
EasyChair Preprint
№ 4085

Single Shared Model Approach for Building
Information Modelling

Simo Ruokamo and Rauno Heikkilä

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 25, 2020

37th International Symposium on Automation and Robotics in Construction (ISARC 2020)

Single shared model approach for building information

modelling

Simo Ruokamoa and Rauno Heikkiläb

aUniversity of Oulu, Finland & Enterprixe Software Ltd, Finland
bUniversity of Oulu, Finland

E-mail: simo.ruokamo@gmail.com, rauno.heikkila@oulu.fi

Abstract –

The current practice for information sharing with

building information modelling (BIM) is a distributed

data sharing based on conversions. Conversions are

problematic due to data loss, redundancy, and

conflicting information. A single data schema used by

all applications is a requisite for a conversion-free

data collaboration. In the study, a software

development kit (SDK) was developed, which

implements required features and guarantees

compatibility between BIM programs. Three

independent applications 3DTrussme, Leonardo, and

Viewer were developed using SDK. A cloud service

for handling the shared model was implemented. In

the experiments, Leonardo was used for modelling

walls, 3DTrussme for truss design, and Viewer for

model viewing. All three applications were using the

same shared model on the cloud.

In the experiments, the information exchange

occurred without conversions and all data was saved

only once on the cloud database. Without conversions

and duplicates less conflicts and redundancies

occurred, which lead to better data integrity and

integration. Using SDK, there was no technical

barrier for applications to join the single shared

model ecosystem, but a drawback was that existing

BIM programs are not compatible without

remarkable changes. The performance was

acceptable on the test run, but in real use, the size of

the model and the number of applications and users,

will be much larger. However, a conversion-free

single shared model approach can be a possible trend

to the development of the next generation BIM as well

as a potential alternative for current data sharing

methods using distributed files, conversions, and

linked data.

Keywords –

Building Information Modelling, Data Conversion,

Cloud Services

1 Introduction

The evolution of the building design has developed

from handmade paper drawings to a fully digitalized

process using computers. In the 1970s, the first 2D CAD

(Computer Aided Design) software came to the market

and in the 1980s, first pioneers developed 3D design

applications for building design. Acronym BIM

(Building Information Modelling) is nowadays

commonly used for the digitalized information handling

and it was probably Jerry Laiserin who first introduced

the term BIM [1,2].

A successful collaboration between all stakeholders

requires an efficient and functional sharing of the

building information [3]. The amount of the BIM data

grows significantly during the design and construction

stages of the building project. After the construction

stage, new information is still created but not at the same

rate. Moreover, the flow of the data substantially breaks

off when the construction is completed [4]. A continuous

information flow is a necessity for improving the data

utilizing within facility management [5].

The prevailing practice for data exchange is

distributed data management (DDM) approach based on

conversions. In general, an exchange format is used for

data transfer. Using an exchange format requires two

conversions between two applications, but reduces the

total amount of import and export formats each

application needs to implement [6]. Direct data exchange

between native formats requires only one conversion and

is less error prone but, on the other hand, each supported

format must be programmed.

A conversion-free data exchange requires the use of

only one data format. To fully avoid the problem of

overlapping and conflicting information, a single data

schema is not enough. Separate models, although in the

same format, can still include inconsistent data. With the

single shared model approach (SSM) no conversions are

needed and all information is saved once, which reduces

the data complexity and improves the data integrity and

integration. The challenge with the single model is

mailto:simo.ruokamo@gmail.com
mailto:rauno.heikkila@

37th International Symposium on Automation and Robotics in Construction (ISARC 2020)

concurrent changes made by different users. Rules must

exist for defining which change is valid, when

overlapping modifications happen. Figure 1 illustrates

the different exchange methods from the perspective of

conversions.

Figure 1.The basic differences for the needed

conversions with the different data exchange

methods. With application to application, the total

number of conversions is the largest, whereas with

a single shared model no conversions are made.

2 Development of the single shared

building information modelling

For a regular user it is common to mix applications,

data models, and storages. However, they have their own

functions and objectives from a software technology

point of view. When application is running, information

is available at the main memory of the computer. When

application is closed, the data must be stored to

permanent storage which can retain its information even

when powered off. The interconnection between the

permanent storage and application is the data model. A

file or database is read into program’s run time memory

as a data model, then modified during the application run

and saved back to the permanent storage.

