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Abstract
Commonsense Question Answering (common-
sense QA) tasks aim to examine QA sys-
tems’ capability of reasoning over context
with complicated logical relationships and im-
plicit commonsense knowledge. A desirable
model should be able to provide not only
correct answers but also persuasive explana-
tions. Current works incorporate external
knowledge presuming that valid explanations
are included. However, the explanations are
usually confounded and need further distin-
guishment. In this work, we propose a re-
cursive erasure memory network (REM-Net),
which learns to refine explanations for more
precise interpretation while reasoning to ob-
tain correct answers. REM-Net integrates a
pre-trained knowledge graph generator, to pro-
vide possible explanations based on the com-
monsense question, and a recursive erasure
memory module (REM), which refines the
explanations. The REM module recursively
erases confounding explanations to ensure that
the model captures the most crucial clues. Ex-
perimental results on multiple commonsense
QA benchmarks demonstrate that our REM-
Net outperforms the competing methods. The
case study also shows the model’s ability to
find more precise explanations.

1 Introduction

Commonsense question answering tasks (common-
sense QA) need more complicated commonsense
and logical reasoning in that the key information
is mostly unexpressed and complicated. Solving
these tasks requires to answer the questions by rea-
soning over context via mining reasonable explana-
tions. This makes commonsense QA distinguished
from the traditional machine reading comprehen-
sion (MRC) tasks, which can solely predict the
answer via semantic match.

Current approaches that resort to explanations
are mainly in three groups. The first group of

Context
The seed germinates. The plant grows. 
The plant flowers. Produces fruit.
The fruit releases seeds. The plant dies.
Question
Suppose less nutrients in the soil happens, 
how will it affect less seeds germinates?
Answer Options
(A) More. (B) Less. (C) No effect.

Explanation Sentences
not is a good idea
not made of iron
causes starvation
is part of ecosystem
is a symbol of decay
has a less oxygen
ends with die
not capable of grow
desires of water
…

is located at plant
is created by plant
is inherited from plant
is related to soil decay
is part of flower
is a plant
requires soil
has a no life
desires of water
…

Figure 1: An example from the WIQA benchmark
with some explanations (in the lower box) of the com-
monsense question (in the upper box). Some of the
explanation sentences are confounded to the question:
although semantically related to the question, the sen-
tences in red are not beneficial to answer the question.
By contrast, the sentences in blue explains the question
well. Our REM-Net can successfully discover reason-
able and supporting explanation sentences in blue.

methods (Devlin et al., 2019; Liu et al., 2019) are
language models pre-trained on large-scale cor-
pora that refer to diverse commonsense context.
Those models are proved to contain certain com-
monsense knowledge (Tandon et al., 2019; Trinh
and Le, 2018). Some of the approaches (Ye et al.,
2019) further fine-tune the models to adapt to spe-
cific datasets. The second group of methods (Lv
et al., 2020; Lin et al., 2019) incorporate external
knowledge such as knowledge graph subgraphs and
encodes the knowledge features via graph models
such as GCN (Kipf and Welling, 2016). The third



group of methods (Rajani et al., 2019) train models
to generate explanations to facilitate the common-
sense answer prediction. These approaches focus
on enriching the model features with great amounts
of external knowledge that are supposed to contain
valid explanations to the commonsense questions.
However, the quality of the incorporated explana-
tions is not guaranteed, as some of the sentences
could be invalid and confounding to the questions,
but seldom of current methods develop a capability
to distinguish them.

One example that shows the confoundedness
of the explanations is presented in Figure 1. The
explanation sentences are generated based on the
commonsense question with COMET (Bosselut
et al., 2019). Most of the explanation sentences are
semantically related to the key phrases (i.e., “less
nutrients in the soil” and “less seeds germinates”)
in the question, but they contribute differently to
answering the question. For example, “is part of
flower” conveys an attribute of the concept “seeds”,
but does not tell us how in fact it will affect “less
seeds germinates”. By contrast, “causes starva-
tion” gives straightforward information that fills the
causal gap between the key phrases “less nutrients
in the soil” and “less seeds germinates”. Therefore,
sentences like “is part of flower” confounds the an-
swering of the question, while “causes starvation”
as an explanation is much more favorable. Our pur-
pose in this work is to exploit a model that learns
to discover the supporting explanations among the
confounding ones so that to provide interpretations
of answering commonsense questions.

