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Abstract 

We study the effect of correlated  channels on quantum speed of an open system. This is done 

with the help of some noise channels like amplitude damping, phase damping channel . Our 

model serves as a platform for a detail study of the effect of  quantum speed limit. It has 

found that how the quantum speed  limit varies by increasing the correlation between 

consecutive uses of channels. 
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Introduction 

 It is arguably impossible to isolate a particular system from surrounding subjected to 

information loss in the form of dissipation and decoherence. When a quantum system 

interacts with surroundings the system mixes with the environment. This is defined in terms 

of open quantum system [1]. There is always loss of information in the form of dissipation 

and decoherence [2]. There are various method that has been put forward in order to suppress 

decoherence. One of the method is by using memory [3,4], to retrieve information which was 

lost due to environment effect. The loss of information are of two types: Markovian and Non-

Markovian. The concept of memory arises when the interaction of system with environment 

is non-Markovian. Many theoretical approaches [5-12] has been put forward to explain non-

Markovian memory effect. The concept of memory as non-Markovianity is different from the 

concept of memory as correlated quantum channels [13,14]. 

              In this paper, we focus on Markov noise to study the quantum speed limit evolution 

proposed by Macchiavello and Palma [13]. There is a bound to the speed of evolution which 

was derived from time-energy uncertainty relation for a system undergoing completely 

positive trace preserving map (CPTP). Two different kind of Markov noise has been taken 

into consideration one is amplitude damping channel and phase damping channel. We are 



making an attempt to connect the concept of correlated noise and quantum speed limit. It is 

well known that there are many applications of quantum speed limit, including quantum 

metrology [15], computational limits of physical systems [16], quantum optimal control 

algorithm [17].  

         We generalise master equation for two qubit atomic system [18], with modelling 

environment as a thermal radiation field. The dynamics of global system environment. There 

is a system-environment interaction and we are generalizing decay rate of non-Markovianity 

in terms of  bound of speed of evolution.  

            In this work, we establish a relation between ratio of correlated speed versus the 

degree of Markovianity of the paper are as follows. In Sec. II, we introduce the out turn of 

correlated Markov Noise. In Sec III, we discuss the of effect  quantum speed limit on noise 

channel. In Sec. IV, we introduce the dynamics of correlated channels on quantum speed 

limit. In Sec. V, we introduce the effect of master equation on quantum speed limit.  In Sec. 

VI we give our conclusions. 

 

II. Correlated Markov Noise 

We begin with a brief discussion of correlated Markov noise channels subsequent use of  

many number of channels generates some correlation. Such kind of channel is called 

correlated Markov noise channel. Initially we have an input state followed by completely 

positive trace preserving map (CPTP). Let initial state is ρ followed by CPTP map given as 

                                         𝛜 (ρ) = ∑ 𝐸𝑖ρ 𝐸𝑖
†
                                                                  (1) 

 where 𝐸𝑖 are Kraus operators of channels which satisfy CPTP map. Based on Kraus operator 

approach the state under noise is given by [19] 

𝛜 (ρ) = (1-µ) ∑ 𝐸𝑖𝑗𝑖𝑗 ρ𝐸𝑖𝑗
†

+ µ ∑ 𝐸𝑘𝑘𝑘 ρ𝐸𝑘𝑘
†

                             (2) 

 

In above expression, the probability is µ to remain correlated, and the probability is 1-µ for 

the operation to remain uncorrelated.  

                A well established model with Markovian noise has been taken into 

consideration. The time dependent Hamiltonian [20] of a qubit is given by H(t) = k𝚪(t)𝜎𝑧. 

 where Γ(t) is an independent random variable. We are dealing with time dependent Karus 

operator  to establish a model for Markov noise channel. The dynamics can be defined in 

terms of following Kraus operator.  

