
EasyChair Preprint

№ 813

SIA: Secure Intermittent Architecture for

Off-the-Shelf Resource-Constrained

Microcontrollers

Daniel Dinu, Archanaa Santhana Krishnan and Patrick Schaumont

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

March 5, 2019

SIA: Secure Intermittent Architecture for
Off-the-Shelf Resource-Constrained

Microcontrollers
Daniel Dinu
Virginia Tech

Blacksburg, VA, USA
ddinu@vt.edu

Archanaa S. Khrishnan
Virginia Tech

Blacksburg, VA, USA
archanaa@vt.edu

Patrick Schaumont
Virginia Tech

Blacksburg, VA, USA
schaum@vt.edu

Abstract—Recent advancements in energy-harvesting tech-
niques provide an alternative to batteries for resource-
constrained IoT devices and lead to a new computing paradigm,
the intermittent computing model. In this model, a software
module continues its execution from where it left off when an
energy shortage occurred. Enforcing security of an intermittent
software module is challenging because its power-off state has
to be protected from a malicious adversary in addition to its
power-on state, while the security mechanisms put in place must
have a low overhead on the performance, resource consumption,
and cost of a device.

In this paper, we propose SIA (Secure Intermittent Archi-
tecture), a security architecture for resource-constrained IoT
devices. SIA leverages low-cost security features available in
commercial off-the-shelf microcontrollers to protect both the
power-on and power-off state of an intermittent software module.
Therefore, SIA enables a host of secure intermittent computing
applications such as self-attestation, remote attestation, and
secure communication. Moreover, our architecture provides con-
fidentiality and integrity guarantees to an intermittent computing
module at no cost compared to previous approaches in the litera-
ture that impose significant overheads. The salient characteristic
of SIA is that it does not require any hardware modifications,
and hence, it can be directly applied to existing IoT devices.

We implemented and evaluated SIA on a resource-constrained
IoT device based on an MSP430 processor. Besides being secure,
SIA is simple and efficient. We confirm the feasibility of SIA
for resource-constrained IoT devices with experimental results
of several intermittent computing applications. Our prototype
implementation outperforms by two to three orders of magnitude
the secure intermittent computing solution of Suslowicz et al.
presented at IGSC 2018.

Index Terms—secure intermittent architecture, resource-
constrained microcontroller, energy harvesting, intermittent com-
puting.

I. INTRODUCTION

The brisk development of the Internet of Things (IoT)
brings computing systems in all aspects of our lives, from
home and building automation to the clothes we wear, or
even life-critical implantable medical devices. Many of these
IoT devices, commonly referred to as smart devices or smart
things, are expected to operate autonomously for a long period
of time after their deployment. However, some characteris-
tics of batteries, such as their relatively large size, heavy
weight, limited lifetime, and the need for a replacement, stay
in the way of this goal [18]. Yet, recent advancements in

energy-harvesting technologies provide a viable alternative
to traditional batteries. Energy-harvesting techniques collect
energy from the environment and store it in a supercapacitor.
Although energy harvesters exploit a virtually inexhaustible
resource, environmental conditions influence the resource
availability (e.g., clouds block sun rays from reaching a solar
panel). Moreover, the amount of energy that can be stored is
limited. Therefore, IoT devices powered by harvested energy
have to work in a new execution model, in which every fraction
of the available energy has to be judiciously used to ensure
forward progress of computational tasks across unpredictable
power failures. Intermittent computing provides a means to
resume execution of a task after a power loss without redoing
the entire computation, but only that part whose result was not
saved in the non-volatile memory prior to the power loss.

System security is among the technical challenges that stem
from the absence of a continuous power source in the intermit-
tent computing model, especially because the attack surface of
devices that operate on harvested energy increases compared to
the attack surface of battery-powered devices. Attack vectors
specific to intermittent systems exploit the transition of a sys-
tem from task execution to power-off state and in particular the
memory and register content when the system is not powered.
In this way, an attacker can affect the confidentiality, integrity,
and availability of processed data. Hence, intermittent systems
must leverage security mechanisms to protect against these
new types of attacks in addition to the attacks that threaten the
security of a battery-powered device. Moreover, besides being
effective, security mechanisms should have a low overhead in
terms of area, memory, speed, and energy. With the market
of energy-harvesting devices estimated to grow to $2.6 billion
by 2024 [34], the security of intermittent computing devices
is of paramount concern.

Two key characteristics of IoT devices are network connec-
tivity and software extensibility [30], [31]. These two factors
enable a large spectrum of applications and at the same time
create opportunities for remote software attackers. Mirai and
other IoT botnets are eloquent examples of malware that
successfully infected low-end devices [2], [23], [26]. The lack
of advanced memory management units and privilege levels is
a hindrance to the security of resource-constrained embedded

1

devices against remote software attacks [30], [31]. To solve
this security issue, researchers from academia and industry
proposed various architectures tailored to the security goals
of IoT devices. In particular, trusted computing architectures
provide a certain level of confidence to users, owners, or
software vendors that the software executed on a device is
genuine and behaves as expected. The core idea of many
security architectures is to enforce some form of software
isolation. Depending on how software isolation is enforced,
a trusted computing architecture can be based on hardware,
software, or hardware/software codesign [28]. A security ar-
chitecture may provide local or remote attestation. Attestation
is a crucial security service that allows an authorized party
(verifier) to check if a software module is in a specific state.
The verifier sends a challenge to the prover and then checks the
authenticity of the attestation report received from the prover.
Typically, the attestation report consists of a cryptographic
signature or a message authentication code (MAC) over the
challenge and a measurement (e.g., a hash) of the binary code
to be attested.

The predicted growth of IoT devices powered by harvested
energy [13], [34] brings new security challenges, many of
which are at the intersection of intermittent computing and
security architectures. On the one hand, with a few exceptions,
the large body of literature on intermittent computing for low-
end devices is mainly focused on reliability and efficiency of
intermittent computing techniques and ignores security issues
specific to this computing model. On the other hand, to the
best of our knowledge, there is no architecture tailored to
the security requirements of resource-constrained IoT devices
powered by harvested energy in the wide range of security
architectures proposed in the literature. More precisely, the
security guarantees of existing solutions do not hold in the
intermittent computing model, mainly because they can not
be enforced when there is no power. Therefore, the power-off
state of a device is vulnerable to attacks that modify or replace
its content [27].

