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Abstract—In this work, we consider the Perona-Malik (PM)
model with fractional derivatives and its application for image
processing. This model is obtained from the standard PM
equation by replacing the ordinary derivative with a fractional
derivative. the numerical resolution of this model is based on
the finite difference method, we analyse efficient numerical
methods for the fractional model, and we give practical
experiments with natural images which are showing that the
fractional approach is more efficient than the ordinary integer
one. the proposed model has good performance in visual quality
and high signal to noise ratio (SNR)/ Peak signal to noise
(PSNR)
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I. INTRODUCTION

In recent years, the use of fractional partial differential
models has become increasingly popular and has also been
widely applied various applications in different fields of
research [20], including electromagnetism [12], stochastics,
fractals, diffusion processes [17], complex networks, image
processing . . . etc. different models using fractional partial
differential equations have been proposed, and there has
been significant interest in developing numerical schemes
for their solution [3], [5] such as finite element/difference
methods or other methods.
In this context several authors have used models with
fractional derivatives in image processing, the more studied
model was proposed by Perona and Malik, researchers have
proposed models based on (PM) by adding or modifying one
or more parameters , in [4] the authors propose to modify
the classical PM model by introducing the Caputo-Fabrizio
fractional gradient inside the diffusivity function, in [18] the
authors reinterpret the Perona–Malik model in the language
of Gaussian scale mixtures and derive some extensions of the
model, in [19] they developed a new noise removal model
by combining the modified isotropic diffusion model and
the modified Perona-Malik (PM) model, in [14], [15] new
diffusion coefficients are proposed for Image denoising
In this work we study a numerical approach to the Perona-

Malik (PM) model with Caputo’s time-fractional derivatives
and its application for image processing

A. Perona-Malik model with time-fractional derivative

Let Ω ⊂ R2 denote a bounded rectangular domain of R2

We consider the following Perona-Malik problem :
cDα

t u(x, t) = div
(
G(‖∇u(x, t)‖)∇u(x, t)

)
in Ω× I,

∂u

∂n
= 0 on ∂Ω× I,

u(x, t = 0) = u0(x) on Ω.
(1)

where :
• The operator cDα

t is the time fractional derivative of
order α in Caputo sense with 0 < α < 1 and

cDα
t u(x, t) =

1

Γ(1− α)

∫ t

0

∂u(x, t)
∂s

ds

(t− s)α

• u(x, t) represents the smoothed image intensity func-
tion in the position x = (x, y) ∈ Ω in time t

• u0(x) is the original image intensity function (noisy
image)

• ∇ (respectively. div(.)) denotes the gradient (respec-
tively divergence) operator

•
∂u

∂n
is the normal derivative to the boundary

• I = [0, T ] where T > 0
• Γ designates the Gamma function
• G the diffusion coefficient

Pietro Perona and Jitendra Malik proposed in 1990 two
functions as diffusion coefficient:

G(‖∇u‖) = e
−

‖∇u‖
λ

2

and
G(‖∇u‖) =

1

1 +

(
‖∇u‖
λ

)2

where :



λ is a positive constant controls the sensitivity to edges,
is usually fixed manually( methodologies to estimate the
contrast parameter λ is given in [13] and [16]) or as a
function of the noise in the image.
Other expressions for the diffusion coefficient are given in
[14] and [15]

II. NUMERICAL SCHEMES

A. Discretization in time: a finite difference scheme
Let 0 = t0 < t1 < t2 < ... < tn = T an uniform

discretization of [0, T ] of step ∆t where ∆t = T/n (
tk = k∆t, k = 0, 1, ..., n)
We discretize the derivative operator in Caputo’s sense by
a finite difference approach by:
for all 0 ≤ k ≤ n− 1:

cDα
t u(x, tk+1) =

1

Γ(1− α)

k∑
j=0

∫ tj+1

tj

∂u(x, s)
∂s

ds

(tk+1 − s)α

=
1

Γ(1− α)

k∑
j=0

u(x, tj+1)− u(x, tj)
∆t

∫ tj+1

tj

ds

(tk+1 − s)α
+Rk+1

(2)
where Rk+1 is the truncation error satisfying :

