
EasyChair Preprint
№ 3444

An Integrated Linear Programming Approach in
Optimization of Crops

Arindam Biswas, Priti Thadani, Ankita Dikshit, Sukla Atha,
Ananya Biswas, Ansh Gupta, Chayan Halder and Anirban Das

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 19, 2020

1 | P a g e

AN INTEGRATED LINEAR PROGRAMMING

APPROACH IN OPTIMIZATION OF CROPS

Arindam Biswas

Dept. of CSE

UEM Kolkata, India

Email:

arindambiswas186@gmail.com

Priti Thadani

Dept. of CSE

UEM Kolkata, India

Email:

pritithadani43@gmail.com

Ankita Dikshit

Dept. of CSE

UEM Kolkata, India

Email:

ankitadikshit946@gmail.com

Sukla Atha

Dept. of CSE

UEM Kolkata, India

Email: sukla.atha52@gmail.com

Ananya Biswas

Dept. of CSE

UEM Kolkata, India

Email:

ananya2201@gmail.com

Ansh Gupta

Dept. of CSE

UEM Kolkata, India

Email:

ansh.gupta.pakur@gmail.com

Chayan Halder

Dept. of CSE

UEM Kolkata, India

Email:

chayan.halder@uem.edu.in

Anirban Das

Dept. of CSE

UEM Kolkata, India

Email:

anirban-das@live.com

ABSTRACT - Crop planning is a Multi-

objective optimization problem, also called as

NP-Hard Problem. Agriculture has to face

various challenges such as irrigation water

management, land allocation, climate changes,

human and other resources used for agriculture,

which can be controlled by effective crop

planning. Crop planning optimization gives an

idea to utilize the minimum resources to get the

maximum profit through optimizing the

objectives. Agriculture plays an important role

in the ecosystem management; using bio-

fertilizer and green manure can improve soil

fertility without any chemical effects. The main

aim of the crop planning is to improve the profit

and productivity with the low input cost and

resources. The crop planning problem has many

factors, in that some can be optimized and some

cannot be optimized. There are many methods

available to solve crop planning problem, like

algorithms, optimization tools, decision making

tools, software etc. but still it needs more

improvement to get the best optimal solutions.

This paper presents a general idea of Crop

Planning and various algorithms which are used

to solve this problem and also address the

problems that need effective solutions.

Keywords – Optimization, Boolean, minisat,

linear programming.

I. INTRODUCTION

The engineers have to carry out

standard calculations for evapotranspiration,

crop water usage, fertilizers, manure cost etc.

Hence recommendations can be made with

respect to improved practices in irrigation and

better planning of irrigation schedules.

Smart application of fertilizer illustrates payoff

in using analytical tools to enhance crop yields

and improve the environment.

The fertilizer used for agriculture is 40%

globally. This has resulted in new methods of

saving money in buying fertilizers. Hence

money saving techniques has to

be practiced. In fertilizer resources planning

and management, optimization techniques is

used for limited use of resources such as such

as water, land, production cost, manpower,

fertilizers, seeds, and pesticides. For

cultivating each crop, the land area needs to

be planned properly. Hence the crop pattern

has to be decided optimally depending on

available water and mineral resources and on

economic basis. Therefore farmer needs to be

educated to adopt optimum cropping pattern

2 | P a g e

which maximizes the economic returns. Hence

the study is taken up to optimize the fertilizers

used for crops. The objective function for

multi crop model were formulated using linear

programming for

Maximizing the net benefits.

To plan the with regard to distribution of

water resources to the crop, it is important

to optimize the available land and water

Resources to achieve maximum returns. To

solve such problems, the mathematical

programming models like linear

programming (LP), dynamic programming

(DP) and genetic algorithm (GP) are

used. Linear programming is the most

convenient and effective

tool to handle more number of constraints.

 in agricultural research and farming
systems

10
. Linear

Linear programming is one of the main

Operations Research techniques. The

mathematical model usually consists of linear

equations and/or inequalities. There is a linear

objective function that is optimized

(maximized or minimized) which is subject to

a set of constraints. Generically, a linear

programming model applied to farm planning .

II. STUDY AREA

The objective function of the model is

subject to the following constraints: water

availability, crop land requirement, Human

labour cost, Animal and Machine power cost,

Seed cost, Fertilizers and Manure cost, Fixed

cost etc.

