Note on the Odd Perfect Numbers

Frank Vega

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

Note on the Odd Perfect Numbers

Frank Vega

CopSonic, 1471 Route de Saint-Nauphary 82000 Montauban, France

Abstract

The Riemann Hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$. Under the assumption of the Riemann Hypothesis, we claim that there is not any odd perfect number at all.

Keywords: Riemann Hypothesis, Prime numbers, Odd perfect numbers, Superabundant numbers, Sum-of-divisors function 2000 MSC: 11M26, 11A41, 11A25

1. Introduction

The Riemann Hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$. As usual $\sigma(n)$ is the sum-ofdivisors function of n :

$$
\sum_{d \mid n} d
$$

where $d \mid n$ means the integer d divides $n, d \nmid n$ means the integer d does not divide n and $d^{k} \| n$ means $d^{k} \mid n$ and $d^{k+1} \nmid n$. Define $f(n)$ and $G(n)$ to be $\frac{\sigma(n)}{n}$ and $\frac{f(n)}{\log \log n}$ respectively, such that \log is the natural logarithm. We know these properties from these functions:

Proposition 1.1. [1]. Let $\prod_{i=1}^{r} q_{i}^{a_{i}}$ be the representation of n as a product of primes $q_{1}<\cdots<q_{r}$ with natural numbers as exponents a_{1}, \ldots, a_{r}. Then,

$$
f(n)=\left(\prod_{i=1}^{r} \frac{q_{i}}{q_{i}-1}\right) \times \prod_{i=1}^{r}\left(1-\frac{1}{q_{i}^{a_{i}+1}}\right) .
$$

Proposition 1.2. For every prime power q^{a}, we have that $f\left(q^{a}\right)=\frac{q^{a+1}-1}{q^{a} \times(q-1)}$ [2]. If $m, n \geq 2$ are natural numbers, then $f(m \times n) \leq f(m) \times f(n)$ [2]. Moreover, if p is a prime number, and a, b two positive integers, then [2]:

$$
f\left(p^{a+b}\right)-f\left(p^{a}\right) \times f\left(p^{b}\right)=-\frac{\left(p^{a}-1\right) \times\left(p^{b}-1\right)}{p^{a+b-1} \times(p-1)^{2}} .
$$

[^0]Say Robins(n) holds provided

$$
G(n)<e^{\gamma}
$$

where the constant $\gamma \approx 0.57721$ is the Euler-Mascheroni constant. The importance of this property is:

Proposition 1.3. Robins(n) holds for all natural numbers $n>5040$ if and only if the Riemann Hypothesis is true [3].

In mathematics, $\Psi=n \times \prod_{q \mid n}\left(1+\frac{1}{q}\right)$ is called the Dedekind Ψ function. Say Dedekind $\left(q_{n}\right)$ holds provided

$$
\prod_{q \leq q_{n}}\left(1+\frac{1}{q}\right)>\frac{e^{\gamma}}{\zeta(2)} \times \log \theta\left(q_{n}\right)
$$

where $\zeta(x)$ is the Riemann zeta function and $\zeta(2)=\frac{\pi^{2}}{6}$. The importance of this inequality is:
Proposition 1.4. Dedekind $\left(q_{n}\right)$ holds for all prime numbers $q_{n}>3$ if and only if the Riemann Hypothesis is true [4].

Let $q_{1}=2, q_{2}=3, \ldots, q_{k}$ denote the first k consecutive primes, then an integer of the form $\prod_{i=1}^{k} q_{i}^{a_{i}}$ with $a_{1} \geq a_{2} \geq \cdots \geq a_{k} \geq 0$ is called an Hardy-Ramanujan integer [5]. A natural number n is called superabundant precisely when, for all natural numbers $m<n$

$$
f(m)<f(n)
$$

Proposition 1.5. If n is superabundant, then n is an Hardy-Ramanujan integer [6]. Let n be a superabundant number, then $p \| n$ where p is the largest prime factor of n [6]. For large enough superabundant number n, we have that $q^{a_{q}}<2^{a_{2}}$ for $q>11$ where $q^{a_{q}} \| n$ and $2^{a_{2}} \| n$ [6]. For large enough superabundant number n, we obtain that $\log n<\left(1+\frac{0.5}{\log p}\right) \times p$ where p is the largest prime factor of n [7].