A. Research Contributions

In this paper, we address the above-mentioned security
challenges at the intersection of intermittent computing and
security architectures. To this end, we propose SIA (Secure
Intermittent Architecture), a security architecture for resource-
constrained IoT devices. SIA makes use of low-cost security
features available in resource-constrained microcontrollers to
enable secure intermittent execution of virtually any applica-
tion. Our secure intermittent architecture is the first of its kind
and is very useful for devices powered by harvested energy.
Potential applications include sensor nodes for monitoring
and detection of building and bridge stresses, air pollution,
forest fires, pending landslides, worn bearings, and wing
vibration [1], [13], [25]. In addition to the secure intermittent
computing framework which can be applied to any software
module, SIA provides three security services, namely self-
attestation, remote attestation, and secure communication. A
distinguishing feature of SIA is that it can be directly applied
to off-the-shelf microcontrollers because it does not require

any hardware modifications. Moreover, SIA can be applied
even to IoT devices already deployed in remote locations via
a secure over-the-air update.

Our research contributions can be summarized as follows:
• We propose SIA, a secure intermittent architecture that

guarantees the security of both power-on and power-
off states of a software module executed on a resource-
constrained microcontroller. In addition to this, SIA
provides three security services: self-attestation, remote
attestation, and secure communication.

• We implement SIA on an IoT device based on an
MSP430 microcontroller which is widely-used for ultra-
low-power applications. Our implementation does not
require hardware modifications, nor a custom toolchain.

• We evaluate our implementation of SIA by using several
intermittent computing applications. Experimental results
show that our secure intermittent architecture outperforms
by two to three orders of magnitude the secure intermit-
tent computing solution of Suslowicz et al. [38].

B. Outline

In Section II we formulate the problem addressed in this
paper, then we describe the attacker model and the desired
security properties. We present the design of our secure inter-
mittent architecture in Section III, our prototype implementa-
tion in Section IV, and our experimental results in Section V.
In Section VI we discuss related work. Finally, we conclude
the paper in Section VII.

II. PROBLEM STATEMENT

A. Intermittent Computing Systems

In this work, we consider a resource-constrained IoT device
that is powered by harvested energy and that operates in the
intermittent computing model. For example, we can imagine
a sensor node deployed at a distant location from its owner
to gather some sensory information, do some processing on
acquired data, and transmit updates to a gateway. The next
generation of smart-metering sensors to be deployed by utility
companies are a real-world example of low-end intermittent
computing devices. The metering system mounted on a pipe to
measure the water consumption of a household can be powered
by the energy harvested from the fluid flow [8], [19], [24].
Similarly, a gas metering sensor can be powered by the energy
harvested from the gas flow in a pipe [39]. Smart metering
is just one domain in which low-end intermittent computing
devices powered by harvested energy are a viable replacement
of battery-powered devices. For many other application exam-
ples, we refer the reader to [1], [13], [25].

We assume an intermittent computing system that has
network connectivity and that may support software updates
from one or more software providers. It can be any low-end
device that has a resource-constrained embedded processor
which does not feature an advanced memory management unit,
hypervisor, or other advanced memory protection mechanism
found in more powerful processors.

In our settings, a software module executed by an intermit-
tent computing system must be protected from unauthorized

2

access and modification by other modules. These requirements
apply to both power-on and power-off state of an intermittent
computing system. Moreover, the provider of a software
module should be able to detect any unauthorized modification
of its module.

In this paper, we design, implement and evaluate a secure
intermittent architecture that provides a solution to the above-
mentioned security requirements. We aim for a secure inter-
mittent architecture that is easy to implement and deploy and
has a low impact on resource utilization.

B. Attacker Model

We assume a strong attacker that has the following two
capabilities. First, the attacker can sniff and modify the net-
work traffic between the intermittent computing system and
software providers. Essentially, the attacker has control of
the communication network. This type of attacker is referred
to as an input/output attacker in the model of Piessens and
Verbauwhede [33].

Second, the attacker can manipulate all the software mod-
ules deployed to an intermittent computing system. More con-
cretely, the attacker can modify or replace an existing software
module, or even install new modules. For example, the attacker
can modify the data stored by a metering system [40]. These
capabilities are attributed to the code attacker in the model of
Piessens and Verbauwhede [33].

Compared to [33], Schaumont and Montuschi [35] consider
a third attacker, a hardware attacker. We assume that the
attacker has no physical access to the hardware. Consequently,
the attacker can not place probes on the memory bus, inject
faults, measure the energy consumption of the microprocessor,
or remove components of the system. Hardware attacks are
out of scope for this work because there is a distinct research
area that focuses on the design and implementation of pro-
tection mechanisms against this type of attacks. However, the
application of protections against hardware attacks is strongly
encouraged since it does not affect our security architecture
but improves its overall security.

We adopt the Dolev-Yao attacker model [12] for the crypto-
graphic algorithms used by the intermittent computing system.
More precisely, the attacker can perform protocol-level attacks
but can not break the cryptographic algorithms.

This attacker model is very realistic since it encompasses
all the major threats to the security of an intermittent system.
Similar assumptions on the attacker capabilities were made by
the designers of Sancus [30], [31].

C. Security Properties

Based on the characteristics of the intermittent system and
the attacker model, we formulate a set of security properties
that our secure intermittent architecture provides:

• Secure intermittent computing. A software module is
protected from unauthorized read or write during both
the power-on and power-off state of the intermittent
computing system. In other words, the software module is
isolated. This property holds even if the software provider

does not enable intermittent execution of the software
module.

• Remote intermittent attestation. A software provider can
verify that a specific module loaded by the intermittent
system is exactly the same to the one deployed. The
whole process is secure and can be executed across
periods of power loss. Intermittent self-attestation is an
extension of this property in which the software module
can check whether it was correctly loaded and its content
is genuine.

• Secure communication. The communication channel be-
tween a software provider and a deployed software mod-
ule is protected by a cryptographic algorithm to ensure
confidentiality, integrity, authenticity, and freshness of
exchanged data.

• Hardware breach confinement. In the unlikely event that
an attacker breaks the hardware security mechanisms of
a device, all other intermittent systems running the same
software module are not affected.

III. DESIGN OF SIA

A. Overview

Our aim is to design a simple and efficient secure intermit-
tent architecture that provides the desired security properties
and can be easily applied to off-the-shelf microcontrollers.
The main design challenge is to build the security architecture
using only the security features available in low-end devices
and no hardware modifications at all. The reward for this
effort is a solution that can be immediately applied to existing
IoT devices, even to those already deployed. Furthermore,
our architecture does not require a custom toolchain to build
software modules. Considering the resource constraints of in-
termittent computing systems, we decided to use a lightweight
symmetric cryptographic engine to support remote attestation
and secure communication.