An integer programming problem is a

mathematical optimization or feasibility

program in which some or all of the variables

are restricted to be integers. In many settings

the term refers to integer linear

programming (ILP), in which the objective

function and the constraints (other than the

integer constraints) are linear.

Integer programming is NP-complete. In

particular, the special case of 0-1 integer linear

programming, in which unknowns are binary,

and only the restrictions must be satisfied, is

one of Karp's 21 NP-complete problems.

If some decision variables are not discrete the

problem is known as a mixed-integer

programming problem

III. APPLICATIONS

There are two main reasons for using integer

variables when modelling problems as a linear

program:

1. The integer variables represent

quantities that can only be integer. For

example, it is not possible to build 3.7

cars.

2. The integer variables represent

decisions (e.g. whether to include an

edge in a graph) and so should only

take on the value 0 or 1.

These considerations occur frequently in

practice and so integer linear programming can

be used in many applications areas, some of

which are briefly described below.

a) Production planning

Mixed integer programming has many

applications in industrial production, including

job-shop modelling. One important example

happens in agricultural production planning

involves determining production yield for

several crops that can share resources (e.g.

Land, labour, capital, seeds, fertilizer, etc.). A

possible objective is to maximize the total

production, without exceeding the available

resources. In some cases, this can be expressed

in terms of a linear program, but variables

must be constrained to be integer.

b) Scheduling

These problems involve service and vehicle

scheduling in transportation networks. For

example, a problem may involve assigning

buses or subways to individual routes so that a

timetable can be met, and also to equip them

with drivers. Here binary decision variables

indicate whether a bus or subway is assigned

to a route and whether a driver is assigned to a

particular train or subway. The zero-one

programming technique has been successfully

applied to solve a project selection problem in

which projects are mutually exclusive and/or

technologically interdependent. It is used in a

special case of integer programming, in which

all the decision variables are integers. It can

assume the values either as zero or one.

https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Constraint_satisfaction_problem
https://en.wikipedia.org/wiki/Integer
https://en.wikipedia.org/wiki/Linear_programming
https://en.wikipedia.org/wiki/Linear_programming
https://en.wikipedia.org/wiki/Linear_function_(calculus)
https://en.wikipedia.org/wiki/NP-complete
https://en.wikipedia.org/wiki/Karp%27s_21_NP-complete_problems
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Production_planning

3 | P a g e

IV. EXACT ALGORITHMS

When the matrix is not totally unimodular,

there are a variety of algorithms that can be

used to solve integer linear programs exactly.

One class of algorithms are cutting plane

methods which work by solving the LP

relaxation and then adding linear constraints

that drive the solution towards being integer

without excluding any integer feasible points.

Another class of algorithms are variants of the

branch and bound method. For example, the

branch and cut method that combines both

branch and bound and cutting plane methods.

Branch and bound algorithms have a number

of advantages over algorithms that only use

cutting planes. One advantage is that the

algorithms can be terminated early and as long

as at least one integral solution has been

found, a feasible, although not necessarily

optimal, solution can be returned. Further, the

solutions of the LP relaxations can be used to

provide a worst-case estimate of how far from

optimality the returned solution is. Finally,

branch and bound methods can be used to

return multiple optimal solutions.

The pseudo-Boolean (PB) solver npSolver

encodes PB into SAT and solves the

optimization instances by calling a SAT solver

iteratively. The system supports MaxSAT, PB

and WBO. Optimization instances are tackled

by a greedy lower bound mechanism first. The

solver can translate PB to SAT based on a

portfolio of different encodings, based on the

number of clauses. As back end of the system

any SAT solver can be used, even incremental

solvers for the optimization function. By using

glucose as back end and the SAT simplifier

Coprocessor, npSolver shows an outstanding

performance on decision instances and can

compete on optimization instances.

Even though the SAT problems are said to be

NP-complete, there has been a enormous

enhancement in the technology of SAT solver

over the years. The improvement leads to the

evolution of various efficient SAT algorithms

which has the capability of solving different

problems having millions of constraints and

thousands of variables. Several well-known

solvers are like zChaff , RSat , GRSAP , and

Berkmin etc. Due to an enormous

improvement in the field of Boolean

satisfiability (SAT), the SAT solver increased

it’s capability to handle pseudo-Boolean (PB)

constraints. It can solve the 0-1 Integer linear

programming problems with great efficiency.

