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ABSTRACT 
 

Automated monitoring of construction operations, especially operations of equipment and 
machines, is an essential step toward cost-estimating, and planning of construction projects. In 
recent years, a number of methods were suggested for recognizing activities of construction 
equipment. These methods are based on processing single types of data (audio, visual, or kinematic 
data). Considering the complexity of construction jobsites, using one source of data is not reliable 
enough to cover all conditions and scenarios. To address the issue, we utilized a data fusion 
approach: This approach is based on collecting audio and kinematic data, and includes the 
following steps: 1) recording audio and kinematic data generated by machines, 2) preprocessing 
data, 3) extracting time- and frequency-domain-features, 4) feature-fusion, and 5) categorizing 
activities using a machine-learning algorithm. The proposed approach was implemented on 
multiple machines and the experiments show that it is possible to get up to 25% more-accurate 
results compared to cases of using single-data-sources.  
 
Keywords: Construction Equipment, Audio and Kinematic Data, Feature Fusion, Activity 
Recognition, Machine Learning 
 
INTRODUCTION 
 

In the construction industry, it is well known that the ownership, rental, and maintenance 
costs of heavy equipment would significantly impact the overall budget and schedule of projects 
(Cheng et al. 2017, Ahn et al. 2012). As a result, it is vital to continuously monitor various 
operations of those equipment under different conditions. Manually recognizing those activities 
are time-consuming and costly, so the researchers and practitioners have suggested automated 
techniques for handling this important task. Results of an automated activity recognition system 
could be further used to identify idle times, calculate productivity rates, and estimate cycle times 
for repetitive activities (Rezazadeh and McCabe 2011, Teizer et al. 2010). Within the last couple 
of years, several studies have been conducted on this topic. Three major methods have been 
utilized for automated activity detection in construction job sites: 1) computer vison-based 
methods (Yang et al. 2016, Golparvar-Fard et al. 2013); 2) kinematic-based methods (Akhavian 
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and Behzadan 2012, Ahn et al. 2013, Kim et al. 2018); and 3) audio-based methods (Zhang et al. 
2018, Cheng et al. 2017a, Sabillon et al. 2017, Cheng et al. 2017b). Because of the scope of this 
paper, recent studies on audio- and kinematic-based studies are investigated in more detail within 
the following paragraphs. 

Akhavian and Behzadan (2012) proposed a method that is capable of detecting the motion 
of different parts of the equipment using magnetic field and tilt sensing, and creating 3D 
simulations. This method can provide simulation models with accurate input data. In order to 
improve their framework, Akhavian and Behzadan (2013) and Akhavian and Behzadan (2014) 
used data fusion by merging weight, position, and orientation to detect equipment activities. Ahn 
et al. (2013) proposed a method to detect engine-off, idling, and working activities of excavators 
using accelerometer data. Recently, Kim et al. (2018) analyzed the cabin rotation data, which are 
recorded by Inertial Measurement Units (IMUs), by using a dynamic time wrapping technique to 
detect activities of excavators. The output of their method can determine the activity cycle time of 
the excavator. 

Furthermore, a few studies have been conducted using audio data. Recently, Zhang et al. 
(2018) identified six types of equipment sounds using Mel-Frequency Cepstral Coefficients 
(MFCCs) and Hidden Markov Model (HMM) and obtained an accuracy of 94%. Cheng et al. 
(2017a), Cheng et al. (2017b), and Sabillon et al. (2017) implemented activity detection methods 
based on the audio recorded while the equipment operates. These methods use Short Time Fourier 
Transform (STFT) of audio signals to extract frequency-domain features. 

All of the aforementioned studies are widely used either kinematic or audio data but have 
their specific issues. For example, audio might not work efficiently on congested, noisy and large 
job sites. Because the energy of audio diminishes in longer distances. Also, there are some issues 
with the kinematic-based methods. For example, some types of equipment (e.g. hand drills) do not 
provide enough space to place the sensors. To address these limitations, we propose an automated 
construction activity detection method using both audio and kinematic sensors simultaneously. 
The authors evaluated the applicability of this method on different job sites with several types of 
equipment such as excavators, loaders, and trucks from which they obtained very promising 
results. 

