theorem we fix a universal tree T and we consider functions of the form
µ : V → L(T) ∪ {>}, where L(T) is the set of leaves of T .

Such a function induces a set of orders on vertices called the p-orders: for p ∈ [1, d] and v, v′

two vertices, we have µ(v) ≥p µ(v′) if the ancestor at level p of v is to the left of the ancestor at the
same level of v′ (where levels are indexed as in Figure 5). The element > is the largest element for
all p-orders ≥p.

We extend the definition of signatures to functions µ : V → L(T) ∪ {>}, using the exact same
two properties which only depend upon the p-orders ≥p. Lemma 1 extends mutatis mutandis:
indeed, the proof does not depend upon the choice of the underlying universal tree but only on
the p-orders.

Theorem 2. For all parity games with n vertices and d priorities, for all (n, d/2)-universal tree T ,
there exists a signature µ : V → L(T) ∪ {>} such that for all v ∈ V , we have µ(v) 6= > if and only if
Eve wins from v.

Proof. Let T be a (n, d/2)-universal tree T and G be a parity game with n vertices and d priorities.
Thanks to Theorem 1 there exists a signature µ : V → [0, n]d/2 ∪ {>} such that for all v ∈ V , we
have µ(v) 6= > if and only if Eve wins from v. As explained in Figure 5 this induces a tree t with at
most n leaves. The crucial property is that µ and t induce the same p-orders ≥p for all p ∈ [1, d].
Since T is (n, d/2)-universal, the tree t embeds into T . Now, this induces a signature

µ : V → L(T) ∪ {>} ,

since the definition of signatures only depends on the p-orders ≥p.

4.4 The generic value iteration algorithm

We construct a value iteration algorithm parameterised by the choice of a universal tree. We fix
n the number of vertices and d the number of priorities, and a (n, d/2)-universal tree T . We let
`min denote the smallest leaf with respect to ≥, i.e. the rightmost leaf of T . For v ∈ V of priority p,
define Liftv(µ) ∈ L(T) to be:

• If v ∈ VE, the smallest leaf ` with respect to ≥p such that there exists (v, v′) ∈ E and ` ≥p µ(v′),
with a strict inequality if p is odd;

• If v ∈ VA, the smallest leaf ` with respect to ≥p such that for all (v, v′) ∈ E, we have ` ≥p µ(v′),
with a strict inequality if p is odd.

The definition of µ being a signature naturally reformulates in: for all v ∈ V , we have µ(v) =
Liftv(µ).

We illustrate the notion of lifting in Figure 6. The universal tree is the smallest (5, 2)-universal
tree of Figure 3. The vertex v5 is lifted; the new value is the smallest leave satisfying both
µ(v5) >3 µ(v1) and µ(v5) >3 µ(v7).

10

Figure 6: The vertex v5 is lifted.

ALGORITHM 3: The generic value iteration algorithm.
Data: A parity game with n vertices and d priorities.
for v ∈ V do

µ(v)← `min ;
end
repeat

Choose v ∈ V such that µ(v) 6= Liftv(µ) ;
µ(v)← Liftv(µ) ;

until ∃v ∈ V, µ(v) 6= Liftv(µ);
return µ

The algorithm is given in Algorithm 3, and its correctness follows from a lemma we present
now, an exact replica of Theorem 5 in [JL17]. The operator Liftv is extended to functions V →
L(T) ∪ {>}, updating the value of v and leaving the other values unchanged.

Lemma 5. The set of all functions V → L(T) ∪ {>} is equipped with the pointwise order induced
from L(T)∪{>}, defining a finite complete lattice. For all v ∈ V , the operator Liftv is inflationary and
monotone.

As explained in [JL17], it follows from the lemma that from every µ : V → L(T) ∪ {>}, every
sequence of applications of the operators Lift eventually reaches the least simultaneous fixed
point of all the operators Lift that is greater than or equal to µ. Hence we obtain the correctness
of the generic value iteration algorithm.

Theorem 3. For all n, d ∈ N with d even, for all (n, d/2)-universal tree T , for all parity games with n
vertices, m edges, and d priorities, the value iteration algorithm over the tree T outputs a signature
µ such that for all v ∈ V , we have µ(v) 6= > if and only if Eve wins from v.

Furthermore, the algorithm runs in time O(m log(n) log(d) · |T |), where |T | is the number of leaves
of T .