In this paper, we study explanation refinement
for commonsense QA tasks. With this purpose, we
propose a model called recursive erasure memory
network (REM-Net). The REM-Net consists of
three main components: a query encoder, an expla-
nation generator, and a recursive erasure memory
module (REM). Specifically, the query encoder
is a pre-trained language model that encodes the
commonsense question. The explanation generator
is a knowledge graph generator that is trained to
generate commonsense knowledge triplets. The
knowledge graph triplets are converted into plain
sentences and provided as explanations to the ques-
tion. This explanation generator module can be
substituted by a retrieval-based module or sim-
ply adopting semantic embeddings from the query
encoder. The recursive erasure memory module
(REM) then refines the explanations by recursively

erase the confounders. The REM module is a mem-
ory network that takes the question embeddings
from the query encoder as the queries and the expla-
nation embeddings from the explanation generator
as memory. The query attentively visits the mem-
ory recursively to calculate scores of the extent to
which each explanation sentence supports the ques-
tion, the sentences that are regarded as confounding
explanations are then erased.

We conduct experiments on two commonsense
QA benchmarks (WIQA (Tandon et al., 2019) and
CosmosQA (Huang et al., 2019)) and demonstrate
that REM-Net outperforms current methods and
produces reasonable refinement of the explanations.
Our contributions are mainly three-fold:

• We propose a model called the recursive era-
sure memory network (REM-Net) towards re-
cursively refining the explanations according
to the commonsense question for better rea-
soning capability.

• The REM module incorporates an erasure ma-
nipulation into the memory network, so that to
recursively estimate the explanation sentences
and can distinguish the supporting sentences
from the confounding ones. These manipula-
tions indicate a further interpretation of how
the question is being answered.

• Experimental results show that REM-Net out-
performs competing methods. Besides, the
case study presents the refined explanations,
indicating that the refinement is reasonable
since the discovered supporting sentences and
confounding sentences are intuitive.

2 Related Works

Commonsense Question Answering Similar to
open-domain question answering tasks (Rajpurkar
et al., 2018; Kwiatkowski et al., 2019), common-
sense question answering (Tandon et al., 2019;
Huang et al., 2019) requires open-domain infor-
mation to support the answer prediction. But dif-
ferent from open-domain question answering tasks
that the text comprehension is straightforward and
the retrieved open-domain information is direct to
the questions, in commonsense question answer-
ing tasks the open-domain information is more
complicated in that they play a role as explana-
tions to bridge the understanding gap in the com-
monsense questions. Current works leverage the



open-domain information by whether incorporat-
ing external knowledge as explanations or train-
ing the models to generate explanations. Lv et al.
(2020) extracts knowledge from ConceptNet (Speer
et al., 2017) and Wikipedia, and learns features
with GCN (Kipf and Welling, 2016) and graph
attention (Veličković et al., 2017). Zhong et al.
(2019) retrieves ConceptNet (Speer et al., 2017)
triplets and train two functions to measure direct
and indirect connections between concepts. Rajani
et al. (2019) train a GPT (Zhong et al., 2019) to
generate reasonable explanations for the questions.
During evaluation, the model generates explana-
tions and predicts the multi-choice answers concur-
rently. Ye et al. (2019) automatically constructs a
commonsense multi-choice dataset from Concept-
Net triplets. However, the retrieved or generated
explanations are usually not further refined, and
some of them could be unnecessary or even con-
founding to answering the questions. The proposed
model explores to refine the original explanations
to discover those most supporting explanations to
the commonsense questions and therefore provides
stronger interpretations.

Memory Networks Memory networks (Weston
et al., 2015; Bordes et al., 2015; Miller et al., 2016;
Sukhbaatar et al., 2015) are proposed to solve early
reasoning problems such as bAbI (Weston et al.,
2016)) that requires to locate useful information for
answer prediction. The sentences are stored into
memory slots and later selected for the question
answering. Recently, multi-head attention mem-
ory networks (Dai et al., 2019) are proposed so
that takes advantage of the transformer-based net-
works. Our proposed model is based on multi-head
attention memory network that is modified with a
recursive erasure manipulation to adapt to the com-
monsense question answering tasks for accurate
explanation refinement.

3 Recursive Erasure Memory Network

In this section, we introduce the proposed model,
which consists of three main modules. The
overview of the model is presented in Figure 2.