2.1 Data model and storage

In today’s software technology, the common practice

for a data model is an object oriented approach [7]. Each

different object is encoded as a software class and a

requisite set of classes constitutes the whole data model.

The class instance is an object that is created from the

definition of the class into the data model. Instances get

a globally unique identifier when they are created into the

data model and one software class can be instantiated as

multiple objects, each having a different unique identifier.

The data on the permanent storage is read to object

instances and saved back. For instantiating the correct

class to the data model the definition of the class must

also be saved on the storage. The class instantiating

method can be either static or dynamic. With static

binding (called also early binding), code of classes must

be available when the program is compiled and built. The

drawback of the static binding is that every change or

addition of a class requires an updated version of the

application. Modern programming languages, like

Microsoft C# [8], support dynamic binding (called also

late binding), which requires the availability of the class

not until the application is started. That is a significant

difference and makes changes into data model classes

much more flexible. A class addition or change does not

require a new version of the application.

In a building data model, classes and instances carry

the information as a collection of value-name pairs. The

IFC (Industry Foundation Classes) is a standardized

object-based data format and model maintained by an

international non-profit organization called

buildingSMART. With IFC, value-name pairs are called

property sets [9]. Term attribute is also commonly used

with object-based data models. List of classes and

properties are not constant which brings up the challenge

of the data compatibility. Standards are common

languages which realise the universal and admitted

understanding for the content of the building information.

But standards change slowly and are not adequate for

commercial BIM applications since data content

advancement is an endless and all the time running

process. Therefore the flexibility and extensibility of the

information content are key features for the single shared

data model. Supporting standardised data is advisable,

but by allowing applications to freely specify additional

information content, technical barriers are eliminated

from the use of a single data model schema. Both the data

model and permanent storage must implement freely

extendable data content.

The permanent storage can be a database or a file. A

database has a more organised data schema and allows

partial data access and sharing with several users. The

following three alternatives are technically possible as a

database schema for storing the data of classes:

1. Separate table for each class with a separate column

for each attribute. This schema has traditionally

been used.

2. The vertical database schema also called an entity-

attribute-value model (EAV) [10].

3. XML schema, where whole data of the class is

packed as XML data.

Juola [11] implemented all the three alternatives

using a SQL Server database. With separate table for

every class it is almost unfeasible to keep tables and

columns up-to-date due class changes. Queries are very

complicated with the entity-attribute-value schema. The

result was, that the XML schema was best suitable for a

building data model having always evolving content.

37th International Symposium on Automation and Robotics in Construction (ISARC 2020)

The number of object instances in a data model can

grow huge. Some kind of organising and grouping is

needed for maintaining the fluent manageability of the

model. Objects can be organised based on their material,

structural behaviour, type, name, position, feature, or

some other data. As a result, the amount of active objects

is decreased making the handling of the model more

flexible. IFC supports Model View Definition (MVD and

Information Delivery Manual (IDM) standards for

defining a data subset [12]. Several studies have been

made for extracting IFC partial model based on MVD

[13].

Hierarchical organisation is a well-known

arrangement method, but that method has very rarely

been applied among AEC/FM applications. The

hierarchical arrangement naturally enables a model

division into partial models and hierarchy is simply

constructed by defining a parent object for every object.

A partial model is then made up of an object and all its

descendants at all sub hierarchy levels. The IFC data

model has a static and fixed hierarchy of Project → Site

→ Building → BuildingStorey → Space [9]. According

to Singh, Gu and Wang [14] a static hierarchy is

inadequate and the ordering should be flexible for

fulfilling the requirements of users.

2.2 Data sharing

A data concurrency control is essential for the single

shared data model. Simultaneous changes to the same

data can be handled by an optimistic or pessimistic

method [15]. With an optimistic control, it is assumed

that conflicting data changes are rare and can be resolved.