In mathematics, the Chebyshev function $\theta(x)$ is given by

$$
\theta(x)=\sum_{p \leq x} \log p
$$

with the sum extending over all prime numbers p that are less than or equal to x [7].
Proposition 1.6. [7]. For $x \geq 89909$:

$$
\theta(x)>\left(1-\frac{0.068}{\log (x)}\right) \times x .
$$

In number theory, a perfect number is a positive integer n such that $f(n)=2$. Euclid proved that every even perfect number is of the form $2^{s-1} \times\left(2^{s}-1\right)$ whenever $2^{s}-1$ is prime. It is unknown whether any odd perfect numbers exist, though various results have been obtained:

Proposition 1.7. Any odd perfect number N must satisfy the following conditions: $N>10^{1500}$ and the largest prime factor of N is greater than 10^{8} [8], [9].

Using these results, we finally claim that there is not any odd perfect number at all.

2. Results

Theorem 2.1. Under the assumption of the Riemann Hypothesis, we claim that there is not any odd perfect number at all.
Proof. Let N be a large enough odd perfect number, then we will show its existence implies that the Riemann Hypothesis is false. If N is a large enough odd perfect number, then a superabundant number n that is a multiple of N would be large enough as well. We would have

$$
f(n) \leq f(N) \times f\left(\frac{n}{N}\right)
$$

according to the Proposition 1.2. That is the same as

$$
f(n) \leq 2 \times f\left(\frac{n}{N}\right)
$$

since $f(N)=2$, because N is a perfect number. Hence,

$$
\begin{aligned}
\frac{f(n)}{2} & =\frac{\left(2-\frac{1}{2^{a_{2}}}\right) \times f\left(\frac{n}{2^{a_{2}}}\right)}{2} \\
& =f\left(\frac{n}{2^{a_{2}}}\right) \times \frac{\left(2-\frac{1}{2^{a_{2}}}\right)}{2} \\
& =f\left(\frac{n}{2^{a_{2}}}\right) \times \frac{2^{a_{2}+1}}{2^{a_{2}+1}}
\end{aligned}
$$

when $2^{a_{2}} \| n$ due to the Proposition 1.2. In this way, we have

$$
\frac{f\left(\frac{n}{2^{a_{2}}}\right)}{f\left(\frac{n}{N}\right)} \leq \frac{2^{a_{2}+1}}{2^{a_{2}+1}-1} .
$$

However, we know that $p<2^{a_{2}}$ because of $p>10^{8}>11$ and the Propositions 1.5 and 1.7, where p is the largest prime factor of n. Consequently,

$$
\frac{2^{a_{2}+1}}{2^{a_{2}+1}-1} \leq \frac{2 \times p}{2 \times p-1}
$$

since $\frac{x}{x-1}$ decreases when $x \geq 2$ increases. In addition, we know that

$$
\frac{2 \times p}{2 \times p-1} \leq f(p)
$$

where we know that $f(p)=\frac{p+1}{p}$ from the Proposition 1.2. Certainly,

$$
\begin{aligned}
2 \times p^{2} & \leq(p+1) \times(2 \times p-1) \\
& =2 \times p^{2}+2 \times p-p-1 \\
& =2 \times p^{2}+p-1
\end{aligned}
$$

where this inequality is satisfied for every prime number p. So,

$$
\frac{f\left(\frac{n}{2^{a_{2}}}\right)}{f\left(\frac{n}{N}\right)} \leq f(p)
$$

where we know that $p \| n$ from the Proposition 1.5. Under the assumption of the Riemann Hypothesis, we have that

$$
\begin{aligned}
e^{\gamma} & >G(n) \\
& =\frac{f\left(\frac{n}{p}\right) \times f(p)}{\log \log n} \\
& \geq \frac{f\left(\frac{n}{p}\right) \times f\left(\frac{n}{2 a_{2}}\right)}{f\left(\frac{n}{N}\right) \times \log \log n}
\end{aligned}
$$

since $f(\ldots)$ is multiplicative and as a consequence of Proposition 1.3. This is equivalent to

$$
\frac{f\left(\frac{n}{p}\right)}{f\left(\frac{n}{N}\right)}<\frac{e^{\gamma}}{f\left(\frac{n}{2^{a_{2}}}\right)} \times \log \log n
$$