The initial query embedding is denoted as q1.
The embedding of a single explanation sentence is
denoted as e1, hence the overall explanation sen-
tences for a question are denoted as a matrix E1. At
recursive step t, the query embedding is similarly
denoted as qt, the explanation matrix is denoted as
Et, and the explanation scores are denoted as st.

1.Water evaporates from the ground up to the sky.
2.Water droplets are in clouds.
3.Droplets combine to form bigger drops in the clouds.
4.The drops get heavy.
5.Gravity makes the drops fall.
Suppose during hurricane season happens, 
how will it affect MORE rain.
(A) More. (B) Less. (C) No effect.

(A) More. (B) Less. (C) No effect.

is located at sea
is capable of kill person

causes rain and flood
causes the desire to sail boat

is created by weather
is defined as high temperature in north

desires of rain
… …

is located at rainbow
is capable of fall in winter

causes thunder
causes the desire to build campfire

is created by rain
is defined as fall from sky

desires of drive car
… …
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Figure 2: The proposed model REM-Net which con-
sists of three main components. The query encoder
encodes the commonsense question. The explanation
generator generates explanation sentences. The recur-
sive erasure memory module (REM) discovers the sup-
porting explanations out of the confounding ones.

3.1 Query Encoder
Query encoder provides a primary understanding
of the commonsense question, and the outputting
embeddings contribute to the subsequent memory
network as the initial queries.

The query encoder follows the baselines in
the literature to use pre-trained Transformer-
based encoder, so that the encoded query em-
beddings are rich in contextual information. In
this paper, we use BERT (Devlin et al., 2019)
and RoBERTa (Liu et al., 2019) as the back-
bones. We follow the input format in Tan-
don et al. (2019) as “[CLS] context [SEP]
question [SEP] answer option”. The
“[CLS]” embedding in the last BERT layer is taken
as the outputting query embedding q1 ∈ Rh, where
h is hidden state size.

3.2 Explanation Generator
To obtain the initial possible explanations to the
question, the explanation generator provides sen-
tences that are related to the commonsense ques-
tions. Rather than retrieving subgraphs or texts
from existing knowledge bases (e.g., ConceptNet,
Wikipedia) using information retrieval techniques,
where the retrieved explanations are restricted to
the scope of the knowledge bases, we instead take
advantage of the pre-trained generative model to
obtain out-of-scope explanations.

The details of the explanation generator are pre-



Suppose during hurricane season happens,

how will it after MORE rains?

hurricane season

(~, is located at, sea)

(~, is capable of , kill person)

(~, causes, rain and flood)

…

Encoder

is located at sea

is capable of kill person

causes rain and flood

…

COMET

Figure 3: The explanation generator with a COMET
(Bosselut et al., 2019) and an encoder. COMET takes
the key phrases extracted from the commonsense ques-
tions as input and generates knowledge graph triplets.
The triplets are then converted into explanation sen-
tences with templates. The encoder is a pre-trained
Transformer encoder that encodes the explanation sen-
tences as embeddings.

sented in Figure 3, which is composed of a pre-
trained knowledge graph generator and an encoder.
Based on the commonsense question, key phrases
are first extracted with pre-defined rules. The
pre-trained knowledge graph generator COMET
(Bosselut et al., 2019) treats the key phrases as head
components of triplets, then generates relations and
tails to form complete triplets. With the COMET
templates 1, the knowledge graph triplets are then
converted into sentences explain the commonsense
question. A Transformer-based encoder then en-
codes the sentences into embeddings, which are
then provided to the downstream memory network
as initial memory embeddings.

Suppose there are I explanation sentences
for each commonsense question, then each of
them is formed into token sequence “[CLS]
explanation sentence [SEP]”. The
[CLS] embedding in the last BERT layer is taken
as the explanation embedding e1i ∈ Rh, where
the superscript 1 denotes the first recursive step,
and h is hidden state size. The I explanation
embeddings e1i , i ∈ {1, ..., I} are then formed into
an explanation matrix E1 ∈ RI×h and fed into the
memory network.