The pessimistic control is based on data locking, which

fully prevents any concurrent data editing. The validity,

reliability, and consistency of the information in the

building model is best guaranteed by the pessimistic

method. Locking the whole model is not realistic, but

only a part of the model can be reserved for one user at

one time. The hierarchical model arrangement

implements partial models that can be reserved and

released. The single data model system and hierarchical

arrangement with reserving and releasing partial models

together make up a pessimistic data concurrency control

system for ensuring the validity, reliability, and

consistency of the information in the building model.

With the single shared model, all information must be

available for all stakeholders without delays and

conversions continuously. In the current internet world

that is best achieved with a cloud based system. Using the

cloud database only is technically possible, but a

synchronised local copy gives next advantages:

 Enables incremental updates reducing the amount

and size of data transfers [9]. By keeping a change

log, only changed data needs to be synchronized

between the cloud and local storage.

 The reserved partial model can be first saved to the

local storage before publishing it to the cloud.

Unfinished work is then not available for other

participants.

 Offline working without a connection to the internet

is possible with the local synchronized storage.

The cloud storage cannot be accessed like the local

storage. User rights on the server cannot be as extensive

as they are on the local computer. It would be a clear risk

for the security and data integrity to allow public and

direct read-write access to the server storage for all. A

cloud service implementing only needed functionality

ensures that no data corruption occurs due to a false

operation. For a safe and secure access to the cloud

storage, next functions need to be implemented on the

cloud service:

1. Registration of user.

2. Establishing a new model.

3. Getting a list of models available for user

4. Connecting to a model

5. Load for downloading the whole or partial model

from the cloud to the local storage.

6. Reservation of the partial model for editing.

Reserved part is locked permitting only reading for

other users.

7. Releasing and publishing the reserved partial model

to the cloud storage.

8. Get changes due to releases made by other users.

9. Adding a new node to the model hierarchy tree.

10. Removing a node form the model hierarchy tree.

11. Disconnect from the shared model and logout from

the cloud service.

2.3 Programming principles of the single

shared data model system

A derivation programming technique is a common

practice with the coding of classes. With derivation,

duplicate code for similar classes is avoided, since a

derived class inherits everything as default from the

parent. Derived classes can develop the inherited content

further as much as needed. The amount of software data

model classes that are needed during the whole life-cycle

of the building is vast. Thus, the development and

maintenance of data classes are not tasks for a single

software house. However, for ensuring compatibility,

base public classes used by all developers are needed.

The derivation of new classes must start from public

classes, which must implement the required functionality

for forcing the compatibility between all developed

applications. Especially reading the permanent storage as

a data model into runtime memory of the application and

saving it back are operations that must only exist on

37th International Symposium on Automation and Robotics in Construction (ISARC 2020)

public classes. Secondly, classes for geometry must be

implemented as public classes so that applications can

also view non-public class objects that are defined by

other applications.

For uniformity, common understanding and ability to

co-operate, the amount of public classes should be as

large as possible. Many organisations in various

countries are developing various BIM standards for

diverse purposes [16] and the public classes can be seen

as the standardised part. BuildingSMART International

has published a few standards for building information

content and data exchange [17]. However, also non-

standard classes can be made publicly available.

2.4 Arrangement and execution of the

experimentation

For a full scale testing of the single shared model

system, a cloud service and applications were developed.

Cloud service was running on a Windows Server

operating system. The web service was implemented

using Windows Communication Foundation (WCF) [8].

Storage system used was a relational database Microsoft

SQL Server. For the development of applications a public

software development kit (SDK) was created including

the next four assemblies:

1. Base public classes (BPC) assembly includes base

data model classes from which all application

specific classes must be derived.

2. A local storage for client (LSC) assembly offers a

synchronised local storage for applications.

3. A model toolkit for the client (MTC) implements

functionality for synchronising the local and cloud

storage.

4. A web service toolkit for the client (WSTC) is a

helper assembly simplifying the use of the web

service functions.

Three applications were developed using the public SDK.

3DTrussME is a 3D modelling and structural analysis

software for wooden trusses. It has been the first and

main testing application for the single shared model

system and has a large application specific class library.

3DTrussME is owned by a Finnish company, Ristek Oy,

and the programming is carried out by another Finnish

company, Enterprixe Software Ltd [18]. 3DTrussME is a

commercial application currently used in Finland,

Norway and Estonia. Leonardo is a 3D design

application for concrete structures. The development of

Leonardo is ongoing and it is not yet available for a

practical use. The third application used in testing was

Viewer, which was only used for viewing the model.