                                              



                                                  𝐾1(𝜈) = √
1+𝜑(𝜐)

2
   I                                                             (3) 

                                                   𝐾2(𝜈) = √
1−𝜑(𝜐)

2
   𝜎𝑧                                                          (4) 

 

Where we have 𝜑(𝜐) =  𝑒−𝜈 [cos 𝑢𝜈 +
sin 𝑢𝜈

𝑢
] and u =  √(4𝜏)2 − 1  with 𝝊 = 

𝑡

2 𝜏
 being the 

time scale. Calculations for Kraus operator   done for two qubit channel as well as done for 

correlated channels.  

 

III. Effect  quantum speed limit on noise channel 

Evolution of closed system follows a unitary map. For a dynamical evolution there is a 

limiting case. The evolution of a quantum state dictates the speed of quantum computation. 

Quantum physics imposes limit on the speed of evolution of state: this is the quantum speed 

limit (QSL) [21]. The maximum evolution of a quantum system give rise to the limit of 

dynamical speed evolution [22,23]. There  arises quantum speed limit when there is a finite 

exchange between system and environment. In this work  we present quantum speed limit for 

noisy dynamics also.  The minimum time evolution for closed quantum system is given as 

                                          τ = 
𝜋ћ

2 ΔE
                                                                    (5) 

 

ΔE is the energy variance, this inequality is known as the Mandelstam-Tamm bound [25]. A 

bound can be derived for the map represented in terms of time-independent Kraus operator 

[24]. 

                                  𝜏𝜃 ≥ 
2𝜃2

𝜋2  
√𝑡𝑟[𝜌]2

∑ ‖Kα(t,0)ρ Kα
†

(t,0)‖α

                                                     (6) 

 

The time evolution of quantum system 𝜌0can be written as 𝜌𝑡 = ∑ Kα ρ Kα
†

𝛼 . Let the map is 

governed by evolution.  

                𝑓̇(t) = 
1

𝑡𝑟ρ0
2 ∑ 𝑡𝑟[𝜌0𝐾𝛼𝜌0𝐾𝛼

†]𝛼  

On solving above equation by Cauchy- Schwarz inequality a bound can be derived. 

Parametizing f(t) = cosθ  we have  

                                                  𝜏𝜃 ≥
2𝜃2

𝜋2
 

√𝑡𝑟[𝜌]2

∑ ‖Kαρ Kα
†

‖α

                                                   (7) 



 

We exactly compute plot QSL for the  following cases: 

 

IV. Dynamics of correlated channel on quantum speed limit      

(a) Amplitude noises 

Consider the dynamics of amplitude damping channel. Kraus operator for two qubit system 

are as follows [21]. 

 𝐴1 = (

√1+𝜑(𝑡,𝜏)

2
0

0
√1+𝜑(𝑡,𝜏)

2

) 

𝐴2=  (

√1+𝜑(𝑡,𝜏)

2
0

0
√1+𝜑(𝑡,𝜏)

2

) 

where 𝜑(𝜐) =  𝑒−𝜈 [cos 𝑢𝜈 +
sin 𝑢𝜈

𝑢
] and u =  √(4𝜏)2 − 1  with 𝝊 = 

𝑡

2 𝜏
 being the time scale, τ 

refers to the degree of non-Markovianity [26]. In this paper we establish a link between ratio 

of speed limit of uncorrelated and correlated channel and the degree of non-Markovianity. 

Using equation (6) and doing straight forward calculation ratio of quantum speed limit 

decreases with 𝜏. Fig 1 demonstrate the decay of speed of evolution for a two qubit amplitude 

Markov noise. The ratio of quantum speed limit gradually decreases with increase in τ. 

 

FIG 1  Ratio of uncorrelated-correlated speed decreases with increase in degree of 

Markovianity.  



 

(b) Phase damping noises: 

Phase  damping noises describes a quantum noise with decay of off- diagonal element. The 

Kraus operator for a single qubit can be represented in terms of Pauli operators 𝜎0 = 𝐼 and 

𝜎3. The Kraus operator for two-qubit system can be represented as [27]. From Fig 2. we see 

that the evolution of ratio of speed limit for a two-qubit system increases with increase in τ. 

 

FIG 2. The speed of time evolution increases with increase in degree of non-Markovianity. 

