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Abstract

The Riemann Hypothesis is a conjecture that the Riemann zeta function has its zeros only at
the negative even integers and complex numbers with real part 1

2 . Under the assumption of the
Riemann Hypothesis, we claim that there is not any odd perfect number at all.
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1. Introduction

The Riemann Hypothesis is a conjecture that the Riemann zeta function has its zeros only at
the negative even integers and complex numbers with real part 1

2 . As usual σ(n) is the sum-of-
divisors function of n: ∑

d|n

d

where d | n means the integer d divides n, d ∤ n means the integer d does not divide n and dk ∥ n
means dk | n and dk+1 ∤ n. Define f (n) and G(n) to be σ(n)

n and f (n)
log log n respectively, such that log

is the natural logarithm. We know these properties from these functions:

Proposition 1.1. [1]. Let
∏r

i=1 qai
i be the representation of n as a product of primes q1 < · · · < qr

with natural numbers as exponents a1, . . . , ar. Then,

f (n) =

 r∏
i=1

qi

qi − 1

 × r∏
i=1

1 − 1

qai+1
i

 .
Proposition 1.2. For every prime power qa, we have that f (qa) = qa+1−1

qa×(q−1) [2]. If m, n ≥ 2 are
natural numbers, then f (m × n) ≤ f (m) × f (n) [2]. Moreover, if p is a prime number, and a, b
two positive integers, then [2]:

f (pa+b) − f (pa) × f (pb) = −
(pa − 1) × (pb − 1)
pa+b−1 × (p − 1)2 .
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Say Robins(n) holds provided
G(n) < eγ

where the constant γ ≈ 0.57721 is the Euler-Mascheroni constant. The importance of this prop-
erty is:

Proposition 1.3. Robins(n) holds for all natural numbers n > 5040 if and only if the Riemann
Hypothesis is true [3].

In mathematics, Ψ = n ×
∏

q|n

(
1 + 1

q

)
is called the Dedekind Ψ function. Say Dedekind(qn)

holds provided ∏
q≤qn

(
1 +

1
q

)
>

eγ

ζ(2)
× log θ(qn)

where ζ(x) is the Riemann zeta function and ζ(2) = π2

6 . The importance of this inequality is:

Proposition 1.4. Dedekind(qn) holds for all prime numbers qn > 3 if and only if the Riemann
Hypothesis is true [4].

Let q1 = 2, q2 = 3, . . . , qk denote the first k consecutive primes, then an integer of the form∏k
i=1 qai

i with a1 ≥ a2 ≥ · · · ≥ ak ≥ 0 is called an Hardy-Ramanujan integer [5]. A natural
number n is called superabundant precisely when, for all natural numbers m < n

f (m) < f (n).

Proposition 1.5. If n is superabundant, then n is an Hardy-Ramanujan integer [6]. Let n be a
superabundant number, then p ∥ n where p is the largest prime factor of n [6]. For large enough
superabundant number n, we have that qaq < 2a2 for q > 11 where qaq ∥ n and 2a2 ∥ n [6].
For large enough superabundant number n, we obtain that log n < (1 + 0.5

log p ) × p where p is the
largest prime factor of n [7].

In mathematics, the Chebyshev function θ(x) is given by

θ(x) =
∑
p≤x

log p

with the sum extending over all prime numbers p that are less than or equal to x [7].

Proposition 1.6. [7]. For x ≥ 89909:

θ(x) > (1 −
0.068
log(x)

) × x.

In number theory, a perfect number is a positive integer n such that f (n) = 2. Euclid proved
that every even perfect number is of the form 2s−1 × (2s − 1) whenever 2s − 1 is prime. It is
unknown whether any odd perfect numbers exist, though various results have been obtained:

Proposition 1.7. Any odd perfect number N must satisfy the following conditions: N > 101500

and the largest prime factor of N is greater than 108 [8], [9].

Using these results, we finally claim that there is not any odd perfect number at all.
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2. Results

Theorem 2.1. Under the assumption of the Riemann Hypothesis, we claim that there is not any
odd perfect number at all.

Proof. Let N be a large enough odd perfect number, then we will show its existence implies that
the Riemann Hypothesis is false. If N is a large enough odd perfect number, then a superabundant
number n that is a multiple of N would be large enough as well. We would have

f (n) ≤ f (N) × f (
n
N

)

according to the Proposition 1.2. That is the same as

f (n) ≤ 2 × f (
n
N

)

since f (N) = 2, because N is a perfect number. Hence,

f (n)
2
=

(2 − 1
2a2 ) × f ( n

2a2 )
2

= f (
n

2a2
) ×

(2 − 1
2a2 )

2

= f (
n

2a2
) ×

2a2+1 − 1
2a2+1

when 2a2 ∥ n due to the Proposition 1.2. In this way, we have

f ( n
2a2 )

f ( n
N )
≤

2a2+1

2a2+1 − 1
.