Initially, a software provider deploys a software module to
an intermittent system. Then, the provider communicates with
the intermittent system to get some data from the node or
to instruct it to perform certain tasks. Since the communica-
tion channel is not secure, the message exchange has to be
encrypted and authenticated. Once in a while, the software
provider may verify the integrity of the software module or
update it.

Software modules are binary files which consist of several
sections, each section storing a different part of the module.
Three important sections are .text, .rodata, and .data.
They contain the machine code executed by the microproces-
sor, constants used by the code, and global and static variables,
respectively.

B. Software Module Protection

Software modules deployed to an intermittent system must
be protected from interacting with each other in undesired
ways. This can be enforced using a memory protection
mechanism that restricts read and write access to a software

3

module. Our security architecture leverages the basic mem-
ory protection features available in many low-cost microcon-
trollers. This type of feature is available in a wide range
of low-end microcontrollers under different names. The 8-bit
PIC16F184xx family of microcontrollers for sensor network
applications from Microchip features a Memory Access Parti-
tion (MAP) [29]. Some 16-bit MSP430 microprocessors from
Texas Instruments have a Memory Protection Unit (MPU) [20]
and support Intellectual Property Encapsulation (IPE) [32].
The 32-bit ARM Cortex-M3 includes an optional memory
protection unit [3]. All these features are a form of program-
counter based memory access control [37] and can be used to
isolate software modules.

Typically, memory isolation is enabled by writing some
registers. The code, constant, and data sections of a module are
placed in special sections inside the protected memory region.
We use .sia_text, .sia_const, and .sia_data to
denote the three protected sections of a software module. Once
the memory isolation is activated, read and write operations
inside the protected memory region are not possible from
outside the region. Hence, the software module is protected
when the device is powered on as well as when the device is
powered off.

Following a defense-in-depth approach, all debug and test
interfaces of a device should be disabled. If all these interfaces
to the device are locked, then the software module has an
additional protection layer and one more guarantee that the
memory isolation can not be reverted.

C. Secure Intermittent Computing

A checkpoint is a snapshot of an intermediate state of an
intermittent software module which is used to resume the
execution of the module after a power loss. Typically, a check-
point includes the content of the general purpose registers,
the execution stack, global variables, and the configuration of
peripherals. Checkpoints are periodically created during the
execution of the module and stored in non-volatile memory.
After a power loss, the most recent checkpoint is restored
and the execution of the software module continues from that
point. This is useful for long running tasks or in settings where
the power-on cycles are not long enough to support completion
of a task.

Our architecture provides secure intermittent computing
if checkpoints of a module are stored inside the protected
memory region of that module. The code, constant, and data
sections of the checkpointing routines have to be placed in the
protected memory region. If these requirements are fulfilled,
the module isolation provides confidentiality and integrity
guarantees to the created checkpoints.

D. Cryptographic Primitives

To provide remote attestation and secure communica-
tion, our architecture requires three cryptographic primitives,
namely a key derivation function, a message authentication
code (MAC), and an encryption algorithm. All these crypto-
graphic operations can also be provided by a single primitive,
authenticated encryption with associated data (AEAD).

...
011 ... 010
111 ... 101
000 ... 111...

.sia_text

AEAD

...
010 ... 110
101 ... 010
110 ... 111...

.sia_const

serial
number

AEAD

||

AEAD

module key (K)

Fig. 1. Generation of the module key.

The key derivation function is used to generate a module
key, a key that is unique for each software module and each
intermittent computing device. This key is derived from the
contents of the .sia_text and .sia_const sections of
the protected module as shown in Fig. 1. To ensure uniqueness
of the derived key, the software provider must set a different
serial number for each module and device that executes the
module. A simple way to achieve this is to define and instan-
tiate a constant stream of bytes in the .sia_const section
of the protected module. Thanks to the way the key derivation
is designed, any software update determines a change of the
module key. This key rotation mechanism should be activated
by a software update whenever the software provider suspects
a potential leak or compromise of the module key. Software
provider and its deployed module compute the module key
using the same algorithm. However, the protected software
module may execute this operation in an intermittent fashion.
Finally, the module key is used as the secret key of the MAC
and encryption algorithms.

Our secure intermittent architecture uses a message authen-
tication code to compute a tag over some data that has to be
authenticated with the module key. First, the software module
uses a MAC to authenticate a challenge sent by its provider.
The software provider verifies the response to this challenge
using the same cryptographic primitive and the module key.
Second, all messages exchanged between a module and its
provider are authenticated to protect their integrity and ensure
their authenticity.

An encryption algorithm is required to protect the confiden-
tiality of the communication between the software provider
and its module. Messages are encrypted and decrypted under
the same symmetric key.

Authenticated encryption with associated data (AEAD) is
a cryptographic primitive that combines the above-mentioned
cryptographic functions into a single algorithm. Typically,
AEAD schemes are more efficient than a set of algorithms that

4

...
011 ... 010
111 ... 101
000 ... 111...

.sia_text

AEAD K

...
010 ... 110
101 ... 010
110 ... 111...

.sia_const

serial
number

AEAD K

||

AEAD K
(module key)

N
(challenge)

tag

Fig. 2. Generation of the slow attestation tag.

together achieve the same cryptographic properties. Hence,
lightweight AEAD algorithms are appropriate for low-end
intermittent computing devices. However, if confidentiality is
not desired, one can replace the AEAD primitive with a hash-
based message authentication code. Some hash functions have
efficient implementations for small microcontrollers [11].

E. Remote Attestation

Our security architecture gives a software provider two
ways to authenticate its software modules. Depending on the
time required to compute the attestation report, we distinguish
between slow attestation and fast attestation.

For slow attestation, the prover computes an authentication
tag over a challenge and the entire memory of a module,
except for the data section, as shown in Fig. 2. This operation
is resource-intensive and therefore it should have support
for intermittent execution. The software module protection
guarantees that tag generation can be executed intermittently
without any security risk.

The computation of the fast attestation report is very effi-
cient compared to the generation of the slow attestation tag
because the prover authenticates only the challenge received
from the software provider.

Both slow and fast attestation use the module key to
authenticate the attestation report. One difference between the
two is that slow attestation authenticates the .sia_text
and .sia_const sections of the module in addition to
the received challenge. Consequently, slow attestation requires
more computational resources than fast attestation.