Context as Explanations To look into the
model’s capability of leveraging information at
hand without augmenting any external knowledge,
we develop a substitution of the explanation genera-
tor that solely uses the context paragraph in the orig-
inal question sample as the explanation sentences.
To obtain explanation embedding e1i ∈ Rh, this

1https://mosaickg.apps.allenai.org/
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desires of rain
is made of ice

is located at sea
not capable of exist

causes thunder
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a symbol of rain
…
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Figure 4: Details of the Recursive Erasure Memory
(REM) module. The module is a memory network that
conducts an erasure manipulation recursively. Multi-
head attention calculates scores of each explanation em-
bedding to estimate the extent to which the explana-
tions support the question. The erasure manipulation is
then conducted on the explanation matrix based on the
scores, and pads some of the explanation embeddings.

substitution module directly takes the contextual
token embeddings from the last multi-head atten-
tion layer in the query encoder and merges the to-
ken embeddings from the same context sentence by
summation. The explanation embeddings are then
formed into the explanation matrix E1 ∈ RI×h,
and fed into the memory network.

3.3 Recursive Erasure Memory Module
The recursive erasure memory module (REM) is
a multi-head attention memory network that con-
ducts an erasure manipulation recursively to filter
out unsupporting explanation sentences to the com-
monsense questions. The detailed architecture of
the REM module is shown in Figure 4.

This module is launched by the initial query q1

from the query encoder and the initial explanation
matrix E1 from the explanation generator (or its
substitution module). It first calculates learnable
scores of the explanation sentences using multi-
head attention (Vaswani et al., 2017):

s1 = MultiHead(q1,E1,E1), (1)

The scores s1 are then used for updating the
query embedding q1 and conducting erasure ma-
nipulation on the explanation matrix E1. To update



query embedding q1, the explanation matrix in the
memory slots are weighted summed and merged
into a single embedding and added to the original
query embedding. To conduct the erasure manipu-
lation on the explanations matrix E1, the explana-
tion sentences are sorted by the scores and those
with the k highest weights are padded and erased
from the memory. This calculate-update-erase pro-
cess is conducted recursively until termination.

Formally, at recursive step t − 1, REM mod-
ule conducts multi-head attention on the query
qt−1 ∈ Rh and the explanation matrix Et−1 ∈
RI×h, where Et−1 performs as key and value and
qt−1 as query (Equation 2). Each explanation em-
bedding is multiplied with the query embedding
and it outputs the explanation scores st−1 ∈ RI :

st−1 = MultiHead(qt−1,Et−1,Et−1). (2)

The scores are taken to weight the evidence ma-
trix and update the query:

qt = qt−1 +Et−1>st−1. (3)

The erasure manipulation is then conducted on
the explanation matrix Et−1. The explanation em-
beddings are sorted by the scores, and those with
the highest k scores are padded. The explanation
matrix is then updated to updated to Et:

Et =


et0
et1
...
etI

, eti =

et−1i , st−1i ≥ st−1[k] ,

0, st−1i < st−1[k] ,

(4)
where st−1[k] is the score ranking kth among st−1.

Finally, queries in all recursive steps qt, t ∈
{1, ..., T} are concatenated as the output of the
REM module:

m = [q1; ...;qT ]Wm + bm, (5)

where [; ] indicates the concatenation operation,
m ∈ Rh, Wm ∈ RhT×h, and bm ∈ Rh.

3.4 Answer Prediction
The probabilities Pr of choosing the final answer
option are:

Pr = SoftMax([m1; ...;mC ]Wp + bp, ), (6)

where [; ] indicates the concatenation operation, C
is the number of answer options, p ∈ RC , Wp ∈
Rh×1, bp ∈ R.

4 Experiments
In this section, we conduct experiments to demon-
strate the effectiveness of our proposed model and
exhibit the refinement of the explanations.

4.1 Datasets
We experiment with two popular commonsense
QA benchmarks, WIQA (Tandon et al., 2019) and
CosmosQA (Huang et al., 2019).

• CosmosQA (Huang et al., 2019) includes
questions of daily life scenarios, such as cul-
tural norms, counterfactual reasoning, situa-
tional fact, and temporal event. The scenarios
are plentiful and the questions are also diverse.
The questions are in a multi-choice format.

• WIQA (Tandon et al., 2019) is a bench-
mark of counterfactual “what-if” questions.
The context paragraphs provide descriptions
of natural phenomenons, which are manu-
ally written based on specifically defined
“influence graphs”. The questions are split
into three types (“in-para”, “out-of-para”,
“no-effect”) depending on whether the ques-
tions are derived from the original “influence
graphs”. For “out-of-para” and “no-effect”
questions, the context paragraphs are irrele-
vant to the questions, so that they are unable
to provide meaningful explanations.