Figure 2 shows the general arrangement of the testing

environment.

Figure 2. A diagram showing the general

arrangement of the testing environment with three

applications, public SDK package, and cloud

service.

Three users were participating in the test event, one

for each application. All three applications were

connected to the same shared model on the cloud.

3DTrussME was used for truss design, Leonardo for

modelling walls and Viewer for viewing the model. The

pessimistic concurrency control was in use and partial

models were reserved and released. During the test,

Leonardo data classes were further developed without

any compatibility problems for other two applications.

The test was executed with steps shown in the next list.

1. Registration of users.

2. A model was established on the cloud database and

access to the model for users was granted.

3. User #1 using 3DTrussME reserved the model,

created the base hierarchy and released the model.

Fig. 3 shows a screen snapshot after step #3.

4. User #2 using Leonardo reserved the Walls subtree

and started modelling walls. User #1 saw the

reservation when getting the latest from the cloud.

5. User #2 finished the modelling of walls, released

the node Walls and local changes were updated to

the cloud model. User #1 updated changes from the

cloud and saw the modelled walls. Leonardo was

using a private wall class, but by using a public wall

class instead, walls were available at 3DTrussMe.

37th International Symposium on Automation and Robotics in Construction (ISARC 2020)

6. User #1 reserved the node Roof for truss modelling.

User #3 started Viewer and saw walls and

reservation of the Roof node.

7. User #1 noticed that one wall was at wrong position,

reserved it, made the correction, and released it.

8. The private data model of Leonardo was further

developed by adding new attributes to the wall and

by creating a new column class. User #2 started to

use the new version of Leonardo and updated local

model. No compatibility problems or data

corruption occurred although 3DTrussMe used

older public wall class and Leonardo new changed

wall class.

9. User #2 reserved Walls and Columns node,

continued modelling and released nodes.

10. User #1 released Roof node.

11. All users updated their local model and can saw the

whole model.

12. All users disconnected from the model and closed

applications.

Figure 3. Basic hierarchy after step #3. All nodes

are not reserved for changes which is marked as a

closed black lock icon in the project explorer tree.

3 Results

As a result of the test execution, a shared model was built

up on the cloud. Three applications were using the same

shared model on the cloud and all data sharing occurred

without conversions and data defects. Figure 4 shows the

final model after the execution of the test. The permanent

outcome of the executed test was the data stored in the

cloud database. Totally five tables were used for data

storing:

1. User table for registered users.

2. Model access table for defining the access of users

to model.

3. Session table for connected users. With a

connection to the model each user gets a session id

that identifies the access to one model. Session ids

are not permanent and are used instead of

credentials after the connection to the model.

Session ids are invalidated with disconnect or after

defined unused timeout.

4. Event table for the model established, reservation

and release events. Events enable the bookkeeping

of reserved nodes and incremental updates.

5. Model table for the building model data.

Figure 4. Final model after the execution of the

test on 3DTrussME application.

Just one data format is compulsory for the

conversion-free data exchange used. The key points of

the specification for a freely expandable data model

schema keeping the compatibility backward and forward

are as follows:

 The data model schema consists of public part and

private application specific portions. All private

classes must be derived from public classes.

 Data carriers and all data saving into and reading

from the permanent storage are handled by public

classes.

 Classes are instantiated using the dynamic binding

method.

 Schemas of the data model and permanent storage

must enable backward and forward compatibility

allowing free changes to the content and number of

data classes. This is achieved with a dynamic

binding and XML storage format.

 A software development kit (SDK) implements all

the key points of this list, and thus, applications

developed using SDK automatically realize all key

points and are compatible with each other.

Data duplicates are not prevented by using only one

data model and storage structure. A single model

approach accessed simultaneously by all participants is

needed for removing the overlapping information. The

following key elements are required for a workable single

shared model system:

 The single shared database is placed on the cloud,

enabling an equal access for all participants.

37th International Symposium on Automation and Robotics in Construction (ISARC 2020)

 Access control is implemented limiting the entry

only for registered and authorized users.

Furthermore, access to models per user is controlled.