The security of the attestation stems from the fact that no
other party, except for the software module and its vendor, can
get the module key because it is protected during the power-
on and power-off state of the intermittent computing system.
An attacker can not read the module from the memory and
can not modify it. Moreover, any modifications made by an
input/output attacker that may exploit a software vulnerability

of the module itself (e.g., a buffer overflow attack) can be
detected by a slow attestation request.

We recommend a combination of both slow and fast attes-
tation to exploit the trade-off between trustworthiness of the
attestation report and resource consumption. For example, the
software provider may request a slow attestation report once
a week and fast attestation reports twice a day.

Self-attestation is similar to key generation or slow attes-
tation without a key and a challenge. The software module
recomputes its key and verifies if the computed value matches
the module key stored in its protected memory. This should
not be confused with the module key generation because
the computed value does not replace the stored module key.
Key generation is executed only after the module receives a
software update from its provider.

Slow attestation, fast attestation, and self-attestation are
secure in the intermittent computing model thanks to the
memory isolation enforced by our security architecture.

F. Secure Communication

Our secure intermittent architecture provides confidentiality,
integrity, authenticity, and freshness guarantees to the data
exchanged between the software provider and its software
module. All these guarantees can be realized with the help
of an authenticated encryption scheme.

Each message includes a nonce for freshness. The role of the
nonce is to protect the communication against replay attacks.
The authenticated encryption algorithm encrypts the message
to protect its confidentiality and generates an authentication
tag. The authentication tag is used by the receiver to verify
the integrity and authenticity of the encrypted message.

An important security requirement of many authenticated
encryption algorithms is that the same nonce and key should
not be used more than once because this leads to weaknesses
in the cryptographic algorithm that can be easily exploited.
For example, if two different messages are encrypted under
the same key and nonce using AES-GCM [41], then the
XOR of their plaintexts is leaked. Nonce-misuse resistant
algorithms do not suffer from this weakness. Our security
architecture assumes that authenticated encryption algorithms
do not have nonce-misuse resistance. Therefore, a software
provider should not repeat a nonce under the same key for
secure communication. A simple solution to this problem is
to use a counter value.

IV. IMPLEMENTATION

We implemented our secure intermittent architecture on an
MSP430FR5994 LaunchPad development kit [21], a low-end
device from Texas Instruments. This board is equipped with
a 16-bit MSP430 microcontroller which is widely-used for
ultra-low-power applications. The memory of MSP430FR5994
comprises 256 kB of non-volatile FRAM (Ferroelectric Ran-
dom Access Memory) which makes this microcontroller suit-
able for intermittent computing applications thanks to its high
speed write access, high endurance, and low-power consump-
tion [21]. The memory space also includes 8 kB of on-chip
SRAM (Static Random Access Memory).

5

Typically, a software module designed to operate in an
intermittent computing model allocates its code, constants,
global and static variables in FRAM. The module stack is
placed in SRAM because it is frequently accessed by the mi-
croprocessor. This configuration ensures maximum application
performance [16].

SIA consists of several building blocks. First, we describe
how to enable memory isolation of a software module using
the standard security features of the target microcontroller.
Second, we introduce the utility that enables intermittent
execution of a software module. Third, we present the four
cryptographic engines implemented to support self-attestation,
remote attestation, and secure communication. Finally, we
briefly describe the communication protocol used between
a software provider and a software module. We tested our
implementation of SIA with the help of this communication
protocol.

A. Software Module Protection
1) Intellectual Property Encapsulation (IPE): When en-

abled, this feature can be used to protect critical pieces of code,
data, and constants (e.g., secret keys) allocated in FRAM from
being accessed [16]. Only the code inside the IPE region can
access the data variables and constants stored in the protected
memory region [32]. In other words, the content of the IPE
region can not be read or written by another software module.
Moreover, direct memory access (DMA), the JTAG interface,
or the bootstrap loader (BSL) can not view or write the
protected memory region [16]. Hence, IPE enforces memory
isolation of a software module. The only way to remove IPE
is with a special mass erase command [32].

In our implementation of SIA, IPE isolates a protected
module. This includes all functions from the .sia_text
section, all data variables from the .sia_data section,
and all constants from .sia_const section. Only a few
functions from a protected module are callable from out-
side the module. Before returning from those functions, SIA
clears the content of the general-purpose registers, hardware
module registers, and RAM to prevent leakage of sensitive
information [32]. Interrupts are disabled during the execution
of the protected module. To set IPE, we wrote a signature
at address 0xff88 that points to a configuration structure
(allocated inside the protected module) which specifies the
memory address boundaries of the module.

2) Disabling the JTAG Interface: It is a good security
practice to disable all the test and debug interfaces to a
device that is deployed in the field. An intermittent computing
device which uses SIA should disable the JTAG interface to
add an additional layer of security to the system. For our
microcontroller, the JTAG/SBW interface can be locked by
blowing an electronic fuse. This requires setting a signature at
address 0xff80. The bootstrap loader (BSL) can unlock the
JTAG/SBW. However, BSL is password protected and a single
incorrect password triggers a mass erase of the device [32].

B. Secure Intermittent Computing
The Compute Through Power Loss (CTPL) utility from

Texas Instruments [22] allows a software module to create

TABLE I
MAIN CHARACTERISTICS OF THE CRYPTOGRAPHIC PRIMITIVES USED FOR

SIA’S CRYPTOGRAPHIC ENGINE.

Cryptographic State Block Key Nonce Tag
primitive size (B) size (B) size (B) size (B) size (B)

AES-EAX 16 16 16 16 16
KETJE JR 25 2 12 10 12
KETJE SR 50 4 16 16 16
NORX 64 48 16 16 16

and restore checkpoints. A checkpoint includes the context of
the software module and device peripheral state. By default,
a checkpoint is saved in FRAM when power loss is detected
and restored upon wakeup. In this way, a software module
resumes its execution from where it left off.

We modified the standard CTPL API to include a function
that creates a checkpoint when called. This allows us to
choose where to place checkpoints and facilitates testing of our
implementation. The CTPL code, data, and constants are part
of SIA. Moreover, checkpoints are created inside the FRAM
memory of the protected module. Therefore, SIA supports
secure intermittent computing of any software module.

C. Cryptographic Engines

We implemented four different cryptographic engines for
SIA. All of them use an authenticated encryption with associ-
ated data (AEAD) primitive to provide the cryptographic ser-
vices required by SIA for self-attestation, remote attestation,
and secure communication.