 
RESEARCH METHODOLOGY 
 

This paper proposes an automated method to detect various types of activities performed 
by construction equipment using audio and kinematic signals. To achieve this goal, the authors 
developed a binary classification to detect major (value-adding) and minor (non-value-adding) 
activities. Value-adding activities (e.g. moving soil) are those activities directly related to the 
productivity of the activity. On the other hand, non-value-adding activities (e.g. rotating cabin, 
maneuvering) are the ones that support the performance of value-adding activities and do not 
impact on the final productivity. Different steps of the proposed system are shown in Fig. 1. 
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Fig. 1. The proposed hybrid kinematic-acoustic system for activity detection of 

construction equipment 
 

RECORDING DATA 
 

In this research, two types of data are recorded. The first one is audio, which is recorded 
using a single microphone placed outside the equipment cabin. The other type of data is kinematic, 
which is recorded using acceleration and angular velocity sensors. Three axes (x, y, and z) for each 
data type is recorded. Sampling frequencies for audio and kinematic sensors are 44100 Hz and 100 
Hz, respectively. 
 
FEATURE EXTRACTION 
 

In this step, different features are extracted in the time and frequency domain. Segments of 
120ms have been chosen for feature selection. This segment duration has been approved by 
previous studies for providing enough time resolution. Short Time Fourier Transform (STFT) with 
a Hanning window (50% overlap) is selected for feature extraction. Features are chosen based on 
their performance in previous studies (Table 1). Spectral features are shown to have good 
performance on detecting equipment activities based on the sound of equipment engine. All of the 
features are extracted and fed into the machine learning model described in section 3.4. 

 
Table 1. List of extracted features for both audio and kinematic data 

Features Usage Reference 
25 STFT Coefficients Audio & Kinematic (Cheng et al. 2017) 

Root Mean Square (RMS) Audio & Kinematic (Akhavian and Behzadan 2015) 
Short Time Energy (STE) Audio & Kinematic (Akhavian and Behzadan 2015) 

Spectral Flux (SF) Audio & Kinematic (Kozhisseri and Bikdash 2009, 
Padmavathi et al. 2010) 

Spectral Entropy (SE) Audio & Kinematic (Wieczorkowska et al. 2018, 
Padmavathi et al. 2010) 

Spectral Centroid (SC) Audio & Kinematic (Wieczorkowska et al. 2018, 
Padmavathi et al. 2010) 

Spectral Roll-off (SRO) Audio & Kinematic (Wieczorkowska et al. 2018, 
Padmavathi et al. 2010) 

Zero Crossing Rate (ZCR) Kinematic (Wieczorkowska et al. 2018) 
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SENSOR FUSION 
 

All of the features explained in the previous section are extracted from the audio and 
kinematic signals. As the next step, the authors used a feature fusion approach to combine features 
from both audio and kinematic data to achieve a more robust system. Fused features are used as 
input to the machine learning model. 
 
SVM MODEL 
 

The authors implemented Support Vector Machine (SVM) as the machine learning 
algorithm. This algorithm has shown good performance in similar previous efforts (Sabillon et al. 
2017). In this paper, different activities of equipment are recorded using a video camera for further 
actual labeling of activities. Four time periods of major activities and four time periods of minor 
activities with durations of 5 to 10 seconds have been considered as samples for training the model. 
The other time periods are used as testing data. SVM predicts the labels and these labels are then 
fed into the post-processing algorithms. 
 
POST-PROCESSING DATA 
 

The labels from the previous section are not appropriate for predicting activities. These 
labels fluctuate in very little periods of time, which is not practical for prediction purposes. In this 
research, three types of algorithms are used to smooth the labels: 1) Small Window Filtering 
(SWF); 2) Big Window Filtering (BWF); and 3) Markov Chain Filter (MCF). These algorithms 
look through the labels and substitute the labels with the more frequent label of their previous or 
future ones. Windows for checking the frequency of labels are chosen as 2 and 6 for small window 
SWF and BWF, respectively (Sabillon et al. 2017). More explanation about these three filters are 
provided in previous researches (Sabillon et al. 2017). 
 
EXPERIMENTAL SETUP AND RESULTS 
 

The proposed system is evaluated on 5 different types of equipment including a loader 
(CAT 259D), a dozer (Dozer 850K), an excavator (CAT 308E), a drilling machine (Jackhammer), 
and a lift (XTREME). The data capturing devices implemented in this study are Zoom H1 digital 
handy recorder, an off-the-shelf microphone, and iPhone for recording kinematic data. The 
microphone is placed outside the cabin within a distance of about 10ft and an iPhone is mounted 
inside the cabin. The iPhone and laptop are connected using MATLAB software to send data from 
the iPhone to the laptop. In addition, a video camcorder is used to record all activities of the 
equipment for further labeling and validating purposes. Fig. 2 shows the configuration of the 
devices.  



5 
 

 
Fig. 2. Placement of devices near and inside the cabin of the equipment 

 
Figure 3 demonstrates the generated signals after fusing data for the jackhammer. As 

shown in this figure, there is a strong correlation between the predicted and actual labels. Finally, 
the summary of the accuracies obtained for all five pieces of equipment is presented in Figure 4.  