From the Propositions 1.1 and 1.5, we know that

$$
f\left(\frac{n}{2^{a_{2}}}\right)=\left(\prod_{i=2}^{k} \frac{q_{i}}{q_{i}-1}\right) \times \prod_{i=2}^{k}\left(1-\frac{1}{q_{i}^{a_{i}+1}}\right)
$$

where $q_{k}=p$ and $q_{1}=2$. We know that

$$
\frac{q_{i}}{q_{i}-1}=\frac{q_{i}+1}{q_{i}} \times \frac{q_{i}^{2}}{q_{i}^{2}-1}
$$

and

$$
\frac{q_{i}^{2}}{q_{i}^{2}-1} \times\left(1-\frac{1}{q_{i}^{a_{i}+1}}\right) \geq 1
$$

Using the previous inequalities, we obtain that

$$
f\left(\frac{n}{2^{a_{2}}}\right) \geq \prod_{i=2}^{k} \frac{q_{i}+1}{q_{i}}
$$

Under the assumption of the Riemann Hypothesis:

$$
\prod_{q \leq p}\left(1+\frac{1}{q}\right)>\frac{e^{\gamma}}{\zeta(2)} \times \log \theta(p)
$$

which is the same as

$$
\begin{aligned}
\zeta(2) \times \prod_{q \leq p}\left(1+\frac{1}{q}\right) & =\frac{\pi^{2}}{6} \times \prod_{q \leq p}\left(1+\frac{1}{q}\right) \\
& =\frac{\pi^{2}}{6} \times \frac{3}{2} \times \prod_{2<q \leq p}\left(1+\frac{1}{q}\right) \\
& =\frac{\pi^{2}}{8} \times \prod_{2<q \leq p}\left(1+\frac{1}{q}\right) \\
& >e^{\gamma} \times \log \theta(p) . \\
& 4
\end{aligned}
$$

due to the Proposition 1.4. Taking into account that $p>10^{8}>3$ and n is superabundant:

$$
\frac{\pi^{2}}{8} \times f\left(\frac{n}{2^{a_{2}}}\right)>e^{\gamma} \times \log \theta(p)
$$

Therefore,

$$
\frac{\frac{\pi^{2}}{8}}{\log \theta(p)}>\frac{e^{\gamma}}{f\left(\frac{n}{2^{a_{2}}}\right)}
$$

We use the previous inequality to show that

$$
\frac{f\left(\frac{n}{p}\right)}{f\left(\frac{n}{N}\right)}<\frac{\frac{\pi^{2}}{8}}{\log \theta(p)} \times \log \log n
$$

For large enough superabundant number n and $p>10^{8}$, then

$$
\frac{\frac{\pi^{2}}{8}}{\log \theta(p)} \times \log \log n \leq \frac{\frac{\pi^{2}}{8}}{\log \left(\left(1-\frac{0.068}{\log 10^{8}}\right) \times 10^{8}\right)} \times \log \left(\left(1+\frac{0.5}{\log 10^{8}}\right) \times 10^{8}\right)
$$

because of the Propositions 1.6 and 1.5. We obtain that

$$
\frac{\frac{\pi^{2}}{8}}{\log \left(\left(1-\frac{0.068}{\log 10^{8}}\right) \times 10^{8}\right)} \times \log \left(\left(1+\frac{0.5}{\log 10^{8}}\right) \times 10^{8}\right)<1.2357481
$$

Thus,

$$
\frac{f\left(\frac{n}{p}\right)}{f\left(\frac{n}{N}\right)}<1.2357481
$$

For every prime p_{i} that divides N such that $p_{i}^{a_{i}} \| N$ and $p_{i}^{a_{i}+b_{i}} \| n$ for a_{i}, b_{i} two natural numbers, we have that

$$
f\left(p_{i}^{a_{i}+b_{i}}\right)-f\left(p_{i}^{a_{i}}\right) \times f\left(p_{i}^{b_{i}}\right)=-\frac{\left(p_{i}^{a_{i}}-1\right) \times\left(p_{i}^{b_{i}}-1\right)}{p_{i}^{a_{i}+b_{i}-1} \times\left(p_{i}-1\right)^{2}}
$$

in the Proposition 1.2. This is equal to

$$
\frac{f\left(p_{i}^{a_{i}+b_{i}}\right)}{f\left(p_{i}^{b_{i}}\right)}=f\left(p_{i}^{a_{i}}\right)-\frac{\left(p_{i}^{a_{i}}-1\right) \times\left(p_{i}^{b_{i}}-1\right)}{f\left(p_{i}^{b_{i}}\right) \times p_{i}^{a_{i}+b_{i}-1} \times\left(p_{i}-1\right)^{2}} .
$$