4.2 Baselines
We compare our model with different groups of
competitive models.

• Group 1: Baselines without pre-training.
Most of the approaches within this group are
taken from the benchmark papers. For WIQA,
the Majority method (Tandon et al., 2019) pre-
dicts the most frequent answer option in the
training set. The Polarity method (Tandon
et al., 2019) predicts answers according to
the way that the comparative words sentences
collocates. Adaboost (Freund and Schapire,
1995) uses bag-of-words features from the
questions. Decomp-Attn (Parikh et al., 2016)
is a decomposable attention model that re-
formulates the dataset into an inference task.
For CosmosQA, Sliding Window (Richardson
et al., 2013) considers the similarity between
the context paragraph and the answer options.
Stanford Attentive Reader (Chen et al., 2016),
Gated-Attention Reader (Dhingra et al., 2017)



Group Method Dev Test

Group 1

Sliding Window (Richardson et al., 2013) 25.0 24.9
Stanford Attentive Reader (Chen et al., 2016) 45.3 44.4
Gated-Attention Reader (Dhingra et al., 2017) 46.9 46.2
Co-Matching (Wang et al., 2018b) 45.9 44.7

Group 2

Commonsense-Rc (Wang et al., 2018a) 47.6 48.2
GPT-FT (Radford et al., 2018) 54.0 54.4
DMCN (Zhang et al., 2020) 67.1 67.6
BERT-Large (Devlin et al., 2019) 66.2 67.1
BERT-Large (ensemble) 67.1 67.5
BERT-Large Multiway (Huang et al., 2019) 68.3 68.4

Group 3 MemN2N (Sukhbaatar et al., 2015) 30.6 31.0
BERT-Large + explanations 67.1 67.2
RoBERTa-Large + explanations 80.8 81.3

Ours REM-Net-Largetext 67.9 68.5
REM-Net-Large 69.5 70.1
REM-Net-RoBERTa-Largetext 80.8 81.8
REM-Net-RoBERTa-Large 81.2 82.0

Human perf. - 94.0

Table 1: Result comparisons (%) on the CosmosQA development set and test set. Our models are compared with
three groups of baselines.

and Co-Matching (Wang et al., 2018b) are
reading comprehension systems that performs
attention mechanism differently.

• Group 2: Pre-trained models without exter-
nal explanations. Commonsense-RC (Wang
et al., 2018a) is an LSTM-based model
pre-trained on RACE (Lai et al., 2017).
Transformer-based pre-trained language mod-
els such as GPT (Radford et al., 2018), BERT
(Devlin et al., 2019) and RoBERTa (Liu et al.,
2019) are proved to contain some common-
sense knowledge (Trinh and Le, 2018) since
they are trained on large-scale corpora.

• Group 3: Models with external explanations.
End-to-end memory networks (Sukhbaatar
et al., 2015) are LSTM-based memory net-
works working on the external explanations
stored in the memory slots. “BERT-Base +
explanations”, “BERT-Large + explanations”
and “RoBERTa-Large + explanations” simply
augment the question input by concatenating
the external explanations.

4.3 Experimental Settings
We introduce the detailed experimental settings,
including the settings used to generate the raw ex-
planation sentences and the implementation details
of our model.

4.3.1 Generating Raw Explanations
The explanation generator generates raw explana-
tions based on the key phrases from the common-

sense questions. For WIQA, in which the questions
and answer options exhibit some regular patterns,
in that the question consists of a cause clause (that
starts with “suppose”) and an effect clause (that
starts with “how will it affect”), we extract key
phrases out of both clauses. The cause key phrase
and the effect key phrase are separately used to gen-
erate the explanation sentences. For CosmosQA, in
which the questions and answer options are varied,
we use the TAGME toolkit 2 for the extraction.

4.3.2 Implementation Details
We use BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2019) as the backbones. The sequence
length for the query encoder is 128, which is suffi-
cient to include the “[CLS] context [SEP]
question [SEP] answer option” se-
quence (> 88%). For the explanation generator,
the sequence length is set to 30, enabling it to
include each explanation sentence (> 99%).