However, we know that p < 2a2 because of p > 108 > 11 and the Propositions 1.5 and 1.7, where
p is the largest prime factor of n. Consequently,

2a2+1

2a2+1 − 1
≤

2 × p
2 × p − 1

since x
x−1 decreases when x ≥ 2 increases. In addition, we know that

2 × p
2 × p − 1

≤ f (p)

where we know that f (p) = p+1
p from the Proposition 1.2. Certainly,

2 × p2 ≤ (p + 1) × (2 × p − 1)

= 2 × p2 + 2 × p − p − 1

= 2 × p2 + p − 1

where this inequality is satisfied for every prime number p. So,

f ( n
2a2 )

f ( n
N )
≤ f (p)
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where we know that p ∥ n from the Proposition 1.5. Under the assumption of the Riemann
Hypothesis, we have that

eγ > G(n)

=
f ( n

p ) × f (p)

log log n

≥
f ( n

p ) × f ( n
2a2 )

f ( n
N ) × log log n

since f (. . .) is multiplicative and as a consequence of Proposition 1.3. This is equivalent to

f ( n
p )

f ( n
N )

<
eγ

f ( n
2a2 )
× log log n.

From the Propositions 1.1 and 1.5, we know that

f (
n

2a2
) =

 k∏
i=2

qi

qi − 1

 × k∏
i=2

1 − 1

qai+1
i


where qk = p and q1 = 2. We know that

qi

qi − 1
=

qi + 1
qi
×

q2
i

q2
i − 1

and
q2

i

q2
i − 1

× (1 −
1

qai+1
i

) ≥ 1.

Using the previous inequalities, we obtain that

f (
n

2a2
) ≥

k∏
i=2

qi + 1
qi

.

Under the assumption of the Riemann Hypothesis:∏
q≤p

(
1 +

1
q

)
>

eγ

ζ(2)
× log θ(p)

which is the same as

ζ(2) ×
∏
q≤p

(
1 +

1
q

)
=
π2

6
×

∏
q≤p

(
1 +

1
q

)

=
π2

6
×

3
2
×

∏
2<q≤p

(
1 +

1
q

)

=
π2

8
×

∏
2<q≤p

(
1 +

1
q

)
> eγ × log θ(p).
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due to the Proposition 1.4. Taking into account that p > 108 > 3 and n is superabundant:

π2

8
× f (

n
2a2

) > eγ × log θ(p).

Therefore,
π2

8

log θ(p)
>

eγ

f ( n
2a2 )

.

We use the previous inequality to show that

f ( n
p )

f ( n
N )

<
π2

8

log θ(p)
× log log n.

For large enough superabundant number n and p > 108, then

π2

8

log θ(p)
× log log n ≤

π2

8

log
(
(1 − 0.068

log 108 ) × 108
) × log

(
(1 +

0.5
log 108 ) × 108

)
because of the Propositions 1.6 and 1.5. We obtain that

π2

8

log
(
(1 − 0.068

log 108 ) × 108
) × log

(
(1 +

0.5
log 108 ) × 108

)
< 1.2357481.

Thus,
f ( n

p )

f ( n
N )

< 1.2357481.

For every prime pi that divides N such that pai
i ∥ N and pai+bi

i ∥ n for ai, bi two natural numbers,
we have that

f (pai+bi
i ) − f (pai

i ) × f (pbi
i ) = −

(pai
i − 1) × (pbi

i − 1)

pai+bi−1
i × (pi − 1)2

in the Proposition 1.2. This is equal to

f (pai+bi
i )

f (pbi
i )
= f (pai

i ) −
(pai

i − 1) × (pbi
i − 1)

f (pbi
i ) × pai+bi−1

i × (pi − 1)2
.

Hence,

f ( n
p )

f ( n
N )
=

∏
i

 f (pai+bi
i )

f (pbi
i )


=

∏
i

 f (pai
i ) −

(pai
i − 1) × (pbi

i − 1)

f (pbi
i ) × pai+bi−1

i × (pi − 1)2


≈

∏
i

(
f (pai

i )
)

= f (N)
= 2
> 1.2357481

5



since we know that the expression

(pai
i − 1) × (pbi

i − 1)

f (pbi
i ) × pai+bi−1

i × (pi − 1)2

tends to 0 as b tends to infinity for every odd prime p. Certainly, the fraction
f ( n

p )
f ( n

N ) gets closer to
2 as long as we take n bigger and bigger. However,

1.2357481 <
f ( n

p )

f ( n
N )

< 1.2357481

is a contradiction. By contraposition, the number N does not exist when N would be a large
enough odd perfect number under the assumption of the Riemann Hypothesis. In addition, we
claim there is not any odd perfect number at all since the smallest counterexample N must comply
that N > 101500 according to the Proposition 1.7.
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