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ABSTRACT - Crop planning is a Multi-

objective optimization problem, also called as 

NP-Hard Problem. Agriculture has to face 

various challenges such as irrigation water 

management, land allocation, climate changes, 

human and other resources used for agriculture, 

which can be controlled by effective crop 

planning. Crop planning optimization gives an 

idea to utilize the minimum resources to get the 

maximum profit through optimizing the 

objectives. Agriculture plays an important role 

in the ecosystem management; using bio-

fertilizer and green manure can improve soil 

fertility without any chemical effects. The main 

aim of the crop planning is to improve the profit 

and productivity with the low input cost and 

resources. The crop planning problem has many 

factors, in that some can be optimized and some 

cannot be optimized. There are many methods 

available to solve crop planning problem, like 

algorithms, optimization tools, decision making 

tools, software etc. but still it needs more 

improvement to get the best optimal solutions. 

This paper presents a general idea of Crop 

Planning and various algorithms which are used 

to solve this problem and also address the 

problems that need effective solutions. 

 

Keywords – Optimization, Boolean, minisat, 

linear programming. 

I. INTRODUCTION 
 

The engineers have to carry out  

standard calculations for evapotranspiration, 

crop water usage, fertilizers, manure cost etc.  

Hence recommendations can be made with 

respect  to improved practices in irrigation and 

better planning of irrigation schedules.  

Smart application of fertilizer illustrates payoff 

in using analytical tools to enhance crop yields 

and improve the environment. 

 

The fertilizer used for agriculture is 40% 

globally. This has resulted in new methods of 

saving money in buying fertilizers. Hence 

money saving techniques has to  

be practiced.  In fertilizer resources planning 

and management, optimization techniques is 

used for limited use of resources such as such 

as water, land, production cost, manpower, 

fertilizers, seeds, and  pesticides. For 

cultivating each crop,  the land area needs to 

be planned properly. Hence the crop pattern 

has to be decided optimally depending on 

available water and mineral resources and on 

economic basis. Therefore farmer needs to be 

educated to adopt optimum cropping pattern 
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which maximizes the economic returns. Hence 

the study is taken up to optimize the fertilizers 

used for crops. The objective function for 

multi crop model were formulated using linear 

programming for  

Maximizing  the net benefits.  

 

To plan the with regard  to distribution  of 

water  resources to  the crop,  it  is  important  

to  optimize  the  available  land  and  water  

Resources to achieve  maximum returns. To 

solve such problems, the mathematical  

programming models  like linear  

programming (LP), dynamic programming 

(DP) and genetic algorithm (GP) are  

used.  Linear programming  is the  most 

convenient  and  effective  

tool to handle more number of constraints.  

 in agricultural research and farming 
systems

10
. Linear 

Linear programming is one of the main 

Operations Research techniques. The 

mathematical model usually consists of linear 

equations and/or inequalities. There is a linear 

objective function that is optimized 

(maximized or minimized) which is subject to 

a set of constraints. Generically, a linear 

programming model applied to farm planning . 

   

II. STUDY AREA 
 

The objective function of the model is  

subject to the  following constraints:  water 

availability, crop  land requirement, Human 

labour cost, Animal and Machine power cost,  

Seed cost, Fertilizers and Manure cost, Fixed 

cost etc. 

An integer programming problem is a 

mathematical optimization or feasibility 

program in which some or all of the variables 

are restricted to be integers. In many settings 

the term refers to integer linear 

programming (ILP), in which the objective 

function and the constraints (other than the 

integer constraints) are linear.  

Integer programming is NP-complete. In 

particular, the special case of 0-1 integer linear 

programming, in which unknowns are binary, 

and only the restrictions must be satisfied, is 

one of Karp's 21 NP-complete problems.  

If some decision variables are not discrete the 

problem is known as a mixed-integer 

programming problem 

III. APPLICATIONS 

There are two main reasons for using integer 

variables when modelling problems as a linear 

program:  

1. The integer variables represent 

quantities that can only be integer. For 

example, it is not possible to build 3.7 

cars. 

2. The integer variables represent 

decisions (e.g. whether to include an 

edge in a graph) and so should only 

take on the value 0 or 1. 

These considerations occur frequently in 

practice and so integer linear programming can 

be used in many applications areas, some of 

which are briefly described below.  

a) Production planning 

Mixed integer programming has many 

applications in industrial production, including 

job-shop modelling. One important example 

happens in agricultural production planning 

involves determining production yield for 

several crops that can share resources (e.g. 