A large number of complex techniques from

different engineering and science domain have

used the advanced Boolean SAT solver to

solve various problems. The problems are like

scheduling, routing , power minimization,

cryptography, MANETs and many more.

Several researchers have been used to solve

the crop optimization problems using Boolean

Satisfiability.

In this paper, a complete solution is presented

to solve the crop optimization problem using

pseudo-Boolean satisfiability algorithm. The

difference between Boolean and

pseudoBoolean is that pseudo-Boolean

constraints can be represented as linear

inequalities with integer coefficients. PB

constraints performs efficiently in representing

"counting constraints". Moreover, the PB-SAT

solvers PBS , Pueblo, Bsolo and MiniSAT+

can handle both decision problems and

optimization problems efficiently.

V. PROBLEM

FORMULATION

The proposed methodology illustrates a PB-

SAT based formulation for crop optimization

problem. Given a list of different brand of

fertilizers with different level of nitrogen and

phosphate with different cost requirement, the

objective is to find the minimum cost for

fertilizer required with satisfactory amount of

nitrogen and phosphate for different crops

such that the total purchase cost of fertilizers

gets reduced satisfying all the given

constraints. Some of the assumptions and

notations used to design the pseudo-Boolean

constraint formulation is listed below:

Table 1:Assumptions

Sr.no. Brand Cost

(per

bag)

Nitrogen

(lb/bag)

Phosphate

(lb/bag)

1. Super-

go

100 2 4

2. Crop-

quick

120 4 3

https://en.wikipedia.org/wiki/Cutting-plane_method
https://en.wikipedia.org/wiki/Cutting-plane_method
https://en.wikipedia.org/wiki/Branch_and_bound
https://en.wikipedia.org/wiki/Branch_and_cut

4 | P a g e

LP Model Formulation

The following assumptions are considered

while designing the constraints of the farming.

 Two brands of fertilizers are available

Super-go, Crop-quick.

 Field requires at least 16 pounds of

nitrogen and 24 pounds of phosphate.

 Super-gro costs $6 per bag, Crop-

quick $3 per bag.

 Problem: How much of each brand to

purchase to minimize total cost of

fertilizer given following data?

Table 2. Chemical Contribution

Brand Chemical Contribution

Nitrogen

(lb/bag)

Phosphate

(lb/bag)

Super-go 2 4

Crop-quick 4 3

Figure 1. Farmer's Field 1

The notations required to design the PB-

constraints are given below:

Table 3.Notations

Notation Description

Di,j denotes an integer

variable representing

the fertilizer

requirement on day i

interval j.

N denotes highest

number of digits

used to represent the

integer variable Di,j

in Boolean form.

Xi,j,b represents a Boolean

variable used to

denote a "Super-

Gro" used in day i

interval j

Xpi,pj,b represents a Boolean

variable used to

denote a "Super-

Gro" continuing use

from previous

interval pj of day pi.

Yi,j,b presents a Boolean

variable used to

define a "Crop-

Quick" used in day i

interval j

CostSG total cost incurred

by a "Super-Grow"

 CostCQ total cost incurred

by a "Crop-quick"

PB-formulation: The PB-formulations

designed for the personnel scheduling problem

is discussed below:

a) Fertilizer selection constraint:

The constraint illustrates that Fertilizer

selection of a particular day must be

constrained by the nutrient requirement of the

corresponding day. As the scheduling is

designed for any two consecutive fertilizer of a

month So, the Super-Grow covers two

consecutive intervals. But, Crop-Quick using

tenure considers only one interval at a time.

The above considerations are formulated

through the following PB-constraint:

∑
 Xi,j,b +∑

 Xpi,pj,pb +

∑
 Yi,j,b = D i,j (1)

b) Fertilizer amount constraint: This

constraint ensures that at least one Nutrient

5 | P a g e

must be present from each category for any

crop. The constraint is applied for both

Nitrogen and Phosphate as we have considered

that every category crop have some specific

specialization. The smallest number of nutrient

assignment of any type could be one. The

constraint can be represented as defined below:

The PB-formulation for Nitrogen content:

∑
 Xi,j,b +∑

 Xpi,pj,b ≥ 1

 (2)

The PB-formulation for Phosphate content:

∑
 Yi,j,b ≥ 1 (3)

Objective function The above two constraints

ensures the fertilizer constraints, which ensure

that the nutrients get allotted to each crop with

zero inconsistency. Although, it is unable to

minimize the fertilizer cost during allocation.