We selected three lightweight AEAD schemes submitted
to the CAESAR competition [10] that use simple operations
and have efficient software implementations. The three cryp-
tographic primitives are KETJE JR [6], KETJE SR [6], and
NORX [4]. We ported the reference implementations provided
by the designers of these CAESAR candidates. We also used
the AES-EAX [5] implementation from the Cifra library [7]
because it leverages the AES hardware accelerator of our
device. A summary of the main characteristics of these four
cryptographic primitives is given in Table I.

The cryptographic engines are part of SIA. Their functions,
data, and constants are part of the .sia_text, .sia_data,
and .sia_const section, respectively. We placed a check-
point at the core of each cryptographic algorithm; it is created
when a specific amount of data has been processed.

D. Communication Protocol

We implemented a simple communication protocol over
UART (Universal Asynchronous Receiver/Transmitter) to test
our implementation of SIA, which includes all the above-
mentioned building blocks. The communication protocol is
part of the protected module and is protected by SIA.

The protocol works as follows. The software provider sends
a request (e.g., remote attestation with a given challenge) to
the protected module, which processes the request and then
sends a response to its provider. The provider has the binary
content of the module and performs the same computation
the protected module does. Hence, the software provider can

6

check if the response received from the protected module (e.g.,
attestation report) matches the expected value.

V. EVALUATION

Our secure intermittent architecture is designed for low-
end devices powered by harvested energy. Therefore, it is
important to verify that our implementation of SIA meets
the resource constraints of an intermittent computing system.
We consider three relevant metrics for our evaluation, namely
binary size (the .sia_text and .sia_const sections),
execution time, and energy consumption. We conduct our
analysis for each of the four cryptographic engines (i.e.,
authenticated encryption with associated data algorithms) that
support SIA. The four AEAD algorithms are AES-EAX,
KETJE JR, KETJE SR, and NORX. AES-EAX employs the
AES hardware accelerator of the MSP430FR5994 LaunchPad
development board used in our evaluation. The other crypto-
graphic algorithms are implemented only in software.

To measure the binary size of various sections we used
the msp430-elf-objcopy utility included in the MSP430
toolchain. Time and energy measurements were taken with a
Tektronix DPO3034 oscilloscope. We used a GPIO trigger to
identify the execution of relevant operations. The execution
time of an operation is given by the time difference between
the two edges of the trigger signal. Energy measurements are
obtained by integrating the voltage measured across a 1 kΩ
shunt resistor inserted in the power line of the evaluation
board. A regular power supply provided the 3.5 V supply
voltage. The MSP430 microcontroller was clocked at 8 MHz.

A. SIA
First, we analyze the binary size of the entire security archi-

tecture with and without support for intermittent computing.
The binary size of SIA for each of the four cryptographic
engines is given in Table II.

Our implementation of SIA based on the AES-EAX engine
has the lowest binary size thanks to the hardware implementa-
tion of AES which has no influence on this metric. At the other
extreme, the implementation of SIA that uses NORX for the
cryptographic operations has the biggest binary size. The ratio
between the binary size of the NORX-based SIA and AES-
EAX based SIA is 2.6. The binary size of the implementations
based on KETJE JR and KETJE SR is a little bit higher than the
binary size of the security architecture based on AES-EAX,
but significantly lower than that of NORX-based SIA.

The overhead of checkpointing the execution of SIA is
negligible, between 0.22% and 1.35% of the binary size of
a non-intermittent version of SIA. The smallest and largest
overhead corresponds to the implementation of SIA based
on AES-EAX and NORX, respectively. The overhead of
checkpointing KETJE JR and KETJE SR is roughly three times
higher than the overhead of checkpointing AES-EAX and
almost half of the penalty of adding checkpoints to NORX.

All implementations of SIA fill less than 15% of the
memory space of our microcontroller, leaving enough memory
for the actual code of the software module. The smallest
implementation of our security architecture, SIA using AES-
EAX, fills only 5.55% of the memory space.

TABLE II
OVERHEAD OF CHECKPOINTING ON SIA’S BINARY SIZE (.SIA_TEXT
AND .SIA_CONST SECTIONS) FOR EACH CRYPTOGRAPHIC ENGINE.

Crypto
engine

Binary size (B) Overhead (%)
no checkpointing with checkpointing

AES-EAX 14,520 14,552 0.22
KETJE JR 18,628 18,740 0.60
KETJE SR 18,388 18,500 0.60
NORX 37,680 38,188 1.35

TABLE III
TIME AND ENERGY REQUIRED TO EXECUTE DIFFERENT INTERMITTENT

OPERATIONS, NAMELY SLOW ATTESTATION, FAST ATTESTATION, AND
SECURE COMMUNICATION.

Crypto
engine

Slow Attestation Fast Attestation Secure comm.

t (ms) E (µJ) t (ms) E (µJ) t (ms) E (µJ)

AES-EAX 151 330 6.240 9.687 6.844 12.500
KETJE JR 1,786 4,489 7.208 14.062 12.448 23.437
KETJE SR 1,196 3,097 9.196 18.750 13.968 29.687
NORX 779 1,799 6.428 12.500 8.800 17.343

Second, we present in Table III the execution time and
energy consumption required for a slow attestation, a fast at-
testation, and a secure message exchange. These operations are
executed in an intermittent fashion (i.e., with checkpointing).
The protected module includes only the secure intermittent
architecture and its features.

Almost all operations are executed in a fraction of a second.
Slow attestation requires more time and energy compared to
fast attestation because it computes an authentication tag over a
challenge, the .sia_text and .sia_const sections of the
module. Hence, the execution time of slow attestation depends
on the binary size of the protected module given in Table II.
For all engines, fast attestation has a constant execution
time and energy consumption because it authenticates only a
fixed-length challenge. Secure communication has a variable
execution time and energy consumption depending on the
request and response size. For our evaluation, we set the size
of the two messages to the block size of the AEAD algorithm.

For all operations considered, the implementation of SIA
based on AES-EAX has the fastest execution time and the
lowest energy consumption. The NORX-based implementation
of SIA is the forerunner for all operations and for both execu-
tion time and energy consumption. On the third place, KETJE
JR and KETJE SR have a similar execution time and energy
consumption. KETJE JR is more efficient than KETJE SR when
a single block of data is processed, i.e., fast attestation and
secure communication. However, for large amounts of data,
i.e., slow attestation, KETJE SR is superior to KETJE JR.

If we aggregate the results from Table II and Table III, we
infer that the implementation of SIA based on AES-EAX is the
most suitable for our evaluation device. The implementation
of SIA based on NORX is the second-best option thanks to its
low execution time and energy consumption, despite its large
binary size.

