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The concept of synthesis of LDPC and Polar Codes on the basis of Face-Splitting 

product of matrices. 

A feature of the 5G NR cellular communication standard is the use of LDPC codes for data 

transmission [1, 2], which have proven their effectiveness in comparison with turbo codes. 

However, such a choice does not mean that the problem of data coding is finally solved. The 

beginning of work on 6G cellular technologies has stimulated the search for new solutions aimed 

at improving the known approaches to data encoding. In addition to the development of LDPC 

methods, this is confirmed by the ongoing studies of polar codes [3], which at one time were 

considered as an alternative to LDPC when developing the 5G NR standard. 

As known, describing the idea of synthesizing LDPC codes of large dimension, their 

author Gallagher [1] proposed to form an initial check matrix of small dimension with 

subsequent increase in its format by repeating the original matrix in combination with 

permutation of rows and columns for the elimination of repetitive cycles. 

In this regard, it is proposed to improve the Gallager approach by forming high-

dimensional checking and generating matrices based on the face-splitting product of their 

original versions [4 - 6]. This method is a more general case of the technique used by Gallagher, 

which consists in replicating the same check matrix. In this case, the Gallager version is obtained 

by row-by-row multiplication on the left of the matrix of ones by the original check matrix with 

the same number of rows, taking into account that the number of columns in the matrix of ones is 

equal to the required number of repetitions of the check matrix: 
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where □ – symbol of face-splitting matrix product. 

On the other hand, it should also be noted that the transition to the face-splitting product is 

a development of the idea of splitting the check matrix by rows used in [2], since a similar 

concept lies at the heart of the face-splitting product, in which matrix decomposition is 

performed row by row. 

In the context of the proposed approach, the orthogonality property of face-splitting 

products is essential. Its essence is that if the product of two sparse matrices A and B with 

elements 0 and 1 is orthogonal modulo 2, that is, AB = 0 (mod 2), then the results of 

multiplication modulo 2 of multiple face-splitting products of these matrices will be orthogonal 

as well, that is: 

(A□A□A□…□A)(B□B□B□…□B)=0 (mod 2).                               (1) 

As applied to LDPC codes, as an example confirming the validity of this property, we can 

consider checking the orthogonality of the generating matrix G and the transposed parity check 

matrix H: 
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The same property holds for products of matrices and vectors, that is, in the case of 

orthogonality of the matrix H and the vector c (Hc = 0 (mod 2)), it will be true: 

(H□H□H□…□H)(c
T
□c

T
□c

T
□…□c

T
)

T
=0 (mod 2).                                  (2) 



In general, for LDCP, a combination of M different parity check matrices with the same 

number of rows and the corresponding codes is possible: 

(H1□ H2□H3□…□HM)(c1
T
□c2

T
□c3

T
□…□cM

T
)

T
=0 (mod 2).                         (3) 

As an example, consider the parity check matrices and code sequences used in the LDPC 

literature: 
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T
 = [0 1 0 0 0 1].                            (5) 

Let's form a new parity check matrix by the face-splitting product: 

H=H1 □ H2,                                                            (6) 

and the corresponding new vector of code: 

с=(с1
T
 □ с2

T
)
T
. 

As a result of multiplying the matrix H by the vector c, we get: 
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that is, their multiplication modulo 2 generates a zero vector, which is an indicator of 

orthogonally. 

Since the result of transposition of the face-splitting product of vectors in (2) coincides 

with their Kronecker product [5], this expression can be rewritten as: 

(H□H□H□…□H)(c
T
□c

T
□c

T
□…□c

T
)

T
 = (H□H□H□…□H)(ccc…c)= 

=(Hc)○(Hc)○(Hc)○…○(Hc) = (Hc)
n
=0 (mod 2),                              (8) 

product, ○ is the symbol of the Hadamard element-wise 

product. 

Similarly, for expression (3) we get: 

(H1□ H2□H3□…□HM)(c1
T
□c2

T
□c3

T
□…□cM

T
)

T
= 

=(H1□ H2□H3□…□HM)(c1 c2 c3… cM)=(H1c1)○(H2c2)○(H3c3)○…○(H4cM).      (9) 

Thus, the result of multiplying the face-splitting product of parity-check matrices by the 

face-splittung product of code vectors is split into a multiple Hadamard product. This makes it 

possible to replace the orthogonality check of high-dimensional matrices and corresponding 

codes with the parallel execution of several such tests with low-dimension matrices and vectors. 

On the other hand, it follows from expression (9) that for the orthogonality of the resulting parity 

check matrix and the code sequence obtained with the face-splitting products, it is necessary and 

sufficient to have only one orthogonal pair of initial combinations of the parity check matrix and 

the vector code. This means that if the parity check is not taken into account, then increasing the 

length of the parity matrix significantly expands the set of codes orthogonal to it. In other words, 

a single code vector may not be suitable for every parity check matrix, but if at least one of the 

code vectors is orthogonal for the entire set of parity check matrices, then the resulting face-

splitting products will be orthogonal. In addition, if you use the same check matrix as factors in 

the multiple face-splitting product, then in the face-splitting product of the row vectors it is 

sufficient to use only one vector orthogonal with the original check matrix, while the other 

vectors can be arbitrary. 

A relation similar to (9) can also be obtained in the case of orthogonality of the face-

splitting products formed by a set of arbitrary generating matrices and the transposed face-

splitting product of the set of parity check matrices. 

(G1□ G2□G3□…□GM)(H1□H2□H3□…□HM)
T
= 



=(G1 □ G2 □ G3 □…□ GM)(H1
T
 ■ H2

T
 ■ H3

T
 ■…■ HM

T
)=G1H1

T
○ G2H2

T
○ G3H3

T
○…○ GMHM

T
, 

where ■ – symbol of Khatry-Rao product [4 - 6]. 

The key here is the property of the face-splitting product [5]: 

(A □ B)(A
T
 ■ B

T
)= AA

T
○ BB

T
. 

In the examples considered, the transition to the face-splitting product was accompanied by 

the destructuring of the resulting generating matrix. In cases where the preservation of its 

structuredness is a prerequisite, the synthesis of the generating and corresponding check matrices 

can be performed according to the expressions: 

G=[ 1 | P1 □ P2 □ P3 □…□ PM]; H=[(P1 □ P2 □ P3 □…□ PM)
T
 | 1H ], 

where 1   and 1H are identity matrices of the corresponding dimension, Pm is the matrix of codes. 

As for polar codes, their feature in the synthesis of high-dimensional codes is the use of a 

multiple Kronecker product of polarization coding matrices F [3] to generate generating matrices 

G: 

G=B(F F F…F),  

where B is a permutation matrix. 

In this regard, it is proposed to modify this approach by completely or partially replacing 

the Kronecker product of the polarization matrices with their face-splitting product, for example:  

G=B(F□ F□ F□…□ F) или G=B((FF)□(FF)□…□(FF)) etc. 

In addition, it is possible to use a multiple face-splitting product for building the generating 

matrix GN of several initial generating matrices G formed by the method traditional for polar 

codes:  

GN= G□G□G□…□G. 

This solution will reduce the amount of computational costs in the synthesis of code 

sequences and their processing at the reception, in comparison with the usual use of the 

Kronecker multiplication operation. As a consequence, with the face-splitting product, a new 

coding paradigm can be constructed using a combined approach based on LDPC and polar 

codes. 
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