 All connections to the shared cloud model are

performed through a web service that has the

required functionality. It is a security risk to allow

direct access to the database, which may lead to

illegal changes in the database.

 A pessimistic data concurrency control is used.

 An event log keeps track of reservations, releases

and data change events enabling the monitoring of

the reservation state and incremental updates of the

local storage.

 The model arrangement is realized using a

hierarchical approach which divides model into

numerous and varying size partial models. Those

subtrees can be used as units for reservation and for

limiting the size of the model that is handled at a

time. The hierarchical arrangement is free and the

model can be divided as example by design

discipline, storey, space or element type using one

or combined dimension.

 SDK is used for the development of applications

enforcing the compatibility and SDK also eases

establishing connections to the single shared model.

4 Conclusions

The presented single data model system is available

for all new and old BIM applications. An SDK is free and

contains base classes as a start point for the development

of application-specific data content. The schema of the

data model is version-free allowing changes and

additions without breaking the compatibility. In

summary, the presented method makes up a conversion-

free data exchange solution based on a single extendable

data model schema. It is self-explanatory that without

conversions all conversion defects will be eliminated.

Data duplicates will vanish when a single model schema

is extended as a single shared model approach. The data

integrity and integration improve when data sharing

occurs without conversions and when no overlapping

information exists.

To obtain the greatest benefit from the single shared

model, software from various disciplines should be

available. There is no limit regarding what types of

applications can join the ecosystem: the only requirement

is to use an SDK. Anyway, many issues can be raised up

for the wider industrial use. The incompatibility with the

current convention, needed investments and lack of

interest hinder the expansion. The reputation and

reliability of a new technology is low in the beginning.

Rogers [19] divides technology adopters into innovators

(2.5%), early adopters (13.5%), early majority (34%),

late majority (34%), and laggards (16%). Evidently, the

conversion-free single shared model approach needs

innovators for the start of the technology expansion.

No commercial single model system for

multidisciplinary building information is available.

Systems for sharing a model between the same

applications have been developed, but none can cross the

application boundary. The objective for model sharing

with Tekla, Archicad and Revit is to enable multiple

people to work simultaneously with the same model.

There is no reason to limit the model sharing only

between the same applications as long as user and access

control prevents conflicting and illegal changes. Indeed,

according to Lu, Wu, Chang and Li [21] , there is lack of

BIM standards for model integration and management by

multidisciplinary teams.

It is a common opinion among the AEC industry and

BIM scientists that a single model BIM is an unfeasible

solution. According to Day [22], a single building model

is only a daydream. On the other hand, Howard and Björk

[23] state that a single BIM is the holy grail, but there

might not be willingness to achieve it. According to Turk

[24], a centralized shared database is impossible but in

the future, BIM will approach it. The reasoning for this is

mostly not presented by these authors, but model

differences between disciplines and the size of model are

noted. Because of the rejection of the single BIM model,

no research has been conducted of a true single shared

model system. Under the umbrella term ‘single BIM’

scientific articles can be found, but they see single BIM

as a common repository for distributed data sources. A

cloud service or a single address to separate files is only

one data delivery tool for distributed information. A true

single model system is a shared database that can be

accessed simultaneously by several users, and every

piece of data is stored only once.

According to Johnson [25], the complexity of design

tasks and software evolution raise questions about a

single model solution. It is true that tasks performed by

engineers and consultants are complex and various.

Many kinds of applications are used for design tasks and

all software is evolving continuously. However, is that

complexity troublesome only for the single shared model

approach? The distributed data sharing system uses many

data formats and conversions. Is this more complex when

compared with the single shared model operating without

conversions? Johnson [25] list the next issues for

alleviating the skepticism against “One BIM”:

 An open source vendor-neutral elastic data structure.

 Enabling the interoperation of applications from

multiple vendors.

 Sharing data in the design ecosystem without

explicit import or export.

 Supporting different kind users, tasks, workflows,

and stages in the design process.

37th International Symposium on Automation and Robotics in Construction (ISARC 2020)

The presented single shared approach will implement

all the above items, but a significant adjustment to current

BIM practices and processes must come true.