Complexity analysis

The value iteration algorithm given above lifts a vertex v at most |T | many times, hence the total
number of lifts is at most n|T |. This bound cannot be much improved: for instance a vertex of
priority 1 with a self-loop is evidently losing but the algorithm will lift the vertex |T | times to get
this information. Computing a lift for v ∈ V can be performed in time O(deg(v) log(n) log(d)). It
follows that the complexity of the algorithm is proportional to the size of the underlying universal
tree.

11

Two instances of the generic algorithm

The small progress measure is an instance of the generic value iteration algorithm, using the
naive universal tree of size nh hence giving a running time in nd/2+O(1).

The succinct progress measure is an instance of the generic value iteration algorithm using
a universal tree they construct in [JL17]. Indeed Lemma 1 in their paper exactly says that
the (implicit) tree they construct is universal, by (inductively) constructing embeddings. Their
universal tree has quasipolynomial size (we elaborate on its construction in the next section),
hence the running time of the succinct progress measure algorithm is nO(log(d)).

We note that they additionally show that for their universal tree lifts can be performed in
nearly linear space, implying that the overall space complexity is nearly linear. This result is
specific to the universal tree they construct and does not hold in general.

5 Bounds on universal trees

We saw in the previous section that constructing universal trees gives value iteration algorithms
for parity games, and that the smaller the universal tree the better the time complexity. We prove
in this section upper and lower bounds on the size of universal trees.

5.1 The (streamlined) succinct universal tree of Jurdziński and Lazić

We present an inductive construction for succinct universal trees. It is essentially the same as
the construction of Jurdziński and Lazić in [JL17], but the framework of universal trees allows
us to avoid some rounding in the original construction, hence a marginal improvement.

Theorem 4. There exists a (n, h)-universal tree with f(n, h) leaves, where f satisfies the following:

f(n, h) = f(n, h− 1) + f(bn/2c, h) + f(n− 1− bn/2c, h),
f(n, 1) = n,
f(1, h) = 1.

An upper bound is given by

f(n, h) ≤ 2dlog(n)e
(
dlog(n)e+ h− 1

dlog(n)e

)
.

Proof. To construct the (n, h)-universal tree T , let:

• Tleft be a (bn/2c, h)-universal tree;

• Tmiddle be a (n, h− 1)-universal tree;

• Tright be a (n− 1− bn/2c, h)-universal tree.

We construct T as in Figure 7. More precisely, the children of the root is T are, in order: the
children of Tleft, then the root of Tmiddle, and then the children of Tright.

We argue that T is (n, h)-universal. Consider a tree t with n leaves. The question is where to
cut in the middle, i.e. which child of the root of t gets mapped to the root of Tmiddle. Let v1, . . . , vm
be the children of the root of t, and let n(vi) be the number of leaves below vi. Since t has n leaves,
we have n(v1) + · · ·+ n(vm) = n. There exists a unique k such that

n(v1) + · · ·+ n(vk−1) ≤ bn/2c, and
n(v1) + · · ·+ n(vk) > bn/2c.

For this choice of k we have

n(vk+1) + · · ·+ n(vm) ≤ n− 1− bn/2c.

To embed t into T , we proceed as follows:

12

Figure 7: The inductive construction.

• the tree rooted in vp has height h− 1 and at most n leaves, so in embeds into Tmiddle;

• the tree obtaining by restricting t to all nodes to the left of vk has bn/2c, so it embeds into
Tleft by induction hypothesis;

• the tree obtaining by restricting t to all nodes to the right of vk has n−1−bn/2c, so it embeds
into Tright by induction hypothesis.

Analysis of the function f

Define F (p, h) = f(2p, h) for p ≥ 0 and h ≥ 1. Then we have

F (p, h) ≤ F (p, h− 1) + 2F (p− 1, h),
F (p, 1) = 2p,
F (0, h) = 1.

To obtain an upper bound on F we define F by

F (p, h) = F (p, h− 1) + 2F (p− 1, h),
F (p, 1) = 2p,
F (0, h) = 1,

so that F (p, h) ≤ F (p, h). Define the bivariate generating function

F(x, y) =
∑

p≥0,h≥1

F (p, h)xpyh.

Plugging the inductive equalities we obtain

F(x, y) =
y

1− 2x− y
,

from which we extract that F (p, h) = 2p
(
p+h−1
p

)
, implying F (p, h) ≤ 2p

(
p+h−1
p

)
. Putting everything

together we obtain

f(n, h) ≤ 2dlog(n)e
(
dlog(n)e+ h− 1

dlog(n)e

)
.