7

0.41

0.42

0.43

3.94

3.95

2.66

2.67

1 2 4 5 8 10 20

Checkpoint interval (kB)

0.84

0.85

T
im

e
(s

)

AES-EAX Ketje Jr Ketje Sr NORX

Fig. 3. Time required to attest 40 KB for different checkpoint intervals.

B. Remote Attestation

We analyze the time (Fig. 3) and energy (Fig. 4) required
to create an attestation report for a secure intermittent module
of 40 kB using the slow attestation operation and different
checkpoint intervals. By a checkpoint interval, we understand
the amount of data processed by the cryptographic engine
before a new checkpoint is created.

We can see in Fig. 3 that the execution time improves
for all cryptographic engines when the checkpoint interval is
increased from 1 kB to 2 kB and from 2 kB to 4 kB. Placing
checkpoints at intervals larger than 4 kB does not influence
the overall execution time of slow attestation. However, large
checkpoint intervals lead on average to the re-execution of
more instructions after a power loss than small checkpoint
intervals do. Therefore, a good strategy is to create a check-
point after each 1 kB, 2 kB, or 4 kB of data processed by the
cryptographic engine.

The energy consumption for different checkpoint intervals is
shown in Fig. 4. We notice that energy consumption does not
have a clear trend as execution time does for different values
of the checkpoint interval. Essentially, the energy consumption
of the overall operation is not influenced by the frequency
of checkpoints. This is explained by the insignificant energy
required to create a checkpoint compared to the overall energy
necessary for the slow attestation operation. However, the
observation made for execution time evaluation applies to
energy consumption as well. More precisely, the closer the
interval between two checkpoints, the lesser energy is wasted
on re-execution after a power failure.

C. Secure Intermittent Computing

We present in Fig. 5 the execution time and energy spent on
creating a secure checkpoint for different values of the stack
size. Module stack is saved in a checkpoint and therefore the
stack size has an impact on checkpoint creation. The global
and static variables used by the module are not checkpointed
because they are stored in the non-volatile memory of the
secure intermittent system.

0.925
0.950
0.975

9.95

10.00

6.950

6.975

1 2 4 5 8 10 20

Checkpoint interval (kB)

1.94

1.96

E
n

er
gy

(m
J

)

AES-EAX Ketje Jr Ketje Sr NORX

Fig. 4. Energy required to attest 40 KB for different checkpoint intervals.

275

300

325

T
im

e
(µ
s)

64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

Stack size (B)

550

600

650

E
n

er
gy

(n
J

)

Fig. 5. Time and energy required to create a checkpoint for different stack
sizes.

One can notice the very low time and energy spent on
the creation of a checkpoint. Execution time and energy
consumption grow linearly with the stack size. Creation of
a checkpoint that includes a stack of 128 B requires only
280.6 µs and 559.6 nJ . The low-energy required to create
a checkpoint is provided by the power conditioning capacitors
when a power loss occurs during checkpoint creation. Hence,
the creation of a checkpoint is an atomic operation in SIA. As
a result, the intermittent system never ends in an invalid state
which may affect its availability. Moreover, the entire software
module, including its checkpoint, is protected by SIA.

Compared to the work of Suslowicz et al. [38], SIA does
not keep two copies of the state and does not have to run
a cryptographic algorithm over the entire module state twice
to create a new checkpoint. This is why the creation of a
checkpoint with SIA is between two and three orders of
magnitude faster and more energy efficient than the same
operation in their work. For example, the secure application
continuity solution of Suslowicz et al. [38] requires 42.96
µJ and 17,095 µs to create a new checkpoint for a state of
512 B. In contrast, SIA creates a checkpoint for a stack of
512 B using 663.9 nJ and 328.6 µs. Hence, SIA requires
64.7 times less energy and is 52 times faster than their secure

8

application continuity solution. The advantage of SIA over the
secure application continuity solution of Suslowicz et al. [38]
increases if the stack size is smaller for SIA or the state size
is bigger for their work.

Our experimental results show that the overhead of secure
intermittent computing is very low. The resources spent on re-
execution of a large part of a task clearly exceed the resources
spent on creation of checkpoints and re-execution of a tiny
fraction of the task in the event of a power loss. Therefore, a
software module should use the secure checkpointing feature
of SIA to optimize resource utilization.

VI. RELATED WORK

Our work addresses the challenge of providing security
services to an intermittent computing system, a problem that
lies at the intersection of intermittent computing and security
architectures. In this section, we briefly discuss the research
that is closely related to SIA.

In the intermittent computing literature, there are only a few
papers that provide some security properties to the state of an
intermittent software module. Moreover, they only provide a
subset of the security services provided by SIA at the cost of
a high resource-utilization overhead.

Suslowicz et al. [38] proposed a solution for secure ap-
plication continuity in intermittent systems. Their work adds
integrity, authenticity, and freshness guarantees only to the
power-off state of an intermittent software module. SIA se-
cures both the power-on and power-off state of an intermittent
software module and is between two to three orders of mag-
nitude more efficient than the work of Suslowicz et al. [38].

Ghodsi, Garg, and Karri [15] proposed to encrypt the
checkpoints of an intermittent system and optimized the check-
pointing policy using machine learning. Their solution makes
hardware modifications to the processor of the intermittent
system. Compared to this work, SIA provides stronger security
guarantees and does not require hardware modifications.

In the field of trusted computing, there are many security
architectures that protect low-end embedded devices against
software-level attacks. However, none of these security ar-
chitectures provides guarantees in the intermittent computing
model, mainly because they are not designed to consider
this execution model. In particular, the power-off state of an
intermittent software module is not protected.

Sancus [30], [31] is a low-cost security architecture for
IoT devices that enforces isolation of software modules and
provides several security properties such as remote attestation
and secure communication. Sancus requires hardware modifi-
cations of the microprocessor and a custom software develop-
ment toolchain. In contrast, SIA leverages security features
available in low-end microcontrollers and does not require
hardware modifications, nor a custom toolchain. Therefore,
SIA is directly applicable to existing IoT devices, unlike
Sancus which requires new hardware. Admittedly, Sancus
supports more security properties through the custom toolchain
and its memory access control is fine grained.

Soteria [17] builds on Sancus to provide offline software
protection by encrypting the code and data of a protected mod-
ule. However, Soteria does not support intermittent execution.

SMART [14] uses hardware-software codesign to build a
lightweight software architecture which provides remote attes-
tation of a memory range chosen by the verifier. TyTAN [9] is
a trusted hardware architecture that has real-time guarantees
and supports isolation between tasks, and secure interprocess
communication (IPC).

