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A recent binary fitness-based renormalizable network models is fit to empir-
ical networks across several levels. First, the case when a ”natural” hierarchical
partition is available is examined, and examplified with trade data at a finer
scale than in the original paper. The goodness of fit at a fixed level is compared
to the output of established fitness-based probabilistic models.

Then the goodness of fit of the renormalizable model is assessed when the
hierarchical partition is generated by state-of-the art model-based hierarchical
clustering methods, which adds a null model to the original algorithm.

1 Introduction

Reducing the complexity of networks to increase interpretability is becom-
ing all the more necessary as the size of empirical graphs made available for
analysis increases.

Community-finding [1], coarse-graining, backboning [2], are different paths
to this aim, guided by the necessity to simplify the network while preserv-
ing some properties of interest. Methods differ by the type of property they
preserve (e.g. topological, spectral, dynamical).

In the present article, applications of the recently proposed fitness-based
renormalizable network model by Garuccio et al. [3] are examined. The model
tackles the issue of reducing networks complexity with a multi-scale and prob-
abilistic standpoint, given the following hypotheses: a hierarchical partition is
known a priori, for example in the form of a dendrogram; nodes are associated
with known fitnesses, that sum across aggregation; edges bear a binary value.

This model is analytically tractable, estimates the edge probability a level
l plij , and depends on just one parameter δ that fits the original network
density, i.e. at level l = 0. Optionnally it can take dyadic information (such
as distances between nodes, or group membership) as an input. Recent works
started tackling the weighted case but the topic is still open [4].

This model lies at the intersection of several research fields, the first of
which is the physics-oriented complex networks literature, inspired by renor-
malization in statistical physics.While geographical coarsening [5] considers
graphs embedded in a 2d space used to perfom box-covering, fractal-oriented
studies [6] use a shortest-path-distance on a graph to perform renormalization
without needing an embedding space. In specific cases some quantitites such as
the degree distribution can shown to be preserved. Spectral methods [7] trun-
cate the set of eigenvalues of the graph Laplacian and average eigenvectors in
order to preserve random-walk characteristics.

Secondly, the model by Garuccio et al. is related to model-based hierarchi-
cal clustering. For example latent space methods first project network nodes
in an embedding space built from data, in the spirit of the Latent Space Model
[8] where homophily increases if nodes get closer. Traditional clustering can
then be performed as in the Latent Position Cluster Model (LPCM) [9], and
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applied recursively in latent space, as was proposed in [10,11] upon projecting
in a hyperbolic space. In the same family of model-based hierarchical cluster-
ing, the Stochastic Block Model (SBM) was extended to the hierarchical case
in [12,13], where the former builds on the degree-corrected SBM [14]. Both
algorithms rely on Monte-Carlo methods. As evoked in [14,15], the SBM and
related models (e.g. block configuration model) can be formulated as an ex-
ponential random graph (ERG), that constitutes another important group of
random network models of widespread use, including for clustering purpose.

In the present article the following questions will be examined: if a given
empirical graph comes with a ”natural” or expert-defined partition and a set
of node fitnesses, is it well fit by the renormalizable model of Garuccio et al.,
and why ? This will be addressed in sec. 3 with trade data aggregated by
product nomenclature level. Are the hierarchical clustering method depicted
in the introduction well fitted by the renormalizable model, and why ?

2 The renormalizable model by Garuccio et al.

In this section, a simplified version of the model by Garuccio et al. [3] is
presented, keeping their notations: A(l) is the adjacency matrix of a binary
undirected graph, that results from the iterated coarse-graining of an origi-
nal matrix A(l), with dimension N0×N0. Non-overlapping partition functions
Ωl define partitions of the node set at level l. The partitions defined at all
levels are considered as known a priori, for example in the form of a dendro-
gram. The chosen coarse-graining rule is simple: if there is at least an edge
between two nodes il, jl belonging respectively to super-nodes il+1 and jl+1,
then the super-nodes are connected as well. This can be written: ail+1,jl+1

=
1 −

∏
il∈il+1

∏
jl∈jl+1

(1 − ail,jl), where il ∈ il+1 means that node il at level l
belongs to super-node il+1 at level l + 1. Random adjacency matrix are then
considered, and associated with the probability Pl(A

(l)). Hypothesizing inde-

pendent links leads to the expression
∏Nl

il=1

∏il
jl=1

[
p
(l)
il,jl

]a(l)
il,jl

[
1−p(l)il,jl

]1−a(l)
il,jl .