According to Miettinen and Paavola [2], the benefits

of using BIM is often reported by researchers and project

participants, but the impact of BIM is difficult to isolate

from the success of the entire project. Moreover,

increases in the productivity in the construction business

have been marginal when compared with other industry

sectors [26]. Assuming, that information technology has

a notable influence on the improvement of productivity,

why has digitalization succeeded in other industry sectors

but not in the construction business?

The testing of a software system is not a one-time

process. In the test run only three applications and users

were involved, but in the reality, many more applications

are used with BIM. No technical limit for the number of

applications exist, but a growing number of applications

and users accessing the same model concurrently can

slow down the performance

Microsoft SQL server was used as the cloud storage

system and the maximum size of a SQL Server database

is 524 272 terabytes [8], which is an incredible amount

of information. Before that maximum size limit is

reached, other performance issues will probably arise.

Client applications do not need to make calls to the cloud

service non-stop, but database queries can slow down the

cloud service when the database is large. In the test run,

there were only three users and one model on the cloud,

which naturally cannot show much of the performance

for real projects. Microsoft LocalDB was used as a local

storage system on the client side. The maximum size of

the LocalDB database is 10 GB [8] which is much less

than the maximum size of a SQL Server database. Local

storage capacity will most obviously be the first

bottleneck before any performance problems on the

cloud service appear.

An internet service provider (ISP) and independent

software vendor (ISV) for web service are needed for

offering the cloud service for the single shared model.

Figure 5 shows all the major players of the building

project. ISVs should not hold a monopoly position in

their field of activity. Application development is freely

available for all enabling multiple software on the same

purpose. Developing the web service can also be done

separately by multiple ISVs. There can only exist one

public SDK and a private commercial enterprise is not

the best ISV for SDK. A public non-profit corporation or

alliance would be a better ISV operator for the public

SDK.

Allowing all users to change all parts of the model

after reservation might not be a desired course of action.

As example architects do not usually allow designers

from other disciplines to edit architectural plans. By

organizing users to groups, more detailed user rights can

be implemented. Each group can reserve partial models

and control usage rights for other groups. When using

both user and group access control the partial model

availability can be restricted on many levels.

Figure 5. The players around BIM model during

the whole life-cycle of the building project.

The main weakness of the single shared model

approach is its incompatibility with the currently used

data formats. All data classes in current applications must

be redone for full compatibility which is likely a

threshold for most software houses. Therefore,

conversions from existing formats are needed for

lowering the obstacle to the presented new single model

method; otherwise, it will be isolated without any links

to existing systems. Rewriting all IFC classes by starting

the derivation from BPC classes could be one solution.

After that, importing the IFC files could be done.

However, exporting to IFC cannot properly support all

the data on a single shared model using a version-free

data schema since IFC is not a true open and extendable

data format. IFC implements adding new property sets

for the objects and the use of IfcProxy for entities that are

not defined by IFC [27]. But, this will end up as an

outstanding amount of IfcProxies having fully different

content if all the native data by all applications is

exported. Additionally, updating the schema of the IFC

standard will break the compatibility backward and

forward, requiring a new version of every application that

is using IFC.

References

[1] Laiserin J. LaiserinLetter. 2002; Online:

http://www.laiserin.com/features/issue15/feature01

.php, Accessed 2013.

[2] Miettinen R, Paavola S. Beyond the BIM utopia:

Approaches to the development and

implementation of building information modeling.

Automation in Construction. 2014 7;43:84-91.

http://www.laiserin.com/features/issue15/feature01.php
http://www.laiserin.com/features/issue15/feature01.php

37th International Symposium on Automation and Robotics in Construction (ISARC 2020)

[3] Shen W, Hao Q, Mak H, Neelamkavil J, Xie H,

Dickinson J, et al. Systems integration and

collaboration in architecture, engineering,

construction, and facilities management: A review.

Advanced Engineering Informatics 2010 4;

24(2):196-207.

[4] Xu X, Ma L, Ding L. A framework for BIM-enabled

life-cycle information management of construction

project. International Journal of Advanced

Robotics Systems 2014; 11(1).

[5] Nicał AK, Wodyński W. Enhancing Facility

Management through BIM 6D. Procedia

Engineering 2016; 164:299-306.