To implement this, the following objective

function is designed:

Min: Cost ni *(∑
 Xi,j,b) + Cost ph

*(∑
 Yi,j,b) (4)

EXAMPLE DISCUSSION

In this section, an example is presented where

two types of fertilizers are available. The

fertilizers are categorized based on their

nitrogen and phosphate content. The objective

is to obtain the fertilizer with least cost and

higher content of nitrogen and phosphate such

that we get higher output of crops at least

expenditure. The nutrient required for any

particular fertilizer is presented in Table I. For

example, the super-go with nitrogen … and

phosphate … is represented by X1. The

Boolean representation of X1 and X2 is

presented in Fig. 1. In this example, the

highest number of personnel requirement is 11

and 4 digits are required to represent the

integer value into Boolean form. So, X1 is

represented by 4 different Boolean variables.

The total optimization costs are considered

different based on the fertilizers. The Super-

gro have paid at $6 per bag, and Crop-quick

are also paid at $3 per bag. But, the total cost

incurred by both are Z = ($6*number of Super-

gro bags) + ($3*number of Crop-quick)

Figure 2. Representation of decision variable x11 and

y11

LP Model Formulation

 Decision Variables:

X1 = bags of Super-go

X2 = bags of Crop-quick

 The Objective Function:

Minimize Z = $6x1 + 3x2 + 4x3

Where

$6x1 = cost of bags of Super-go

$3x2 = cost of bags of Crop-quick

 Model Constraints:

2x1 + 4x2 >= 16lb(nitrogen

constraint)

4x1 + 3x2 >= 24lb(phosphate

constraint)

X1, X2 >= 0 (non negativity

constraint)

$6x1 = cost of bags of Super-go

$3x2 = cost of bags of Crop-quick

 Model Constraints:

2x1 + 4x2 >= 16lb(nitrogen

constraint)

4x1 + 3x2 >= 24lb(phosphate

constraint)

X1, X2 >= 0 (non negativity

constraint)

6 | P a g e

Figure 3. Graph of both Model Constraint

Figure 4. Feasible Solution Area

Minimize Z = $6x1 + $3x2 subject to: 2x1 +

4x2 16 4x2 + 3x2 24 x1, x2 0

Figure 5. Minimization graph

SURPLUS VARIABLE

 A surplus variable is subtracted from a

constraint to convert it to an equation

(=).

 A surplus variable represents an

excess above a constraint requirement

level

 A surplus variable contributes nothing

to the calculated value of the objective

function.

 Subtracting surplus variables in the

farmer problem constraints: 2x1 + 4x2

- s1 = 16 (nitrogen) 4x1 + 3x2 - s2 =

24 (phosphate)

Minimize Z = $6x1 + $3x2 + 0s1 + 0s2

subject to: 2x1 + 4x2 – s1 = 16 4x2 + 3x2

– s2 = 24 x1, x2, s1, s2 0

Figure 6.Graph of Fertilizer

7 | P a g e

The Linear Programming using Minisat+ is (pseudo code):

Inserting a list as: a=list()

Taking user input: n=input("Enter number of crops:")

Using a loop to enter the value one by one

for i in range (0,n):

 variable val = input("Enter cost crop ")

 taking input by appending val

Creating a list for nitrogen content

ni=list()

Using a loop to enter the value one by one

loop i in range n:

 variable val = input("Enter amount of nitrogen ")

taking input by appending val

Creating a list for phosphate content

ph=list()

Using a loop to enter the value one by one

loop i in range n:

 val = input("Enter amount of phosphet ")

 taking input by appending val

Total Nitrogen and Phosphate required:

totni = input("Enter total amount of nitrogen ")

totph = input("Enter total amount of phosphet ")

Taking a digit:

dig=7

Minimum required value:

str1="min:"

f=open("filewrite.opb","w"

Using loop to calculate the optimal solution

loop i in range n:

 when k=0

loop of k less than dig:

co=power of 2 to k

8 | P a g e

 str1=str1+plus+str of a of [i] multiply co+"multiply x"+str of I plus str of k

 k= incrementing by 1

Using loop to calculate the equation as:

Z = $6x1 + $3x2 + 0s1 + 0s2

2x1 + 4x2 – s1 = 16

4x2 + 3x2 – s2 = 24

Where x1, x2, s1, s2 0

for i in range n:

 k=0

 loop k less than dig:

 co=power of 2 to k

 str1=str1+plus+str of nitrogen [i] multiply with co+"multiply x"+str of i+str of k

 k=k+1

str1=str1 greater than or equal to str of total nitrogen

loop i in range n:

 k=0

 Loop k<=dig:

 co=power of 2 to k

 str1=str1+plus+str of phosphate [i] multiply with co+"multiply x"+str of i+str of k

 k=k+1

str1=str1 greater than str of total phosphate

Loop: i in range n:

 k=0

 Loop k less than dig:

 co=power of 2 to k

 str1=str1+plus+str of co+"multiply x"+str of I +str of k

 k=k+1

 str1=str1 greater than 0

Ending the Code:

File write

File close

9 | P a g e

VI. OUTPUT

The output of the Minisat+ Solver When run,

sends to standard error a number of different

statistics about its execution. It will output to

standard output either "SATISFIABLE" or

"UNSATISFIABLE" depending on whether or

not the expression is satisfiable or not.

If give a RESULT-OUTPUT-FILE, miniSAT

will write text to the file. The first line will be

"SAT" (if it is satisfiable) or "UNSAT" (if it is

not). If it is SAT, the second line will be set of

assignments to the Boolean variables that

satisfies the expression.

In the code we have used demo input to test if

the program is working and so the inputs taken

are not related to practical use but it is ready to

be implemented in real life optimizations of

crop.

s SATISFIABLE

v -X114 -Y114 -X113 -Y113 -X112 -Y112 -X111 -Y111 -X110 -Y110 -X124 -Y124 -X123 -

Y123 X122 Y122 -X121 -Y121 X120 Y120 -X134 -Y134 X133 -Y133 -X132 -Y132 X131 -

Y131 -X130 -Y130 -X144 -Y144 X143 -Y143 -X142 -Y142 X141 -Y141 -X140 -Y140 -

X154 -Y154 -X153 -Y153 X152 -Y152 X151 -Y151 X150 -Y150 -X164 -Y164 -X163 -

Y163 -X162 -Y162 -X161 -Y161 -X160 -Y160 -X214 -Y214 -X213 -Y213 -X212 -Y212

X211 -Y211 -X210 -Y210 -X224 -Y224 -X223 -Y223 X222 Y222 X221 -Y221 -X220 -

Y220 -X234 -Y234 X233 -Y233 -X232 -Y232 X231 -Y231 -X230 -Y230 -X244 -Y244 -

X243 -Y243 X242 Y242 X241 -Y241 X240 -Y240 -X254 -Y254 -X253 -Y253 X252 -Y252

X251 -Y251 X250 -Y250 -X264 -Y264 -X263 -Y263 -X262 -Y262 X261 -Y261 X260 -

Y260

The above output was got after implementing

the equation with the demo variables and it is

satisfiable which means the program is ready

to be implemented in real life circumstances in

optimizing the cost of crops.

VII. EXPERIMENTAL

RESULTS

In this section, the crop optimization problem

is experimented through the proposed PB-SAT

based approach and the results are evaluated.

The PB-constraints are created using python

and solved through a well-known PB-SAT

solver Minisat+ [29]. The experiments were

conducted on an Intel Pentium 2.30 GHz

system equipped with 4 GB of RAM, working

on Linux environment. The timeout of SAT

solver is set to 1000 seconds. The proposed

approach is applied over 3 different test cases.

Table III presents the potassium and nitrogen

required for different test cases. The potassium

and nitrogen requirement is mentioned for

every fertilizer. The experiments are

performed in every test case. The obtained

results are shown in Table IV, V

and VI. The potassium and nitrogen contents

are taken the same as mentioned in the

example. The total fertilizers cost required for

two consecutive nutrients are presented in

Table V for different test cases. The third

column presented the CPU time (in seconds)

required to execute the test cases. Table V

demonstrates the "Super-Grow" assignments

for every test case. Similarly, the "Crop-

Quick" assignments for each interval of both

the fertilizers are presented in Table VI. The

observations coming out from the

experimental results are presented in order:

10 | P a g e

The SAT solver works efficiently if the

number of variables and constraints are less.