Renormalizability of the model is expressed by the scale-invariance property,
for any l ≥ m ≥ 0:

Pl(A
(l)|Θl) =

∑
{A(m)}→A(l)

Pm(A(m)|Θm) (1)

where the sum is on the set {A(m)} of matrices that lead to A(l) under succes-
sive application of the renormalization rule, and Θl is a parameter depending
only on Θm and the partitions.

It is shown by the authors that there is a unique solution to the problem
under scale-invariance: pil,jl(δ) = 1 − e−δxil

xjl with the fitnesses obeying :
xil+1

=
∑
il∈il+1

xil where xil are node-specific predefined parameters, the

fitnesses. The interested reader is referred to Garuccio et al. [3] for more detail
and the treatment of the dyadic case, that is omitted here.
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This model is probabilistic, generative in the sense that one can sample
from the set of adjacency matrices {A(l)} at all levels, and has an anlytical
expression (in contrast to MCMC-based methods) which functional form is
preserved across renormalization. Only one graph sample is required to fit the
model. At any level pil,jl(δ) can be compared to other fitness-based models
such as the FiCM model [16].

3 Empirical networks with a natural partition and summable
fitnesses

0.0 0.5 1.0 1.5 2.0
l

0.70

0.75

0.80

0.85

0.90

0.95
link_density

empirical
avg

0.0 0.5 1.0 1.5 2.0
l

0.70

0.75

0.80

0.85

0.90

0.95

knn_mean_norm
empirical
avg

Fig. 1 Macro-scale properties of MRIO network across hierarchical levels l, empirical vs
average under the null model. (a) link density; (b) k̄nn.

The usefulness of the above model will be examplified using data at a finer
scale than in the original paper, namely Multi-Regional Input-Output data
from Exiobase 3 that are broken down at the product level. They cover 44
countries (plus 5 Rest of World regions), 163 industries and 200 products,
and represent monetary flow between industrial sectors (industry-by-industry
tables), or between products (product-by-product tables). The products and
industries can be grouped by family according to various correspondance ta-
bles. Here we use the Nace1 classification at levels 1 and 2. Keeping the number
of regions to 49, we generate aggregate undirected binary graphs with the fol-
lowing dimensions: At level 0, 163 industries are kept, which results in a vertex
set of size 7987. At level 1, 88 industry groups remain, the resulting dimension
is 4312. At level 2, 21 industry groups remain, the resulting dimension is 1029.

To assess goodness of fit to the model, macro-scale properties were com-
puted for the three product levels as shown in Fig. 1. Fig. 1(a) shows that the
empirical link density at level 0 is the same as the average link density under
the null model, which is expected given the model definition. Further, it can

1 NACE is the statistical classification of economic activities in the European Commu-
nities. Version 2 is used here.
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be observed that at levels 1 and 2 the empirical and average quantities rise
-which is expected since the network is getting denser upon renormalization-
and remain close to each other. Fig. 1(b) shows k̄nn, the average nearest neigh-
bor degree (ANND) averaged over the vertex to yield a scalar value. The two
values show a significant discrepancy at level 0, and converge to a common
value as the level increases.

In the rest of the paper the issue of the renormalizability of hierarchi-
cal probabilistic models produced by state-of-the-art hierarchical clustering
algorithms will be examined and a typology of situations that favour ”renor-
malizability” will be established
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