Note that this is very close and marginally better than the bound obtained in [JL17], which is
2dlog(n)e

(dlog(n)e+h+1
dlog(n)e

)
.

Corollary 1. There exists an algorithm solving parity games in time

O

(
mn log(n) log(d) ·

(
dlog(n)e+ d/2− 1

dlog(n)e

))
.

13

5.2 Lower bounds on universal trees

Theorem 5. Any (n, h)-universal tree has at least g(n, h) leaves, where g satisfies the following:

g(n, h) =
∑n
δ=1 g(bn/δc, h− 1),

g(n, 1) = n,
g(1, h) = 1.

A lower bound is given by

g(n, h) ≥
(
blog(n)c+ h− 1

blog(n)c

)
.

This lower bound shares some similarities with a result from Goldberg and Lifschitz [GL68],
which is for universal trees of a different kind: the height is not bounded and the children of a
node are not ordered.

Proof. We proceed by induction. The bounds are clear for h = 1 or n = 1.
Let T be a (n, h)-universal tree, and δ ∈ [1, n]. We claim that the number of nodes at depth h− 1

of degree greater to or larger than δ is at least g(bn/δc, h− 1).

Let Tδ be the subtree of T obtained by removing all leaves and all nodes at depth h−1 of degree
less than δ: the leaves of the tree Tδ have height exactly h− 1.

We argue that Tδ is (bn/δc, h− 1)-universal. Indeed, let t be a tree with bn/δc leaves all at depth
h − 1. To each leaf of t we append δ children, yielding the tree t+ which has bn/δc · δ ≤ n leaves
all at depth h. Since T is (n, h)-universal, the tree t+ embeds into T . Observe that the embedding
induces an embedding of t into Tδ, since the leaves of t have degree δ in t+, hence are also in Tδ.

So far we proved that the number of nodes at depth h − 1 of degree greater to or larger than
δ is at least g(bn/δc, h − 1). Now, note that the sum over δ ∈ [1, n] of the number of nodes at
depth h− 1 of degree greater to or larger than δ is a lower bound on the number of leaves, which
concludes.

Analysis of the function g

Define G(p, h) = g(2p, h) for p ≥ 0 and h ≥ 1. Then we have

G(p, h) ≥
∑p
k=0G(p− k, h− 1),

G(p, 1) ≥ 1,
G(0, h) = 1.

To obtain a lower bound on G we proceed similarly as for F . We define G by

G(p, h) = G(p, h− 1) +G(p− 1, h),
G(p, 1) = 1,
G(0, h) = 1,

so that G(p, h) ≥ G(p, h). Define the bivariate generating function

G(x, y) =
∑

p≥0,h≥1

G(p, h)xpyh.

Plugging the inductive equalities we obtain

G(x, y) =
y

1− x− y
,

from which we extract that G(p, h) =
(
p+h−1
p

)
, implying that G(p, h) ≥

(
p+h−1
p

)
. Putting everything

together we obtain

g(n, h) ≥
(
blog(n)c+ h− 1

blog(n)c

)
.

14

The term
(blog(n)c+h−1
blog(n)c

)
was analysed in depth in [JL17] for various regimes relating h and n.

It is quasipolynomial, inducing a quasipolynomial lower bound on the time complexity of any
instance of the generic value iteration algorithm for parity games.

The upper and lower bounds do not match perfectly. However,

f(n, h)

g(n, h)
≤ 2dlog(n)e

blog(n)c+ h

blog(n)c
= O(nh),

i.e. they are polynomially related, so it is fair to say that they almost match.

6 Perspectives

We showed that the two versions of the value iteration algorithm, namely small progress measures
and succinct progress measures, can be seen as instances of a generic value iteration algorithm
based on different universal trees.

By proving almost tight bounds on the size of universal trees essentially matching the succinct
universal tree of Jurdziński and Lazić, we show that their result is optimal in this framework.
The bounds are not tight; it would be satisfying to sharpen the lower bound. We conjecture that
the succinct universal tree we construct in this paper is actually optimal, meaning that there
exist no smaller universal tree.

How to proceed with the quest for a polynomial time algorithm for solving parity games? The
other quasipolynomial time algorithm due to Calude et al [CJK+17] does not fit the framework we
introduce here, hence is not subjected to the quasipolynomial lower bound proved in this paper.