[6] Isikdag U, Underwood J. Two design patterns for

facilitating Building Information Model-based

synchronous collaboration. Automation in

Construction 2010; 19:544-53.

[7] Berdonosov V, Zhivotova A, Sycheva T. TRIZ

Evolution of the Object-Oriented Programming

Languages. Procedia Engineering 2015; 131:333-

42.

[8] Microsoft Corporation. Microsoft developer

network. 2019; Online: https://msdn.microsoft.com.

Accessed 2019.

[9] Eastman C, Teicholz P, Sacks R, Liston K. BIM

Handbook. Hoboken, New Jersey: John Wiley &

Sons, Inc.; 2011.

[10] Nadkarni PM, Marenco L, Chen R, Skoufos E,

Shepherd G, Miller P. Organization of

heterogeneous scientific data using the EAV/CR

representation. Journal of the American Informatics

Association. 1999; 6(6):478-93.

[11] Rauno Juola. Rakennuksen tietomallin

palvelinpohjaisen tietokannan tallennusratkaisu.

Oulu: University of Oulu, Faculty of Information

Technology and Electrical Engineering,

Department of Computer Science and Engineering,

Computer Science; 2014.

[12] Lee Y, Eastman CM, Solihin W. An ontology-based

approach for developing data exchange

requirements and model views of building

information modeling. Advanced Engineering

Informatics 2016 8; 30(3):354-67.

[13] Won J, Lee G, Cho C. No-Schema Algorithm for

Extracting a Partial Model from an IFC Instance

Model. Journal of Computing in Civil Engineering.

2013 NOV 1; 27(6):585-92.

[14] Singh V, Gu N, Wang X. A theoretical framework

of a BIM-based multi-disciplinary collaboration

platform. Automation in Construction 2011 3;

20(2):134-44.

[15] Wette C, Pierre S, Conan J. A comparative study of

some concurrency control algorithms for cluster-

based communication networks. Computers &

Electrical Engineering 2004; 30:615-36.

[16] Barbosa MJ, Pauwels P, Ferreira V, Mateus L.

Towards increased BIM usage for existing building

interventions. Structural Survey. 2016;34(2):168-

90.

[17] BuildingSMART. buildingSMART International.;

Online: http://www.buildingsmart-tech.org/,

Accessed 2019.

[18] Jarmo Kajava. Development of the three-

dimensional nail plate structure design software.

Oulu: University of Oulu, Faculty of Technology,

Mechanical Engineering; 2017.

[19] Rogers EM. Diffusion of Innovations, 5th edition.

New York, USA: Free Press; 2003.

[20] Wong J, Wang X, Li H, Chan G, Li H. A review of

cloud-based bim technology in the construction

sector. Journal of Information Technology in

Construction. 2014;19:281-91.

[21] Lu Y, Wu Z, Chang R, Li Y. Building Information

Modeling (BIM) for green buildings: A critical

review and future directions. Automation in

Construction. 2017; 83:134-48.

[22] Day M. The trouble with BIM. AECMagazine

2011;.

[23] Howard R, Björk B. Building information

modelling – Experts’ views on standardisation and

industry deployment. Advanced Engineering

Informatics 2008 4; 22(2):271-80.

[24] Turk Ž. Ten questions concerning building

information modelling. Building and Environment

2016; 107:274-84.

[25] Johnson BR. One BIM to Rule Them All: Future

Reality or Myth? In: Kensek KM, Noble DE,

editors. Building Infromation Modeling: BIM in

Current and Future Practice: John Wiley & Sons;

2014, p. 175-185.

[26] Koskenvesa A. Rakennustyön tuottavuus 1975-

2010. Rakentajan kalenteri 2011: Rakennustieto Oy;

2011, p. 138-146.

[27] Borrmann A, Beetz J, Koch C, Liebich T, Muhic S.

Industry Foundation Classes: A Standardization

Data Model for the Vendor-Neutral Exchange of

Digital Building Models. In: Borrmann A, König M,

Koch C, Beetz J, editors. Building Information

Modeling: Technology Foundations and Industry

Practice: Springer International Publishing AG;

2018, p. 81-126.

https://msdn.microsoft.com/
http://www.buildingsmart-tech.org/