Land, labour, capital, seeds, fertilizer, etc.). A 

possible objective is to maximize the total 

production, without exceeding the available 

resources. In some cases, this can be expressed 

in terms of a linear program, but variables 

must be constrained to be integer.  

b) Scheduling 

These problems involve service and vehicle 

scheduling in transportation networks. For 

example, a problem may involve assigning 

buses or subways to individual routes so that a 

timetable can be met, and also to equip them 

with drivers. Here binary decision variables 

indicate whether a bus or subway is assigned 

to a route and whether a driver is assigned to a 

particular train or subway. The zero-one 

programming technique has been successfully 

applied to solve a project selection problem in 

which projects are mutually exclusive and/or 

technologically interdependent. It is used in a 

special case of integer programming, in which 

all the decision variables are integers. It can 

assume the values either as zero or one. 

 

 

 

https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Constraint_satisfaction_problem
https://en.wikipedia.org/wiki/Integer
https://en.wikipedia.org/wiki/Linear_programming
https://en.wikipedia.org/wiki/Linear_programming
https://en.wikipedia.org/wiki/Linear_function_(calculus)
https://en.wikipedia.org/wiki/NP-complete
https://en.wikipedia.org/wiki/Karp%27s_21_NP-complete_problems
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Production_planning
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IV. EXACT ALGORITHMS 

When the matrix is not totally unimodular, 

there are a variety of algorithms that can be 

used to solve integer linear programs exactly. 

One class of algorithms are cutting plane 

methods which work by solving the LP 

relaxation and then adding linear constraints 

that drive the solution towards being integer 

without excluding any integer feasible points.  

Another class of algorithms are variants of the 

branch and bound method. For example, the 

branch and cut method that combines both 

branch and bound and cutting plane methods. 

Branch and bound algorithms have a number 

of advantages over algorithms that only use 

cutting planes. One advantage is that the 

algorithms can be terminated early and as long 

as at least one integral solution has been 

found, a feasible, although not necessarily 

optimal, solution can be returned. Further, the 

solutions of the LP relaxations can be used to 

provide a worst-case estimate of how far from 

optimality the returned solution is. Finally, 

branch and bound methods can be used to 

return multiple optimal solutions. 

The pseudo-Boolean (PB) solver npSolver 

encodes PB into SAT and solves the 

optimization instances by calling a SAT solver 

iteratively. The system supports MaxSAT, PB 

and WBO. Optimization instances are tackled 

by a greedy lower bound mechanism first. The 

solver can translate PB to SAT based on a 

portfolio of different encodings, based on the 

number of clauses. As back end of the system 

any SAT solver can be used, even incremental 

solvers for the optimization function. By using 

glucose as back end and the SAT simplifier 

Coprocessor, npSolver shows an outstanding 

performance on decision instances and can 

compete on optimization instances. 

Even though the SAT problems are said to be 

NP-complete, there has been a enormous 

enhancement in the technology of SAT solver 

over the years. The improvement leads to the 

evolution of various efficient SAT algorithms 

which has the capability of solving different 

problems having millions of constraints and 

thousands of variables. Several well-known 

solvers are like zChaff , RSat , GRSAP , and 

Berkmin etc. Due to an enormous 

improvement in the field of Boolean 

satisfiability (SAT), the SAT solver increased 

it’s capability to handle pseudo-Boolean (PB) 

constraints. It can solve the 0-1 Integer linear 

programming problems with great efficiency. 

A large number of complex techniques from 

different engineering and science domain have 

used the advanced Boolean SAT solver to 

solve various problems. The problems are like 

scheduling, routing , power minimization, 

cryptography, MANETs and many more. 

Several researchers have been used to solve 

the crop optimization problems using Boolean 

Satisfiability. 

In this paper, a complete solution is presented 

to solve the crop optimization problem using 

pseudo-Boolean satisfiability algorithm. The 

difference between Boolean and 

pseudoBoolean is that pseudo-Boolean 

constraints can be represented as linear 

inequalities with integer coefficients. PB 

constraints performs efficiently in representing 

"counting constraints". Moreover, the PB-SAT 

solvers PBS , Pueblo, Bsolo  and MiniSAT+ 

can handle both decision problems and 

optimization problems efficiently. 