Bojańczyk and Czerwiński [BC17] offer an interesting perspective on the algorithm of Calude
et al, showing that it provides a solution to the following separation problem.

We consider infinite words over the alphabet V . A cycle is a word v · · · v. It is even if the largest
priority is even, and odd otherwise. We define two languages:

AllEvenCycles = {π ∈ V ω | all cycles in π are even} ,
AllOddCycles = {π ∈ V ω | all cycles in π are odd} .

We look at deterministic safe automata: all states are accepting, a word is rejected only if there
exists no run for it. Such automata recognise exactly the set of topologically closed languages
over infinite words.

The separation problem reads: construct a deterministic safe automaton recognising a lan-
guage L ⊆ V ω such that

• AllEvenCycles ⊆ L;

• L ∩ AllOddCycles = ∅,

as illustrated in Figure 8.

Lemma 6. If L is a solution to the separation problem, then the winning regions of Parity and L
coincide.

Consequently, solving the parity game is equivalent to solving a safety game with n · |L| vertices
and m · |L| edges, where |L| is the number of states of a deterministic automaton recognising L.
Since solving a safety game can be done in linear time, more precisely in O(m), this gives an
algorithm for solving parity games whose running time is O(m · |L|).

Proof. This relies on the positional determinacy of parity games. A positional strategy for Eve
ensuring Parity also ensures AllEvenCycles, hence L. Conversely, a positional strategy for Adam
ensuring the complement of Parity also ensures AllOddCycles, hence the complement of L.

15

Figure 8: The separation problem.

Bojańczyk and Czerwiński [BC17] cast the data structure constructed in the algorithm of
Calude et al [CJK+17] as a solution of the separation problem.

Theorem 6 ([BC17]). There exists a deterministic safe automaton solving the separation problem
with nO(log(d)) states.

The next question is then: can we construct smaller solutions to the separation problem, or
can we prove lower bounds?

Acknowledgments

The notion of universal trees was hinted at me by Marcin Jurdziński and Ranko Lazić. They
largely contributed to the making of this paper, and I thank them for their support. I am very
grateful to Albert Atserias for pointing out to me the literature on universal graphs, Amos Korman
for digging into the connection with distance labelings on trees, Paweł Gawrychowski for discus-
sions on lower bounds for universal trees, and Élie de Panafieu for his expertise on combinatorial
analysis.

References

[BC17] Mikołaj Bojańczyk and Wojciech Czerwiński. An automata toolbox. Technical report,
University of Warsaw, 2017.

[Büc83] J. Richard Büchi. State-strategies for games in Fσδ Gδσ. Journal of Symbolic Logic,
48(4):1171–1198, 1983.

[CJK+17] Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan.
Deciding parity games in quasipolynomial time. In STOC, 2017.

[DJW97] Stefan Dziembowski, Marcin Jurdziński, and Igor Walukiewicz. How much memory is
needed to win infinite games? In LICS, 1997.

[EJ91] E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calculus and determinacy
(extended abstract). In FOCS, 1991.

[GL68] M. Goldberg and E. Lifshitz. On minimal universal trees. Matematicheskie Zametki,
4(3):371–380, 1968. (In Russian).

[JL17] Marcin Jurdziński and Ranko Lazić. Succinct progress measures for solving parity
games. In LICS, 2017.

[Jur00] Marcin Jurdziński. Small progress measures for solving parity games. In STACS, 2000.

16

[Mar75] Donald A. Martin. Borel determinacy. Annals of Mathematics, 102(2):363–371, 1975.

[McN93] Robert McNaughton. Infinite games played on finite graphs. Annals of Pure and Applied
Logic, 65(2):149–184, 1993.

[Mos84] Andrzej W. Mostowski. Regular expressions for infinite trees and a standard form of
automata. In Computation Theory, 1984.

[Mos91] Andrzej W. Mostowski. Games with forbidden positions. Technical report, University
of Gdańsk, 1991.

[Rab69] Michael O. Rabin. Decidability of second-order theories and automata on infinite trees.
Transactions of the AMS, 141:1–23, 1969.

[SE84] Robert S. Streett and E. Allen Emerson. The propositional mu-calculus is elementary.
In ICALP, 1984.

[Zie98] Wiesław Zielonka. Infinite games on finitely coloured graphs with applications to auto-
mata on infinite trees. Theoretical Computer Science, 200(1-2):135–183, 1998.

17

