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Abstract. Segmentation plays a crucial role in computer-aided diagno-
sis (CAD) for the early detection and diagnosis of diseases. This involves
identifying and locating the regions of interest (ROI). Despite recent suc-
cesses in computer vision technology, challenges persist due to the limited
accessibility of medical data, resulting in models that may not generalize
well to unseen data. This paper proposes an approach utilizing auto-
matic data augmentation techniques for enhancing U-Net performance
in breast tumor segmentation. We employ data augmentation in both the
training and prediction phases. During training, augmentation increases
the diversity and quantity of training data. In the prediction phase, Test
Time Augmentation (TTA) is used to aggregate segmentation outputs
from several versions of the original input, generated by the augmenta-
tion policy. Experimental results on the BrEaST dataset of 256 ultra-
sound breast tumor images and corresponding masks demonstrate the
effectiveness of our proposed method. It improves U-Net’s Dice Similar-
ity Coefficient (DSC) from 0.7078 to 0.7541, concurrently mitigating the
risk of overfitting and ensuring robust generalizability to unseen data.
This research contributes to improving segmentation outcomes on lim-
ited datasets and promises to enhance the robustness of CAD systems
in medical image analysis.
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1 Introduction

Medical imaging plays an important role in the diagnosis and treatment of vari-
ous diseases, including cancer. Among different imaging technologies, ultrasound
imaging offers several advantages such as real-time imaging capabilities, non-
invasiveness, and cost-effectiveness [1]. It is particularly valuable for detecting
and characterizing tumors, providing insights for treatment planning and moni-
toring. One of the critical tasks in ultrasound image analysis is tumor segmenta-
tion, which involves identifying and locating the tumor region and its boundary.

In recent years, deep learning segmentation has shown promising perfor-
mance, and it has the potential for real-time and nearly real-time processing.
The well-known neural network architecture in medical image segmentation is
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U-Net [2], which was initially designed to address limited training data issues
in medical image analysis and has achieved significant performance. Since U-
Net’s development, there have been several attempts to improve its performance
by modifying and extending this architecture. Attention U-Net [3] employs at-
tention gates that learn to focus on relevant regions while ignoring irrelevant
ones. UNet++ [4] is based on nested and dense skip connections that gradually
increase the semantic level of encoder feature maps to be closer to the corre-
sponding decoder feature maps. Dense-UNet [5] utilizes dense blocks to deepen
the network for extracting more semantic features, hence improving segmenta-
tion accuracy.

Besides the above efforts, research on data augmentation techniques for medi-
cal image analysis remains limited, specifically for breast ultrasound image analy-
sis. Even though basic methods such as image manipulation, erasure, and mixing
have been explored to some extent [6, 7], there is a distinct lack of exploration
into more advanced techniques. This gap in research not only hinders progress
in improving the accuracy and robustness of medical image analysis models but
also highlights the potential for innovative approaches to address the unique
challenges posed by medical imaging data.

In this paper, we aim to fill the identified gap in research by focusing on
Automatic Data Augmentation (Auto Augment) methods, particularly explor-
ing Faster AutoAugment [8], within the context of breast tumor segmentation
tasks. By leveraging the capabilities of Auto Augment techniques, which au-
tomatically adjust data augmentation parameters to generate synthetic images
closely resembling real ones, we endeavor to enhance the efficacy of the U-Net
model on breast ultrasound tumor segmentation. To summarize, our contribu-
tions can be outlined as follows:

1. We introduce the application of Auto Augment techniques for med-
ical datasets.

2. We utilize the policy searched by Faster AutoAugment in Test Time
Augmentation.

3. We demonstrate that our proposed method enhances the perfor-
mance of the U-Net model.

2 Related works

2.1 Data Augmentation

Data augmentation is a crucial technique for enhancing model accuracy by artifi-
cially creating more data samples from existing datasets. This not only improves
model performance but also reduces the costs associated with collecting addi-
tional data. There are two main categories of data augmentation methods [9]:
basic methods and advanced methods, as illustrated in Fig. 1. The most common
methods are basic augmentations, such as image manipulation (flipping, rotat-
ing, scaling,...), erasure and mixing. These methods offer simplicity and ease of
implementation and have proven effective in medical image analysis tasks [6,
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Fig. 1. A taxonomy of image data augmentation methods [9].