 

V.  The effect of Master equation on quantum speed limit.   

 

Let us consider the master equation constructed for a global system-bath interaction. 

Consider a given system with initial stste coupled to an environment.  The global reversible 

dynamics is governed by unitary evolution and reduced dynamics of system is given by 

reduced dynamical map.  One can assume Markovian dynamics when the time scale of 

environment is much smaller than that of system [28]. 

                                   
dρt

dt
 = L𝜌𝑡                                                              (8) 

In this section, we compute quantum speed limit (QSL) using master system for two-qubit 

atomic system [29].  



𝑑𝜌

𝑑𝑡
 = Lun(ρ) + Lcor(ρ)                                                   (9) 

Here 𝐿𝑢𝑛 represents uncorrelated Lindbladian operator and 𝐿𝑐𝑜 the correlated operator.  

𝐿𝑢𝑛 = ∑ γ𝑖𝑖=1,2 (N+1)(𝜎𝑖
−𝜌𝜎𝑖

+ −
1

2
(𝜎𝑖

−𝜎𝑖
+𝜌 + 𝜌𝜎𝑖

+𝜎𝑖
−)) 

and  𝐿𝑐𝑜𝑟 =  ∑ γi𝑖=1,2 N(𝜎𝑖
−𝜌𝜎𝑖

+ −
1

2
(𝜎𝑖

−𝜎𝑖
+𝜌 + 𝜌𝜎𝑖

−𝜎𝑖
+)) 

where N is Planck’s distribution function.  

 

𝜎1
− = 𝜎− ⨂ 𝐼, 𝜎1

+ = 𝜎+ ⨂ 𝐼, 𝜎2
− = 𝐼⨂σ−, 𝜎2

+ = 𝐼⨂σ+ 

The 𝛾𝑖 are called decay parameter. The bound for the speed of evolution is calculated for the 

correlated channel having generator in the form of Eq(9). Using Eq. (6), we determine ratio of 

uncorrelated-correlated bound on speed of evolution for this model. We establish a link between ratio 

of bound of evolution as a function of a. Here, a is a measure of the degree of non-

Markovianity[29].The generalization of time-dependent Lidbladian for uncorrelated channel 

can be calculated in a straightforward way using Eq.6. Similar calculation can be done for the 

sum of correlated-uncorrelated noise. The coupling depends on the qubit position 𝑟𝑛, and the 

interaction Hamiltonian is proportional to √𝛾𝑖𝑗. We studied this model in two cases: 

Case 1: Consider the case when 𝛾1 = 𝛾2 = 𝛾3 = 𝛾; we generalise Lindbladian form of 

master equation for uncorrelated channel.  

Case 2: Consider the case when 𝛾12 = 𝛾21= 𝛾a(𝑘0𝑟12) where 𝛾𝑖𝑗 is the multi qubit interaction 

of composite system with bath. We determine the bound of evolution as upper and lower 

bound using triangle inequality.  

 

 

FIG 3 : Figure shows that, as the degree of non-Markovianity a is increased, the speed limit for 

correlated Markov noise increases for upper bound and for lower bound the speed limit decreases.  



 

VI.  Conclusions 

In conclusion, we have proposed a scheme for detailed study of correlated channel under 

Markov noise. Different types of Markov noise channel have been taken into account, such as 

amplitude damping channel and phase damping channel. The effect of Markov noise on 

correlated channels has been discussed in detail. We summarize the results as follows. Firstly, 

the ratio of QSL for correlated/uncorrelated channels generated for amplitude damping 

channel and phase damping channel was calculated. The speed of evolution for correlated 

channel under Markov noise decreases for amplitude damping channel and increases for 

phase damping channel. Secondly, global system environment interaction is taken into 

consideration. We considered a two qubit atomic model and the master equation for a two 

qubit atomic system consists of Lindbladian operator for correlated and uncorrelated noise. 

We studied the detailed effect of Markov noise for this two qubit atomic model. We have 

further extended our case for the ratio of bound of evolution. We have shown that there are 

two bounds of evolution for this model. The speed of upper bound for the model increases 

whereas the speed of lower bound decreases. 
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