 

 
Fig. 3. Predicted labels after MCF and actual labels for Jackhammer using fused data 

 

 
Fig. 4. Equipment activity detection accuracies using two types of data and the fused data 

 
 
DISCUSSIONS 
 

This paper proposed a data fusion approach, based on using audio and kinematic data, for 
automated activity detection of construction equipment. While the proposed system shows very 
promising results, a couple of issues and challenges still exist: First, in some cases, it might be 
difficult to specify an activity as productive or non-productive. In other words, it depends on the 
judgement of project managers. For example, when a drill is attached to the arm of CAT 305.5E2 
to break concrete, moving back and forth, the rotating and extending arm are considered as minor 
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activities because they are not related to breaking concrete. Furthermore, the authors found that 
some activities could not be detected correctly. This is due to the fact that some types of equipment 
generate similar sounds when doing different tasks. For example, moving the arm forward and 
backward are major and minor activities, respectively, but they have similar sound patterns. For a 
Dozer 850K, some portions of moving backwards are incorrectly detected as a major activity. 

For jackhammer, both data sources are appropriate for activity detection. This is due to the 
fact that drilling operations generate strong and distinct vibration and sound patterns. However, 
when it comes to smaller backhoes, the generated kinematic data are not strong enough, which 
leads to less accurate results. By observing the accuracies of dozer (i.e. Dozer 850K), it is almost 
clear that vibration is a better data source for activity detection. For excavator (CAT 308E), both 
data sources lead to same results. Because activities of excavators generate very distinct vibration 
and sound patterns, it is possible to detect activities accurately. The other possible reason for 
inaccuracies is the issue of time synchronization. The starting point of audio and kinematic signals 
might not be exactly the same, which might impact the accuracy of results negatively. In this study, 
this issue has been addressed using manual modifications. Also, some old types of equipment 
generate outlier kinematic signals which distort the desired kinematic signals and decrease the 
accuracy. On the other hand, some newer models are quieter and tends to generate lower levels of 
noise and vibrations, which could lead to lower accuracy rates. A detailed analysis of the results 
shows that each of audio and kinematic sensors works better with certain types of equipment, and 
might not be appropriate for other types. 

In conclusion, evaluating the results shows that audio sensors are a good choice for 
excavators and kinematic sensors work better for bulldozers. For loaders, both types of data lead 
to similar results. In Table 2, a brief comparison between different types of activities and sensors 
is presented. 

 
Table 2. Accuracy rates for kinematic data, audio data, and the fused data 

Equipment  

Vibration Accuracy Audio Accuracy Fused Data Accuracy 
Low 
(0%-
75%) 

Moderate 
(75% -
90%) 

High 
(90%-
100%) 

Low 
(0%-
75%) 

Moderate 
(75% -
90%) 

High 
(90%-
100%) 

Low 
(0%-
75%) 

Moderate 
(75% -
90%) 

High 
(90%-
100%) 

Jackhammer     ✔     ✔     ✔ 
CAT 259D   ✔  ✔    ✔ 

Skyjack SJ6826   ✔ ✔     ✔ 
CAT 308E  ✔   ✔    ✔ 

Dozer 850K   ✔   ✔         ✔ 
 
In summary, fusing both audio and kinematic signals helps detect equipment activities in 

a more robust and accurate way and the results show that fusing data leads to accuracy rates over 
90%. In the next section, some other advantages of the system as well as future research plans are 
explained. 

 
CONCLUSION 
 

The proposed system automatically detects different types of activities performed by 
construction equipment using the generated audio and kinematic signals. This system consists of 
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recording data, preprocessing data, extracting several features, feature fusion, and classifying 
activities using the SVM model. The contributions of the proposed system are as follows: 1) it can 
address the issue of using a single type of sensor. For example, in congested and/or large job sites, 
the energy of audio might decrease over large distances. Also, some new models do not generate 
detectable kinematic signals, which decreases the accuracy of the system; 2) in this paper, different 
time and frequency-domain features are extracted, which support the process of machine learning 
model. All of these features are evaluated in previous studies and showed accurate results in 
detecting equipment engine sound; and 3) different pre-processing and post-processing algorithms 
are conducted to refine the data and results. 

This paper focused on detecting the activities of single pieces of equipment. In the future, 
the authors will evaluate this method on more challenging cases where multiple machines operate 
at a jobsite simultaneously. In addition, there is a need to collect more data from other types of 
equipment such as graders and compactors. 
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