Maene et al. [28] evaluated 14 hardware-based trusted
computing architectures, including the above-mentioned four
lightweight architectures with respect to different security
properties. SIA provides five of the seven security prop-
erties considered by Maene et al. [28], namely isolation,
attestation, dynamic root of trust, code confidentiality, and
protection against software side-channels targeting memory
access patterns. Additionally, SIA provides support for secure
intermittent computing of virtually any application and its
security properties hold in the intermittent computing model.

SWATT [36] is a software-based attestation technique based
on the running time of the verification procedure. Since it does
not use any form of isolation, SWATT is vulnerable to time-
of-check time-of-use (TOCTOU) attacks.

VII. CONCLUSION

We proposed SIA, the first secure intermittent architecture
for resource-constrained IoT devices. SIA builds on security
features available on commercial off-the-shelf microcontrollers
to protect both the power-on and power-off state of an inter-
mittent software module. Our security architecture supports
secure intermittent computing of virtually any application
and provides three security services, namely self-attestation,
remote attestation, and secure communication. SIA can be
applied to existing IoT devices, even to those already deployed,
because it does not require any hardware modifications.

We implemented and evaluated SIA on an MSP430 mi-
croprocessor. Our results confirm the feasibility of SIA for
low-end devices powered by harvested energy. Moreover,
experimental results show that intermittent computing should
be enabled for all software modules protected by SIA because
the overhead of checkpointing is negligible.

SIA is a simple and efficient solution to the problem
of secure intermittent computing on low-end devices and
provides support for remote intermittent attestation. In view
of the predicted growth of the market for devices powered by
harvested energy, the security features of SIA are crucial for
the next-generation of IoT devices.

VIII. ACKNOWLEDGEMENTS

This research was supported in part by the Semiconductor
Research Corporation (Task 2712.019) and by the National
Science Foundation (Grant 1704176).

REFERENCES

[1] F. Ambroglini. Energy harvesting application, July 2017. Lecture at
the NiPS Summer School 2017 – Energy Harvesting: models and appli-
cations, Gubbio, Italy. Available at http://www.nipslab.org/sites/nipslab.
org/files/Wisepower SummerSchool MicroEnergy2017 building.pdf.

9

[2] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis,
D. Kumar, C. Lever, Z. Ma, J. Mason, D. Menscher, C. Seaman,
N. Sullivan, K. Thomas, and Y. Zhou. Understanding the Mirai botnet.
In E. Kirda and T. Ristenpart, editors, 26th USENIX Security Symposium,
USENIX Security 2017, Vancouver, BC, Canada, August 16-18, 2017,
pages 1093–1110. USENIX Association, 2017.

[3] ARM. Memory Protection Unit (MPU). Available at
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dai0179b/
CHDFDFIG.html.

[4] J.-P. Aumasson, P. Jovanovic, and S. Neves. CAESAR submission:
NORX v3.0, September 2016. Available at https://competitions.cr.yp.
to/round3/norxv30.pdf.

[5] M. Bellare, P. Rogaway, and D. A. Wagner. The EAX mode of operation.
In B. K. Roy and W. Meier, editors, Fast Software Encryption, 11th
International Workshop, FSE 2004, Delhi, India, February 5-7, 2004,
Revised Papers, volume 3017 of Lecture Notes in Computer Science,
pages 389–407. Springer, 2004.

[6] G. Bertoni, J. Daemen, M. Peters, G. van Assche, and R. van Keer.
CAESAR submission: Ketje v2, September 2016. Available at https:
//competitions.cr.yp.to/round3/ketjev2.pdf.

[7] J. Birr-Pixton. Cifra – A collection of cryptographic primitives targeted
at embedded use. Available at https://github.com/ctz/cifra.

[8] S. Boisseau, A.-B. Duret, M. Perez, E. Jallas, and E. Jallas. Water
flow energy harvesters for autonomous flowmeters. Journal of Physics:
Conference Series, 773(1):012019, 2016.

[9] F. F. Brasser, B. E. Mahjoub, A. Sadeghi, C. Wachsmann, and P. Koeberl.
TyTAN: tiny trust anchor for tiny devices. In Proceedings of the 52nd
Annual Design Automation Conference, San Francisco, CA, USA, June
7-11, 2015, pages 34:1–34:6. ACM, 2015.

[10] CAESAR committee. CAESAR: Competition for Authenticated En-
cryption: Security, Applicability, and Robustness. Available at https:
//competitions.cr.yp.to/caesar.html.

[11] H. Cheng, D. Dinu, and J. Großschädl. Efficient implementation of the
SHA-512 hash function for 8-bit AVR microcontrollers. In J. Lanet and
C. Toma, editors, Innovative Security Solutions for Information Technol-
ogy and Communications - 11th International Conference, SecITC 2018,
Bucharest, Romania, November 8-9, 2018, Revised Selected Papers,
volume 11359 of Lecture Notes in Computer Science. Springer, 2018.

[12] D. Dolev and A. C. Yao. On the security of public key protocols. IEEE
Trans. Information Theory, 29(2):198–207, 1983.

[13] J. Donovan. New applications for energy harvesting. Available at https:
//www.mouser.com/applications/energy-harvesting-new-applications/.

[14] K. Eldefrawy, G. Tsudik, A. Francillon, and D. Perito. SMART: secure
and minimal architecture for (establishing dynamic) root of trust. In
19th Annual Network and Distributed System Security Symposium, NDSS
2012, San Diego, California, USA, February 5-8, 2012. The Internet
Society, 2012.

[15] Z. Ghodsi, S. Garg, and R. Karri. Optimal checkpointing for secure
intermittently-powered IoT devices. In S. Parameswaran, editor, 2017
IEEE/ACM International Conference on Computer-Aided Design, IC-
CAD 2017, Irvine, CA, USA, November 13-16, 2017, pages 376–383.
IEEE, 2017.

[16] W. Goh and A. Dannenberg. MSP430 FRAM technology – how to and
best practices. Technical report, Texas Instruments, June 2014. Available
at http://www.ti.com/lit/an/slaa628/slaa628.pdf.

[17] J. Götzfried, T. Müller, R. de Clercq, P. Maene, F. C. Freiling, and
I. Verbauwhede. Soteria: Offline software protection within low-cost
embedded devices. In Proceedings of the 31st Annual Computer Security
Applications Conference, Los Angeles, CA, USA, December 7-11, 2015,
pages 241–250. ACM, 2015.