When training WIQA, since there are two groups
of explanation sentences (the cause group and the
effect group), we adopt two parallel REM modules
to separately refine the cause explanations and the
effect explanations. The best number of recursive
steps is 2. The upper bound of erased explana-
tion sentences at each recursive step is set to 50.
The model is optimized by Adam (Kingma and Ba,
2015) with a learning rate of 1 × 10−5. Warmup
steps are set to 1000. We train 25 epochs with
batch size 8. For CosmosQA, we use a single REM

2https://tagme.d4science.org/tagme/



Group Method In-para Out-of-para No-effect Total

Group 1
Majority (Tandon et al., 2019)∗ 45.46 49.47 0.55 30.66
Polarity (Tandon et al., 2019)∗ 76.31 53.59 0.27 39.43
Adaboost (Freund and Schapire, 1995)∗ 49.41 36.61 48.42 43.93
Decomp-Att (Tandon et al., 2019)∗ 56.31 48.56 73.42 59.48

Group 2

BERT-Base (no para) 66.60 64.29 74.90 69.13
BERT-Base 70.57 58.54 91.08 74.26
BERT-Base (ensemble) 71.51 61.82 90.72 75.61
BERT-Large 73.40 63.88 90.52 76.69
BERT-Large (ensemble) 71.51 62.73 90.04 75.69

Group 3
MemN2N (Sukhbaatar et al., 2015) 38.50 38.01 39.52 38.85
BERT-Base + explanations 70.57 61.00 90.72 75.12
BERT-Large + explanations 73.40 63.88 90.52 76.69

Ours

REM-Net-Basetext 72.45 62.48 90.19 75.82
REM-Net-Base 73.58 63.05 91.71 76.89
REM-Net-Largetext 72.08 67.08 89.48 77.32
REM-Net-Large 75.67 67.98 87.65 77.56

Human perf. - - - 96.33

Table 2: Result comparisons (%) on the WIQA test set, including accuracies on three separate question types
(“in-para”, “out-of-para”, “no-effect”), and the overall test set. The baselines labeled with ∗ are directly taken from
Tandon et al. (2019), where the test set is slightly different.

Context
After 15 years of paying premiums to Allstate , I have
finally started the process of shopping for a new insurance
company . I ca n’t say I ’ ve been unhappy with Allstate
but it ’s time to see if they are truly giving me a good deal
or not . A couple things have caused me to do this .
Question and Options
Why is it a good idea to shop for insurance regularly ?
(A) Sometimes your current insurance will be too compla-
cent with you .
(B) None of the above choices .
(C) You need to keep your insurance provider on their
toes.
(D) It helps make sure that you are getting the best
deal possible .
Erased Explanations
As a result, he/she feels sad.
As a result, he/she feels good.
As a result, he/she feels annoyed.
As a result, he/she feels satisfied.
As a result, he/she feels happy.
Reserved Explanations
Before, he/she needed have the information.
Because he/she wanted to have good quality of products.
He/she is seen as cautious.
He/she is seen as smart.
He/she is seen as responsible.

Table 3: Example of explanation refinement by the
REM module. The question is taken from the Cos-
mosQA development set, and the explanations are gen-
erated by the explanation generator. The erased and
reserved explanations are presented.

module to refine the explanations. The best number
of recursive step is 2. The upper bound of erased
explanation sentences at each recursive step is set

to 10. The model is optimized using the Adam opti-
mizer with a learning rate of 5× 10−6 and warmup
steps of 1500. The model is trained with 10 epochs
and a batch size of 4.

4.4 Experimental Results
The experimental results on CosmosQA and WIQA
are presented in Table 1 and Table 2, respectively.
Our proposed REM-Net is compared with three
groups of baselines, as explained in Section 4.2.
We report the results of two variants of our model,
REM-Nettext and REM-Net. REM-Net is the com-
plete version of our model with the complete ex-
planation generator used to produce raw explana-
tions. The REM-Nettext uses the variant of the
explanation generator explained in Section 3.2 that
takes only the context paragraphs as explanations.
It is shown that our models outperform competi-
tive baselines, which demonstrates that our mod-
els are effective. Moreover, the comparison with
MemN2N (Sukhbaatar et al., 2015) and BERT,
which incorporate the same explanation sentences,
indicates that the performance boost of our model
is beyond the augmentation of additional informa-
tion. The recursive erasure manipulation on the
explanations is beneficial.