7]. However, due to their simplicity, they may not capture the complex struc-
tures present in real-world data and could potentially introduce unrealistic data
samples.

2.2 Automatic Data Augmentation

One type of advanced method is Automatic Data Augmentation (Auto Aug-
ment) [8, 10–12]. It seeks to automatically design a data augmentation strategy
or policy. Auto Augment defines a search space that includes all possible trans-
formations and employs a search algorithm to select the most effective transfor-
mations from this space. While Auto Augment offers the ability to find unique
augmentation policies customized for datasets with distinct characteristics, it
requires additional training time and computational resources [13].

2.3 Test Time Augmentation

Test Time Augmentation (TTA) is an effective and robust technique for en-
hancing model performance across various computer vision applications. By
predicting on and aggregating the results from multiple versions of the origi-
nal input generated through augmented transformations, TTA significantly im-
proves model performance. Several approaches exist for aggregating predictions,
ranging from simple averaging to learning-based methods [14, 15]. Research has
shown that TTA tends to reduce the expected error compared to the original
model’s average error [15]. However, it’s important to note that TTA increases
the computational cost and processing time during inference [16].

3 Method

In this section, we introduce a comprehensive method (Fig. 2) that incorporates
augmentation policy with the U-Net architecture, and the application of Test
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Fig. 2. Prediction process using policy U-Net and Test Time Augmentation.

Time Augmentation to achieve accurate results. Section 3.1 presents the method
for selecting the policy. In section 3.2, we introduce the U-Net architecture used
and its components. Finally, in the next section 3.3, we explain how to perform
Test Time Augmentation effectively for result prediction.

3.1 Policy Search

Affine Transformation Color Enhancing Other

Shear x Solarize Cutout
Shear y Posterize Sample pairing

Translate x Contrast
Translate y Color

Rotate Brightness
Flip Sharpness

Auto contrast
Equalize

Table 1. The operations use in the policy.
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Policy
The policy [8, 10–12] consists of distinct sub-policies, each containing consecu-

tive operations selected from a set of 16 operations (as shown in table 1). When
an image is passed to the policy, a sub-policy is chosen randomly to produce a
new image by executing consecutive augmentation operations. Each operation
is characterized by two parameters, p and µ, which indicate the probability of
applying the operation and the magnitude of the operation, respectively (illus-
trated in Fig. 3).

Fig. 3. The process of augmenting an image. [8]

The output of an operation is defined as:

X ′ = bO(X;µ) + (1− b)X (1)

where b ∈ {0, 1} is sampled formed Relaxed Bernoulli distribution with a low
temperature of λ and b = 1 with a probability of p [8].

Back-propagation-based policy searching
The objective of the search process is to find the optimal policy that is capable
of generating synthetic images that closely resemble real images. Wasserstein
Generative Adversarial Network [17] (WGAN) with gradient penalty [18] is em-
ployed to achieve this goal. In contrast to traditional Generative Adversarial
Networks [19] (GANs), where the generator typically takes the form of a Convo-
lutional Neural Network [20] (CNN), in this scenario, the policy itself functions
as the generator.
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To enable back-propagation for policy search, it’s crucial that each policy
parameter, p and µ, be differentiable. To achieve this, a Relaxed Bernoulli dis-
tribution is used instead of a Bernoulli distribution. This modification ensures
that the operation O(.;µ, p) remains differentiable with respect to its probability
parameter p [8].

In the case of the magnitude parameter µ, some operations have discretized
magnitude, which hinders back-propagation. To address this problem, each ele-
ment (i, j)th of an augmented image by operation O is approximated as:

Õ(X;µ)i,j = StopGrad (O(X;µ)i,j − µ) + µ (2)

where StopGrad is a stop gradient operation that treats its operand as a con-
stant. Additionally, only the backward pass uses the approximated operator, the
forward pass uses the exact operator [8].