[18] M. Hicks. Clank: Architectural support for intermittent computation. In
Proceedings of the 44th Annual International Symposium on Computer
Architecture, ISCA 2017, Toronto, ON, Canada, June 24-28, 2017, pages
228–240. ACM, 2017.

[19] D. Hoffmann, A. Willmann, R. Göpfert, P. Becker, B. Folkmer, and
Y. Manoli. Energy harvesting from fluid flow in water pipelines for
smart metering applications. Journal of Physics: Conference Series,
476(1):012104, 2013.

[20] T. Instruments. MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx
family user’s guide, October 2012. Revised December 2017. Available
at http://www.ti.com/lit/ug/slau367o/slau367o.pdf.

[21] T. Instruments. MSP430FR5994 LaunchPad development kit (MSP-
EXP430FR5994), March 2016. Revised April 2016. Available at
http://www.ti.com/lit/ug/slau678a/slau678a.pdf.

[22] T. Instruments. MSP MCU FRAM utilities user’s guide, October
2017. Version 3.10.00.10. Available at http://software-dl.ti.com/

msp430/msp430 public sw/mcu/msp430/FRAM Utilities/latest/
exports/FRAM-Utilities-UsersGuide.pdf.

[23] G. Kambourakis, C. Kolias, and A. Stavrou. The Mirai botnet and the
IoT zombie armies. In 2017 IEEE Military Communications Conference,
MILCOM 2017, Baltimore, MD, USA, October 23-25, 2017, pages 267–
272. IEEE, 2017.

[24] K.-B. Kim, C. I. Kim, Y. H. Jeong, J.-H. Cho, J.-H. Paik, S. Nahm,
J. B. Lim, and T.-H. Seong. Energy harvesting characteristics from
water flow by piezoelectric energy harvester device using Cr/Nb doped
Pb (Zr, Ti) O3 bimorph cantilever. Japanese Journal of Applied Physics,
52(10S):10MB01, 2013.

[25] A. Kingatua. The how and why of energy harvest-
ing for low-power applications, June 2016. Avail-
able at https://www.allaboutcircuits.com/technical-articles/
how-why-of-energy-harvesting-for-low-power-applications/.

[26] C. Kolias, G. Kambourakis, A. Stavrou, and J. M. Voas. DDoS in the
IoT: Mirai and other botnets. IEEE Computer, 50(7):80–84, 2017.

[27] A. S. Krishnan and P. Schaumont. Exploiting security vulnerabilities in
intermittent computing. In A. Chattopadhyay, C. Rebeiro, and Y. Yarom,
editors, Security, Privacy, and Applied Cryptography Engineering - 8th
International Conference, SPACE 2018, Kanpur, India, December 15-
19, 2018, Proceedings, volume 11348 of Lecture Notes in Computer
Science. Springer, 2018.

[28] P. Maene, J. Götzfried, R. de Clercq, T. Müller, F. C. Freiling, and
I. Verbauwhede. Hardware-based trusted computing architectures for
isolation and attestation. IEEE Trans. Computers, 67(3):361–374, 2018.

[29] Microchip. PIC16F18446 product family. Available at https://www.
microchip.com/promo/pic16f184xx-product-family.

[30] J. Noorman, P. Agten, W. Daniels, R. Strackx, A. V. Herrewege,
C. Huygens, B. Preneel, I. Verbauwhede, and F. Piessens. Sancus:
Low-cost trustworthy extensible networked devices with a zero-software
trusted computing base. In S. T. King, editor, Proceedings of the 22th
USENIX Security Symposium, Washington, DC, USA, August 14-16,
2013, pages 479–494. USENIX Association, 2013.

[31] J. Noorman, J. V. Bulck, J. T. Mühlberg, F. Piessens, P. Maene,
B. Preneel, I. Verbauwhede, J. Götzfried, T. Müller, and F. C. Freiling.
Sancus 2.0: A low-cost security architecture for IoT devices. ACM Trans.
Priv. Secur., 20(3):7:1–7:33, 2017.

[32] K. Pier. MSP code protection features. Technical report, Texas
Instruments, December 2015. Available at http://www.ti.com/lit/an/
slaa685/slaa685.pdf.

[33] F. Piessens and I. Verbauwhede. Software security: Vulnerabilities and
countermeasures for two attacker models. In L. Fanucci and J. Teich,
editors, 2016 Design, Automation & Test in Europe Conference &
Exhibition, DATE 2016, Dresden, Germany, March 14-18, 2016, pages
990–999. IEEE, 2016.

[34] A. Poor. Reaping the energy harvest [resources]. IEEE Spectrum,
52(4):23–24, 2015.

[35] P. Schaumont and P. Montuschi. The rise of hardware security in
computer architectures. IEEE Computer, 51(8):4–5, 2018.

[36] A. Seshadri, A. Perrig, L. van Doorn, and P. K. Khosla. SWATT:
software-based attestation for embedded devices. In 2004 IEEE Sym-
posium on Security and Privacy (S&P 2004), 9-12 May 2004, Berkeley,
CA, USA, page 272. IEEE Computer Society, 2004.

[37] R. Strackx, F. Piessens, and B. Preneel. Efficient isolation of trusted
subsystems in embedded systems. In S. Jajodia and J. Zhou, editors,
Security and Privacy in Communication Networks - 6th Iternational
ICST Conference, SecureComm 2010, Singapore, September 7-9, 2010.
Proceedings, volume 50 of Lecture Notes of the Institute for Com-
puter Sciences, Social Informatics and Telecommunications Engineering,
pages 344–361. Springer, 2010.

[38] C. Suslowicz, A. S. Krishnan, D. Dinu, and P. Schaumont. Secure
application continuity in intermittent systems. In Proceedings of the 9th
International Green and Sustainable Computing Conference, Pittsburgh,
PA, USA, October 22-24, 2018.

[39] M. Taghavi, A. Sadeghi, B. Mazzolai, L. Beccai, and V. Mattoli.
Triboelectric-based harvesting of gas flow energy and powerless sensing
applications. Applied Surface Science, 323:82–87, 2014.

[40] P. Thanigai. Closing the security gap with TI’s MSP430 FRAM-based
microcontrollers, September 2014. Available at http://www.ti.com/lit/
wp/slay035/slay035.pdf.

[41] U.S. Department Of Commerce/National Institute of Standards and
Technology. Recommendation for block cipher modes of operation:
Galois/counter mode (GCM) and GMAC. NIST Special Publication
800-38D, pages 1–39, November 2007. Available at http://nvlpubs.nist.
gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf.

10