Rk+1 ≤ Cu∆t2−α

for a positive constant cu depend only on u (see [5])

by computing
∫ tj+1

tj

ds

(tk+1 − s)α
, we write (2) as:

cDα
t u(x, tk+1) =

1

(∆t)αΓ(2− α)

k∑
j=0

((k − j + 1)1−α − (k − j)1−α)

(u(x, tj+1)− u(x, tj)) +Rk+1

(3)
or by a change of index as :

cDα
t u(x, tk+1) =

1

(∆t)αΓ(2− α)

k∑
j=0

((j + 1)1−α − (j)1−α)

(u(x, tk−j+1)− u(x, tk−j)) +Rk+1

(4)
let us take cj = (1 + j)1−α − j1−α for all j = 0, 1..., k
and introduce the parameter α0 = Γ(2− α)∆tα

we can easily verify that :
k∑
j=0

(cj − cj+1) + ck+1 = (1− c1) +

k−1∑
j=1

(cj − cj+1) + ck

And note that c0 = 1
we can write 4 as

cDα
t u(x, tk+1) =

1

α0

(
u(x, tk+1)− (1− c1)u(x, tk)

−
k−1∑
j=1

Bju(x, tk−j)− cku(x, t0)
)

+Rk+1

(5)

where Bj = cj − cj+1

Let be uk(x) ≈ u(x, tk) the approximation of u(x, tk)
we write finally :

cDα
t u

k+1 ' 1

α0

(
uk+1 − (1− c1)uk −

k−1∑
j=1

Bju
k−j − cku0

)
(6)

B. Discretization in space

Let be ∆x and ∆y be the space steps such that ∆x =
∆y = 1
Let us take

A(u(x, t)) := div
(
G(‖∇u(x, t)‖)∇u(x, t)

)
(7)

we can write

A(u(x, t)) =
∂

∂x

(
G(‖∇u‖)∂u

∂x

)
+

∂

∂y

(
G(‖∇u‖)∂u

∂y

)
(8)

we pose :

φ(x, t) = G(‖∇u(x, t)‖)∂u(x, t)
∂x

and
ψ(x, t) = G(‖∇u(x, t)‖)∂u(x, t)

∂y

we’ve using a centered finite difference

∂φ(xi, yj , tk)

∂x
=
φ(xi+1/2, yj , tk)− φ(xi−1/2, yj , tk)

∆x
+O(∆x)

(9)

' G(|∇uki+1/2,j |)(u
k
i+1,j − uki,j)−G(|∇uki−1/2,j |)(u

k
i−1,j − uki,j)

(10)

where uki,j is the approximation of u(xi, yj , tk)
and

G(|∇uni+1/2,j |) = G(|uni+1,j − uni,j |)

and
G(|∇uni−1/2,j |) = G(|uni,j − uni−1,j |)

the same for
∂φ(xi, yj , tk)

∂y
=
φ(xi, yj+1/2, tk)− φ(xi−1/2, yj−1/2, tk)

∆y
+O(∆y)

(11)

' G(|∇uki,j+1/2|)(u
k
i,j+1 − uki,j)−G(|∇uki,j−1/2|)(u

k
i,j−1 − uki,j)

(12)

we write finally

A(u(xi, yj , tn)) ' A(uni,j) (13)

' GN .∇Nuni,j +GS .∇Suni,j +GE .∇Euni,j +GW .∇Wuni,j
(14)



where:
∇Nuni,j = uni−1,j − uni,j
∇Suni,j = uni+1,j − uni,j
∇Euni,j = u(ni,j+1−uni,j
∇Wuni,j = uni,j−1 − uni,j

and

Gm = G

(
|∇mu(xi, yj , t)|

)
m = N,S,E,W

C. Full Discretization

We will take an upper step in time for the fractional
derivative in time
then we obtain an equivalence to our problem:

uk+1 = (1− c1)uk +
k−1∑
j=1

Bju
k−j + cku

0 +α0A(uk) (15)

and for k = 0
u1 = α0A(u0) + u0 (16)

without forgetting the boundary condition and the initial
condition

III. EXPERIMENTAL RESULTS:

In this section, we give some experimental results which
are obtained with application of the proposed model on
images which have been corrupted by Gaussian noise, It
is usually common in images acquired from cameras and
telescopes, and it alters all pixels in the image.
Our proposed model is compared to the standard model of
Perona-Malik, or/and classical heat equation.
We take ∆t = 0.1 and ∆x = ∆y = 1
The number of iterations used is fixed in 17, and the
performance of the models has been assessed by using
PSNR(peak signal-to-noise ratio) and SNR(signal-to-noise
ratio) which are defined by:

SNR = 10 log (

∑
n,m u

2∑
n,m(û− u)2

) (17)

and
PSNR = 10 log (

2552∑
n,mMSE

) (18)

where u the original image and û the restored image
and MSE is the Mean squared error given by

MSE =
1

MN

∑
n,m

(û− u)2)

with M and N signifiant the width and height of the image
And for reasons of simplification we’ll take λ = 6
Here we give a comparison between the proposed model and
other models

A. First experience:

eyes original image in the left, noisy image with Gaussian
noise with mean = 0 and variance σ = 0.01 in the middle, and
noisy image with Gaussian noise with mean = 0 and σ = 0, 02
in the right

result after 17 iterations for σ = 0.01, heat equation in the left,
PM model in the middle and proposed method in the right with
α = 0.63

result after 17 iterations for σ = 0.02, heat equation in the left,
PM model in the middle and proposed method in the right with
α = 0.63

model SNR PSNR

heat equation 17.9148 23.1598
PM model 18.3240 23.5775

Proposed model with α = 0.63 20.9576 26.2677
Proposed model with α = 0.81 21.0049 26.8741

Table I: Performance of the proposed model for the first test
with σ = 0.01



B. Second experience:

original image in the left, noisy image with Gaussian noise
with mean = 0 and σ = 0.01 in the middle, and noisy image
with Gaussian noise with mean = 0 and σ = 0, 02 in the right

result after 17 iterations for σ = 0.01, heat equation in the left,
PM model in the middle and proposed method in the right with
α = 0.7

result after 17 iterations for σ = 0.02, heat equation in the left,
PM model in the middle and proposed method in the right with
α = 0.7

model SNR PSNR

heat equation 18.2883 23.6139
PM model 19.4911 24.8358

Proposed model with α = 0.7 22.1066 27.4772

Table II: Performance of the proposed model for the second
test with σ = 0.01

C. 3rd experience:

Lena ,original image in the left, noisy image with Gaussian
noise with mean = 0 and σ = 0.01 in the middle, and noisy
image with Gaussian noise with mean = 0 and σ = 0, 02 in the
right

result after 17 iterations for σ = 0.01, heat equation in the left,
PM model in the middle and proposed method in the right with
α = 0.7

result after 17 iterations for σ = 0.02, heat equation in the left,
PM model in the middle and proposed method in the right with
α = 0.7

model SNR PSNR

heat equation 14.7579 20.3170
PM model 15.7359 21.3160

Proposed model with α = 0.8 19.9973 24.9802
Proposed model with α = 0.9 19.0326 24.6910

Table III: Performance of the proposed model for the 3rd
test with σ = 0.02



D. 4th experience:

Boat ,original image in the left, noisy image with Gaussian
noise with mean = 0 and σ = 0.01 in the middle, and noisy
image with Gaussian noise with mean = 0 and σ = 0, 02 in the
right

result after 17 iterations for σ = 0.01, heat equation in the left,
PM model in the middle and proposed method in the right with
α = 0.83

result after 17 iterations for σ = 0.02, heat equation in the left,
PM model in the middle and proposed method in the right with
α = 0.83

model SNR PSNR

heat equation 17.1683 23.2715
PM model 17.9907 24.1097

Proposed model with α = 0.83 21.3823 27.4801
Proposed model with α = 0.9 20.8720 27.0342

Table IV: Performance of the proposed model for the 4th
test with σ = 0.01

model SNR PSNR

heat equation 14.4018 20.4189
PM model 15.2763 21.3265

Proposed model with α = 0.83 18.6263 25.4392
Proposed model with α = 0.9 18.3691 24.4915

Table V: Performance of the proposed model for the 4th test
with σ = 0.02

IV. CONCLUSION

In this paper we have given a numerical scheme for the
Perona-Malik model with fractional time derivative, we have
applied the proposed model to images to which we have
added Gaussian noise, we have compared the model with
the heat equation and/or the classical Perona-Malik model,
we have given the results and we have calculated the SNR
and the PSNR it can be seen that the PSNR/SNR values of
the proposed modelare higher than those of other models
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