During searching, each operation is approximated by the weighted sum of
the outputs of all operations as:

16∑
n=1

[ση(wk)]nO
(n)
k (X;µ

(n)
k , p

(n)
k ) (3)

where σ is the Softmax function with a positive temperature parameter and
wk is a learnable parameter. This approach enables efficient training through
backpropagation-based optimization, facilitating faster policy search [8].

3.2 U-Net Architecture

Fig. 4. U-net [2]
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U-Net [2] in Fig. 4 was originally designed for biomedical image segmentation
and has proven highly effective, especially for datasets with limited samples. It is
a fully convolutional neural network comprised of two main components: the en-
coder and the decoder. The encoder is responsible for extracting relevant features
from the input image, while the decoder utilizes these features to reconstruct a
segmentation map with the same dimensions as the original image.

The encoder network consists of four repeated double-convolutional layers
followed by a 2x2 max pooling layer for downsampling. The decoder mirrors the
encoder’s architecture, utilizing four repeated double-convolutional layers follow-
ing each 2x2 transposed convolutional layer for upsampling. Each convolutional
layer is followed by a rectified linear unit (ReLU) activation function. There are
two primary types of connections between the encoder and decoder: skip connec-
tions and the bottleneck. Skip connections involve the concatenation of feature
maps from corresponding levels of the encoder and decoder. The bottleneck, on
the other hand, is a single double-convolutional layer.

3.3 Test Time Augumentation

Data augmentation was employed during the prediction stage to improve accu-
racy and minimize errors illustrated in Fig. 2. We leveraged the searched policy
to generate ten augmented images from the input image. Both the original and
augmented images were then processed to generate segmentation masks using
trained U-Net. To ensure consistency, these masks were aligned by applying the
reverse transformations initially used on the original image. Finally, the pre-
dicted masks were averaged to synthesize the final result [21].

4 Experiments

4.1 Data Preprocessing

We evaluated the performance of our method on the BrEaST breast tumor
dataset [22], which consists of 256 ultrasound images. The dataset includes im-
ages from 154 benign, 98 malignant, and 4 normal cases, all obtained from dif-
ferent patients. Each case was manually annotated and labeled by radiologists
working at medical centers in Poland between 2019 and 2022.

Ultrasound images are full of noise, especially speckle noise, which can sig-
nificantly impact the accuracy of segmentation models [23, 24]. To mitigate this,
a non-local mean filter [25] is employed for denoising Fig. 5.

Following denoising, the images were resized to a resolution of 256x256 pixels.
We utilized a total of 252 tumor cases for our experiments, dividing the dataset
into training, validation, and testing sets. The training set comprised 176 sam-
ples, the validation set contained 38 samples, and the testing set consisted of 38
samples. Notably, each set contained approximately 61.3% benign cases.
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Fig. 5. Data preprocessing

4.2 Evaluation Metrics

To assess the effectiveness of our proposed approach, we employed a range of
metrics commonly used for evaluating segmentation performance. These metrics
include accuracy, sensitivity, specificity, Dice Similarity Coefficient (DSC), and
Intersection-over-Union (IoU) [26].

Sensitivity =
TP

TP + FN
(4)

Specificity =
TN

TN + FP
(5)

Accuracy =
TP + TN

TP + TN + FN + FP
(6)

IoU =
TP

TP + FP + FN
(7)

DSC =
2 · TP

2 · TP + FP + FN
(8)

Where:

– TP is true positive.

– TN is true negative.

– FP is false positive.

– FN is false negative.
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4.3 Implementation Details

Our method was implemented using the PyTorch1 and the Albumentations2

libraries. For policy search, we utilized AutoAlbument, a module within Albu-
mentations, which leverages Faster AutoAugment to find the optimal policy. The
U-Net implementation, however, employed PyTorch. Albumentations was used
to generate augmented images based on the searched policy and to revert the
transformations for Test Time Augmentation. The entire training process was
conducted on a server with the following hardware configuration:

1. CPU: 16 vCPUs with a clock speed of 2667v4.
2. RAM: 48 GB RAM, providing large processing capabilities and high

performance for tasks that require a lot of memory.
3. GPU: Nvidia Tesla P40 GPU with 24GB of memory, used for parallel

computation tasks and high-end graphics processing. It has 3840
CUDA cores, providing powerful parallel computation capability and
high performance.