 

V. PROBLEM 

FORMULATION 

The proposed methodology illustrates a PB-

SAT based formulation for crop optimization 

problem. Given a list of different brand of 

fertilizers with different level of nitrogen and 

phosphate with different cost requirement, the 

objective is to find the minimum cost for 

fertilizer required with satisfactory amount of 

nitrogen and phosphate for different crops 

such that the total purchase cost of fertilizers 

gets reduced satisfying all the given 

constraints. Some of the assumptions and 

notations used to design the pseudo-Boolean 

constraint formulation is listed below: 

 

Table 1:Assumptions 

Sr.no. Brand Cost 

(per 

bag) 

Nitrogen 

(lb/bag) 

Phosphate 

(lb/bag) 

1. Super-

go 

100 2 4 

2. Crop-

quick 

120 4 3 

 

 

https://en.wikipedia.org/wiki/Cutting-plane_method
https://en.wikipedia.org/wiki/Cutting-plane_method
https://en.wikipedia.org/wiki/Branch_and_bound
https://en.wikipedia.org/wiki/Branch_and_cut
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LP Model Formulation 

The following assumptions are considered 

while designing the constraints of the farming. 

 Two brands of fertilizers are available 

Super-go, Crop-quick. 

 Field requires at least 16 pounds of 

nitrogen and 24 pounds of phosphate. 

 Super-gro costs $6 per bag, Crop-

quick $3 per bag. 

 Problem: How much of each brand to 

purchase to minimize total cost of 

fertilizer given following data? 

Table 2. Chemical Contribution 

Brand Chemical Contribution 

Nitrogen 

(lb/bag) 

Phosphate 

(lb/bag) 

Super-go 2 4 

Crop-quick 4 3 

 

 

 

Figure 1. Farmer's Field 1 

The notations required to design the PB-

constraints are given below: 

Table 3.Notations 

Notation Description 

Di,j denotes an integer 

variable representing 

the fertilizer 

requirement on day i 

interval j. 

N denotes highest 

number of digits 

used to represent the 

integer variable Di,j 

in Boolean form. 

Xi,j,b represents a Boolean 

variable used to 

denote a "Super-

Gro" used in day i 

interval j 

Xpi,pj,b represents a Boolean 

variable used to 

denote a "Super-

Gro" continuing use 

from previous 

interval pj of day pi. 

Yi,j,b presents a Boolean 

variable used to 

define a "Crop-

Quick" used in day i 

interval j 

CostSG total cost incurred 

by a "Super-Grow" 

 CostCQ total cost incurred 

by a "Crop-quick" 

 

PB-formulation: The PB-formulations 

designed for the personnel scheduling problem 

is discussed below:  

 

 

a) Fertilizer selection constraint:  

The constraint illustrates that Fertilizer 

selection of a particular day must be 

constrained by the nutrient requirement of the 

corresponding day. As the scheduling is 

designed for any two consecutive fertilizer of a 

month So, the Super-Grow covers two 

consecutive intervals. But, Crop-Quick using 

tenure considers only one interval at a time. 

The above considerations are formulated 

through the following PB-constraint:  

 

∑     
    Xi,j,b +∑     

    Xpi,pj,pb + 

∑     
    Yi,j,b = D i,j      (1) 

b) Fertilizer amount constraint: This 

constraint ensures that at least one Nutrient 
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must be present from each category for any 

crop. The constraint is applied for both 

Nitrogen and Phosphate as we have considered 

that every category crop have some specific 

specialization. The smallest number of nutrient 

assignment of any type could be one. The 

constraint can be represented as defined below: 

The PB-formulation for Nitrogen content: 

∑     
    Xi,j,b +∑     

    Xpi,pj,b   ≥ 1

   (2) 

The PB-formulation for Phosphate content: 

∑     
    Yi,j,b ≥ 1   (3) 

 

Objective function The above two constraints 

ensures the fertilizer constraints, which ensure 

that the nutrients get allotted to each crop with 

zero inconsistency. Although, it is unable to 

minimize the fertilizer cost during allocation. 

To implement this, the following objective 

function is designed: 

Min: Cost ni *( ∑     
    Xi,j,b) + Cost ph 

*(∑     
    Yi,j,b)   (4) 

 

EXAMPLE DISCUSSION  

In this section, an example is presented where 

two types of fertilizers are available. The 

fertilizers are categorized based on their 

nitrogen and phosphate content. The objective 

is to obtain the fertilizer with least cost and 

higher content of nitrogen and phosphate such 

that we get higher output of crops at least 

expenditure. The nutrient required for any 

particular fertilizer is presented in Table I. For 

example, the super-go with nitrogen … and 

phosphate … is represented by X1. The 

Boolean representation of X1 and X2 is 

presented in Fig. 1. In this example, the 

highest number of personnel requirement is 11 

and 4 digits are required to represent the 

integer value into Boolean form. So, X1 is 

represented by 4 different Boolean variables. 