• The CPU time increased with the increase

requirement of nutrients for any crop.

• The proposed approach is able to produce an

efficient optimization for every test case.

VIII. CONCLUSION

This paper focuses on solving a crop

optimization problem for a farm. Here, a

pseudo-Boolean Satisfiability (PB-SAT) based

technique is introduced to generate the

fertilizers requirement for crops. The proposed

approach expresses The optimization problem

as a PB-SAT instances by formulating PB

constraints. The PB-SAT solver Minisat+ is

able to solve the PB-constraints efficiently and

can generate an optimum fertilizer for the

crops. The goal of the proposed technique is to

minimize the total personnel cost while

maintaining other fertilizer constraints

provided. The proposed approach algorithm

works efficiently on a varied set of inputs.

Future work focuses on providing more

flexibility to the optimization by applying

additional constraints.

REFERENCES

[1] G. B. Dantzig, “Letter to the editorâ˘ AˇTa comment

on edie’s â˘AIJtraffic delays at toll boothsâ˘ A˙I,” Journal

of the Operations Research Society of America, vol. 2,

no. 3, pp. 339–341, 1954.

 [2] J. Van den Bergh, J. Beliën, P. De Bruecker, E.

Demeulemeester, and L. De Boeck, “Personnel

scheduling: A literature review,” European journal of

operational research, vol. 226, no. 3, pp. 367–385, 2013.

 [3] L. Wang and D.-Z. Zheng, “An effective hybrid

optimization strategy for job-shop scheduling problems,”

Computers & Operations Research, vol. 28, no. 6, pp.

585–596, 2001.

 [4] F. Pezzella, G. Morganti, and G. Ciaschetti, “A

genetic algorithm for the flexible job-shop scheduling

problem,” Computers & Operations Research, vol. 35,

no. 10, pp. 3202–3212, 2008.

[5] D. Moody, A. Bar-Noy, and G. Kendall,

“Construction of initial neighborhoods for a course

scheduling problem using tiling,” in 2007 IEEE

Symposium on Computational Intelligence in

Scheduling. IEEE, 2007, pp. 187–191.

[6] Y. Yang, R. Paranjape, and L. Benedicenti, “An

examination of mobile agents system evolution in the

course scheduling problem,” vol. 2, 06 2004, pp. 657 –

660 Vol.2.

 [7] L. Wang, J. Cai, M. Li, and Z. Liu, “Flexible job

shop scheduling problem using an improved ant colony

optimization,” Scientific Programming, vol. 2017, 2017.

[8] E. Burke, P. De Causmaecker, and G. V. Berghe, “A

hybrid tabu search algorithm for the nurse rostering

problem,” in Asia-Pacific Conference on Simulated

Evolution and Learning. Springer, 1998, pp. 187–194.

 [9] M. Fırat and C. Hurkens, “An improved mip-based

approach for a multiskill workforce scheduling problem,”

Journal of Scheduling, vol. 15, no. 3, pp. 363–380, 2012.

[10] M. A. O. Louly, “A goal programming model for

staff scheduling at a telecommunications center,” Journal

of Mathematical Modelling and Algorithms in

Operations Research, vol. 12, no. 2, pp. 167–178, 2013.

[11] S. A. Cook, “The complexity of theorem-proving

procedures,” in Proceedings of the Third Annual ACM

Symposium on Theory of Computing, ser. STOC ’71.

New York, NY, USA: ACM, 1971, pp. 151–158.

[Online]. Available: http://doi.acm.org/10.1145/800157.

805047

[12] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and

S. Malik, “Chaff: Engineering an efficient sat solver,”

vol. 2001, 02 2001, pp. 530 – 535.

 [13] K. Pipatsrisawat and A. Darwiche, “A new clause

learning scheme for efficient unsatisfiability proofs,” in

Proceedings of the 23rd National Conference on

Artificial Intelligence - Volume 3, ser. AAAI’08. AAAI

Press, 2008, pp. 1481–1484. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1620270.1620313

[14] J. Marques-Silva and K. A. Sakallah, “Grasp: A

search algorithm for propositional satisfiability,” IEEE

Trans. Computers, vol. 48, pp. 506– 521, 1999.

http://dl.acm.org/citation.cfm?id=1620270.1620313