4.5 Case Study
We showcase several examples to demonstrate
REM-Net and REM-Nettext’s capability of expla-
nation refinement. Table 3 presents an example
of CosmosQA in which REM-Net refines the gen-



Context
The oil needs to be pumped from the ground.
After it is pumped it then is transported to a factory.
In the factory the oil is processed and turned into fuel.
Once the fuel is refined it is then sent to a truck.
By truck the fuel is sent to the gas station.
Question and Options
Suppose more oil is processed happens, how will it affect
MORE oil arriving at gas stations ?
(A) More. (B) Less. (C) No effect.
Erased Explanations
The oil needs to be pumped from the ground.
After it is pumped it then is transported to a factory.
In the factory the oil is processed and turned into fuel.
Reserved Explanations
Once the fuel is refined it is then sent to a truck.
By truck the fuel is sent to the gas station.

Table 4: Example of explanation refinement by the
REM module. The question is taken from the WIQA
test set, and explanations are merely the sentences in
the context paragraph. The erased sentences and re-
tained sentences are presented.

erated explanations. The question concerns the
reason for buying insurance regularly. The context
paragraph tells a story about the narrator deciding
to change his/her insurance products, but the reason
for his/her decision is not provided. The generated
explanations supply such reasons, hence benefits
the understanding of the question. The erased ex-
planations such as “As a result, he/she feels sad”
or “As a result, he/she feels happy” are intuitively
confounding to the question, since changing the in-
surance products are normally someone’s rational
decision. On the contrary, sentences like “Because
he/she wanted to have good quality of products”
support the question well, as they provide reason-
able explanations. It is intuitive that the reserved
explanations by REM-Net explain the reason better
than the erased explanations. Table 4 provides an
example of WIQA in which REM-Nettext refines
the context paragraph sentences. The example con-
cerns the process of fuel production. REM-Nettext
erases the sentences talking about how the oil is
turned into fuel and retains the explanations of how
the oil being transported, which is reasonable for
the question.

4.6 Ablation Study
To further investigate the benefits of each compo-
nent of the proposed REM-Net, we conduct abla-
tion studies on the explanation generator module
and the REM module, the results of which are pre-
sented in Table 5 and Table 6. The performances of
REM-Net are generally better than those of REM-
Nettext. This is due to the augmented information

Dev Test

REM-Net-Largetext 67.87 68.53
w/o E 67.57 68.45
w/o E, w/o R 67.37 67.08

REM-Net-Large 69.49 70.07
w/o E 68.44 68.58
w/o E, w/o R 68.27 68.53

Table 5: Ablation studies on REM-Net-Large that are
conducted on CosmosQA. E denotes the erasure manip-
ulation, while R refers to the recursion mechanism.

In-
para

Out-of-
para

No-
effect

Total

REM-Net-Basetext 72.45 62.48 90.19 75.82
w/o E 71.32 61.41 90.04 75.12
w/o E, w/o R 70.94 60.18 91.31 75.09

REM-Net-Base 73.58 63.05 91.71 76.89
w/o E 72.64 62.97 91.71 76.69
w/o E, w/o R 71.89 60.34 91.55 75.42

Table 6: Ablation studies on REM-Net-Base that are
conducted on WIQA. E signifies the erasure manipula-
tion, while R indicates to the recursion mechanism.

provided by the explanation generator. Moreover,
removing the erasure manipulation from the REM
module leads to a performance decline. This in-
dicates that excluding those confounding expla-
nation sentences benefits the results. Further re-
moving the recursive mechanism, which means the
REM module calculates the explanation scores only
once, brings a further performance drop. This in-
dicates that recursively estimating the explanation
sentences refines the understanding of the question
and provides better interpretation. Therefore, era-
sure manipulation, the recursive mechanism, and
the generated explanations all contribute to the ben-
efits provided by our model.

5 Conclusion
In this paper, we propose a novel REM-Net that
demonstrates superior reasoning capability in com-
monsense QA tasks while providing recursively
refined commonsense explanations. REM-Net inte-
grates an explanation generator and a REM module.
The explanation generator provides possible expla-
nations to the commonsense question, after which
the REM module conducts a recursive erasure ma-
nipulation in order to refine the explanations. Ex-
perimental results demonstrate the effectiveness of
REM-Net on commonsense QA tasks. Case study
provides further evidence that REM-Net refines
the explanations in a reasonable way by erasing
the confounding explanations and discovering the
supporting explanations to the questions.
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