The total optimization costs are considered 

different based on the fertilizers. The Super-

gro have paid at $6 per bag, and Crop-quick 

are also paid at $3 per bag. But, the total cost 

incurred by both are Z = ($6*number of Super-

gro bags) + ($3*number of Crop-quick) 

 

 

Figure 2. Representation of decision variable x11 and 

y11 

LP Model Formulation 

 Decision Variables: 

X1 = bags of Super-go 

X2 = bags of Crop-quick 

 The Objective Function: 

Minimize Z = $6x1 + 3x2 + 4x3 

Where  

$6x1 = cost of bags of Super-go 

$3x2 = cost of bags of Crop-quick 

 Model Constraints: 

2x1 + 4x2 >= 16lb(nitrogen 

constraint) 

4x1 + 3x2 >= 24lb(phosphate 

constraint) 

X1, X2 >= 0 (non negativity 

constraint) 

 

 

$6x1 = cost of bags of Super-go 

$3x2 = cost of bags of Crop-quick 

 Model Constraints: 

2x1 + 4x2 >= 16lb(nitrogen 

constraint) 

4x1 + 3x2 >= 24lb(phosphate 

constraint) 

X1, X2 >= 0 (non negativity 

constraint) 
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Figure 3. Graph of both Model Constraint  

 

 

 

Figure 4. Feasible Solution Area

Minimize Z = $6x1 + $3x2 subject to: 2x1 + 

4x2 16 4x2 + 3x2 24 x1, x2 0 

 

 

Figure 5. Minimization graph  

 

SURPLUS VARIABLE 

 A surplus variable is subtracted from a 

constraint to convert it to an equation 

(=). 

 A surplus variable represents an 

excess above a constraint requirement 

level 

 A surplus variable contributes nothing 

to the calculated value of the objective 

function. 

 Subtracting surplus variables in the 

farmer problem constraints: 2x1 + 4x2 

- s1 = 16 (nitrogen) 4x1 + 3x2 - s2 = 

24 (phosphate) 

 

Minimize Z = $6x1 + $3x2 + 0s1 + 0s2 

subject to: 2x1 + 4x2 – s1 = 16 4x2 + 3x2 

– s2 = 24 x1, x2, s1, s2 0 

 

Figure 6.Graph of Fertilizer   
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The Linear Programming using Minisat+ is (pseudo code): 

Inserting a list as: a=list() 

Taking user input: n=input("Enter number of crops:") 

Using a loop to enter the value one by one 

for i in range (0,n): 

 variable val = input("Enter cost crop ")  

 taking input by appending val 

Creating a list for nitrogen content 

ni=list() 

Using a loop to enter the value one by one 

loop i in range n: 

 variable val = input("Enter amount of nitrogen ")  

taking input by appending val  

Creating a list for phosphate content 

ph=list() 

Using a loop to enter the value one by one 

loop i in range n: 

 val = input("Enter amount of phosphet ")  

 taking input by appending val 

Total Nitrogen and Phosphate required: 

totni = input("Enter total amount of nitrogen ")  

totph = input("Enter total amount of phosphet ")  

Taking a digit: 

dig=7 

Minimum required value: 

str1="min:" 

f=open("filewrite.opb","w" 

Using loop to calculate the optimal solution  

loop i in range n: 

 when k=0 

loop of k less than dig: 

co=power of 2 to k 
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  str1=str1+plus+str of a of [i] multiply co+"multiply x"+str of I plus str of k 

  k= incrementing by 1 

Using loop to calculate the equation as:   

Z = $6x1 + $3x2 + 0s1 + 0s2  

2x1 + 4x2 – s1 = 16  

4x2 + 3x2 – s2 = 24  

Where x1, x2, s1, s2 0 

for i in range  n: 

 k=0 

 loop k less than dig: 

  co=power of  2 to k 

  str1=str1+plus+str of nitrogen [i] multiply with co+"multiply x"+str of i+str of k 

  k=k+1 

str1=str1 greater than or equal to str of total nitrogen  

loop i in range n: 

 k=0 

 Loop k<=dig: 

  co=power of  2 to k 

  str1=str1+plus+str of phosphate [i] multiply with co+"multiply x"+str of i+str of k 

  k=k+1 

str1=str1 greater than str of total phosphate 

Loop: i in range n: 

 k=0 

 Loop k less than dig: 

  co=power of 2 to k 

  str1=str1+plus+str of co+"multiply x"+str of I +str of k 

  k=k+1 

 str1=str1 greater than 0 

Ending the Code: 

File write 

File close 
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VI. OUTPUT 

The output of the Minisat+ Solver When run, 

sends to standard error a number of different 

statistics about its execution. It will output to 

standard output either "SATISFIABLE" or 

"UNSATISFIABLE" depending on whether or 

not the expression is satisfiable or not. 