Hence,

$$
\begin{aligned}
\frac{f\left(\frac{n}{p}\right)}{f\left(\frac{n}{N}\right)} & =\prod_{i}\left(\frac{f\left(p_{i}^{a_{i}+b_{i}}\right)}{f\left(p_{i}^{b_{i}}\right)}\right) \\
& =\prod_{i}\left(f\left(p_{i}^{a_{i}}\right)-\frac{\left(p_{i}^{a_{i}}-1\right) \times\left(p_{i}^{b_{i}}-1\right)}{f\left(p_{i}^{b_{i}}\right) \times p_{i}^{a_{i}+b_{i}-1} \times\left(p_{i}-1\right)^{2}}\right) \\
& \approx \prod_{i}\left(f\left(p_{i}^{a_{i}}\right)\right) \\
& =f(N) \\
& =2 \\
& >1.2357481
\end{aligned}
$$

since we know that the expression

$$
\frac{\left(p_{i}^{a_{i}}-1\right) \times\left(p_{i}^{b_{i}}-1\right)}{f\left(p_{i}^{b_{i}}\right) \times p_{i}^{a_{i}+b_{i}-1} \times\left(p_{i}-1\right)^{2}}
$$

tends to 0 as b tends to infinity for every odd prime p. Certainly, the fraction $\frac{f\left(\frac{n}{p}\right)}{f\left(\frac{n}{N}\right)}$ gets closer to 2 as long as we take n bigger and bigger. However,

$$
1.2357481<\frac{f\left(\frac{n}{p}\right)}{f\left(\frac{n}{N}\right)}<1.2357481
$$

is a contradiction. By contraposition, the number N does not exist when N would be a large enough odd perfect number under the assumption of the Riemann Hypothesis. In addition, we claim there is not any odd perfect number at all since the smallest counterexample N must comply that $N>10^{1500}$ according to the Proposition 1.7.

Acknowledgments

The author would like to thank his mother, maternal brother and his friend Sonia for their support.

References

[1] A. Hertlein, Robin's Inequality for New Families of Integers, Integers 18, (2018).
[2] R. Vojak, On numbers satisfying Robin's inequality, properties of the next counterexample and improved specific bounds, arXiv preprint arXiv:2005.09307(2020).
[3] G. Robin, Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann, J. Math. pures appl 63 (2) (1984) 187-213.
[4] P. Solé, M. Planat, Extreme values of the Dedekind ψ function, Journal of Combinatorics and Number Theory 3 (1) (2011) 33-38.
[5] Y. Choie, N. Lichiardopol, P. Moree, P. Solé, On Robin's criterion for the Riemann hypothesis, Journal de Théorie des Nombres de Bordeaux 19 (2) (2007) 357-372. doi:doi:10.5802/jtnb.591.
[6] L. Alaoglu, P. Erdős, On highly composite and similar numbers, Transactions of the American Mathematical Society 56 (3) (1944) 448-469. doi:doi:10.2307/1990319.
[7] S. Nazardonyavi, S. Yakubovich, Superabundant numbers, their subsequences and the Riemann hypothesis, arXiv preprint arXiv:1211.2147(2012).
[8] P. Ochem, M. Rao, Odd perfect numbers are greater than 10^{1500}, Mathematics of Computation 81 (279) (2012) 1869-1877. doi:doi:10.1090/S0025-5718-2012-02563-4.
[9] T. Goto, Y. Ohno, Odd perfect numbers have a prime factor exceeding 10^{8}, Mathematics of Computation 77 (263) (2008) 1859-1868.

[^0]: Email address: vega.frank@gmail. com (Frank Vega)