4. Storage: 500GB SSD NVME, offering fast data access speed and high
storage performance.

4.4 Experimental Settings

Four separate experiments were conducted on the BrEaST dataset to evaluate
the effectiveness of our proposed method:

1. U-Net without data augmentation: This experiment evaluated the
performance of the U-Net model trained solely on the original dataset,
without incorporating any data augmentation techniques.

2. U-Net with data augmentation: In this experiment, the U-Net model
was trained on training data that had been augmented using the
searched policy. Ten unique augmented images were generated for
each original image.

3. U-Net with Test Time Augmentation: This experiment employed
the trained U-Net model from experiment 1 to make predictions us-
ing the Test Time Augmentation approach described earlier (Section
3.3).

4. U-Net with both data augmentation and Test Time Augmentation:
This experiment leveraged the trained U-Net model from experiment
2 to make predictions while incorporating Test Time Augmentation.

For all experiments, the U-Net model was trained using the ADAM optimizer
with a learning rate of 1e-4 and a batch size of 8. During policy searching, the
learning rate for the policy was set to 1e-4, and the critic learning rate was set to
9e-4. Both learning rates utilized the ADAM optimizer with initial decay rates
of 0 and 0.999, respectively. The batch size for policy searching was set to 16.

1 https://pytorch.org/
2 https://albumentations.ai/
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4.5 Main Result

Method DSC IoU Acc. Sen. Spec.

U-Net 0.708 0.592 0.961 0.746 0.986
U-Net + policy 0.723 0.624 0.963 0.751 0.986
U-Net + TTA 0.694 0.582 0.958 0.759 0.967

U-Net + policy + TTA (ours) 0.754 0.652 0.968 0.818 0.977
Table 2. Segmentation performance of U-Net model with and without policy and Test
Time Augmentation.

Table 2 presents the segmentation performance metrics for the four exper-
iments conducted. Our proposed method, which incorporates both data aug-
mentation and Test Time Augmentation, achieves a significant improvement of
0.046 compared to the baseline U-Net model. While enhancements are observed
in other metrics as well, there is a slight decrease in specificity. Interestingly,
using U-Net with Test Time Augmentation alone (experiment 3) leads to a re-
duction in performance compared to the baseline.

Fig. 6. High and Low performance cases.
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High performance cases
In Fig. 6, The U-Net model without data augmentation or Test Time Augmen-
tation performs well on images with bright tumors that have a clear contrast with
the background. However, in the second example, this model fails to distinguish
the tumor from adjacent black streaks. Additionally, the predicted mask gener-
ated by the U-Net with Test Time Augmentation tends to be slightly smaller
compared to the baseline U-Net.

In Fig. 6, The U-Net with data augmentation (experiment 2) significantly
improves the accuracy of the predicted mask compared to the baseline U-Net.
Our proposed method (combining both data augmentation and Test Time Aug-
mentation) further refines the segmentation, enabling a clear distinction between
the tumor and the black streaks, which posed a challenge for the baseline U-Net.

Low performance cases
In cases where the brightness levels are low and both the tumor and background
have similar intensities, particularly for small tumors, the U-Net model struggles
with mask prediction, failing entirely in the last case and achieving low accu-
racy in two others. Despite these challenges, our proposed method demonstrates
potential for improved accuracy in these difficult scenarios.

5 Conclusion

This paper presents a novel method that leverages Auto Augment techniques for
medical image segmentation, specifically focusing on breast ultrasound images.
Our approach aims to address the challenge of limited datasets, a common hurdle
in the medical imaging domain. Overall, the method demonstrates promising
results in enhancing the performance of the U-Net model when dealing with
small datasets.

Our future goal is to refine the proposed method by developing a more robust
Test Time Augmentation approach that utilizes the policy learned from the Auto
Augment algorithms. This could potentially lead to further improvements in
segmentation accuracy.
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