If give a RESULT-OUTPUT-FILE, miniSAT 

will write text to the file. The first line will be 

"SAT" (if it is satisfiable) or "UNSAT" (if it is 

not). If it is SAT, the second line will be set of 

assignments to the Boolean variables that 

satisfies the expression.  

In the code we have used demo input to test if 

the program is working and so the inputs taken 

are not related to practical use but it is ready to 

be implemented in real life optimizations of 

crop. 

s SATISFIABLE 

v -X114 -Y114 -X113 -Y113 -X112 -Y112 -X111 -Y111 -X110 -Y110 -X124 -Y124 -X123 -

Y123 X122 Y122 -X121 -Y121 X120 Y120 -X134 -Y134 X133 -Y133 -X132 -Y132 X131 -

Y131 -X130 -Y130 -X144 -Y144 X143 -Y143 -X142 -Y142 X141 -Y141 -X140 -Y140 -

X154 -Y154 -X153 -Y153 X152 -Y152 X151 -Y151 X150 -Y150 -X164 -Y164 -X163 -

Y163 -X162 -Y162 -X161 -Y161 -X160 -Y160 -X214 -Y214 -X213 -Y213 -X212 -Y212 

X211 -Y211 -X210 -Y210 -X224 -Y224 -X223 -Y223 X222 Y222 X221 -Y221 -X220 -

Y220 -X234 -Y234 X233 -Y233 -X232 -Y232 X231 -Y231 -X230 -Y230 -X244 -Y244 -

X243 -Y243 X242 Y242 X241 -Y241 X240 -Y240 -X254 -Y254 -X253 -Y253 X252 -Y252 

X251 -Y251 X250 -Y250 -X264 -Y264 -X263 -Y263 -X262 -Y262 X261 -Y261 X260 -

Y260 

 

The above output was got after implementing 

the equation with the demo variables and it is 

satisfiable which means the program is ready 

to be implemented in real life circumstances in 

optimizing the cost of crops.

 

 

 

VII. EXPERIMENTAL 

RESULTS  

In this section, the crop optimization problem 

is experimented through the proposed PB-SAT 

based approach and the results are evaluated. 

The PB-constraints are created using python 

and solved through a well-known PB-SAT 

solver Minisat+ [29]. The experiments were 

conducted on an Intel Pentium 2.30 GHz 

system equipped with 4 GB of RAM, working 

on Linux environment. The timeout of SAT 

solver is set to 1000 seconds. The proposed 

approach is applied over 3 different test cases. 

Table III presents the potassium and nitrogen 

required for different test cases. The potassium 

and nitrogen requirement is mentioned for 

every fertilizer. The experiments are 

performed in every test case. The obtained 

results are shown in Table IV, V  

 

and VI. The potassium and nitrogen contents 

are taken the same as mentioned in the 

example. The total fertilizers cost required for 

two consecutive nutrients are presented in 

Table V for different test cases. The third 

column presented the CPU time (in seconds) 

required to execute the test cases. Table V 

demonstrates the "Super-Grow" assignments 

for every test case. Similarly, the "Crop-

Quick" assignments for each interval of both 

the fertilizers are presented in Table VI. The 

observations coming out from the 

experimental results are presented in order: 
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The SAT solver works efficiently if the 

number of variables and constraints are less.  

• The CPU time increased with the increase 

requirement of nutrients for any crop. 

• The proposed approach is able to produce an 

efficient optimization for every test case. 

 

VIII. CONCLUSION  

This paper focuses on solving a crop 

optimization problem for a farm. Here, a 

pseudo-Boolean Satisfiability (PB-SAT) based 

technique is introduced to generate the 

fertilizers requirement for crops. The proposed 

approach expresses The optimization problem 

as a PB-SAT instances by formulating PB 

constraints. The PB-SAT solver Minisat+ is 

able to solve the PB-constraints efficiently and 

can generate an optimum fertilizer for the 

crops. The goal of the proposed technique is to 

minimize the total personnel cost while 

maintaining other fertilizer constraints 

provided. The proposed approach algorithm 

works efficiently on a varied set of inputs. 

Future work focuses on providing more 

flexibility to the optimization by applying 

additional constraints. 
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