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Investigating Efficient Probabilistic Modeling Technique 
for Frequency Stability Analysis of Future Power Systems
 

Abstract — This paper compares two uncertainty modelling (UM) 
techniques to determine the accurate and efficient technique for 
probabilistic frequency stability assessment in large-scale power 
systems. The techniques are Monte Carlo (MC) and Quasi-Monte 
Carlo (QMC), which have been investigated in the context of their 
accuracy and efficiency. The performance of the UM techniques is 
evaluated using metrics such as the coefficient of determination (R2) 
and root mean square error (RMSE). By generating an extensive set 
of wind-speed random samples (8760 samples/simulations), both 
methods demonstrate remarkable accuracy, exceeding 99% when 
employing 1000 simulations. However, regarding efficiency, the 
QMC technique is more efficient than the MC technique, achieving 
an accuracy of over 96.5% with a considerably smaller number of 
generated samples and a shorter time (300 samples and in 3 
minutes). In contrast, the MC technique achieves the same accuracy 
level (96.5%) by generating 1000 samples and requiring nearly 12 
minutes for completion. 

Keywords— Frequency stability analysis, Monte Carlo 
simulation, probabilistic modelling, quasi-Monte Carlo, renewable 
energy resources, uncertainty modelling technique. 

I. INTRODUCTION 

Frequency stability analysis is crucial for contemporary 
power systems operating with a large share of inverter-interfaced 
renewable generation resources (RESs) within deregulated 
electricity markets. Hence, the increased integration of 
intermittent RESs, such as solar and wind power, introduces 
variability and uncertainty in power generation coupled with 
system load variations [1]. Maintaining frequency stability under 
uncertain conditions ensures that the power system can 
effectively balance the generation and load demand, even in the 
presence of these uncertainties in power systems [1-3]. The 
combination of intermittent RESs and variable system loads can 
elevate the risk of frequency instability [4]. However, the 
conventional deterministic stability analysis typically overlooks 
the variability inherent in RESs and system loads, focusing 
instead on predicting system behaviour based on worst-case 
scenarios [5]. Consequently, incorporating probabilistic 
frequency stability analysis encompassing a broad spectrum of 
system parameter variability becomes essential in power system 
planning and operation [6]. Therefore, using uncertainty 
modelling (UM) techniques enables a more precise 
representation of the system [7]. 

The UM techniques are valuable tools for dealing with the 
inherent uncertainties in complex systems. These techniques 
enable more informed decision-making and improve system 
behaviour prediction under uncertain conditions [8, 9]. The 
uncertainty modelling technique's primary purpose is to improve 
a system's operating uncertainties by showcasing its behaviour 
across a diverse set of potential scenarios. These techniques assist 
in identifying potential vulnerabilities, evaluating the 
effectiveness of risk mitigation strategies, and enhancing the 
overall decision-making process [10]. Various UM techniques, 
including MC and QMC, have been implemented to analyse the 
frequency stability with a probabilistic perspective. A diverse 

array of  UM techniques exists for assessing system uncertainties, 
necessitating thorough analysis and careful selection to ensure 
their appropriateness in probabilistic frequency stability analysis 
[3, 11].  

The MC technique is a widely employed in the literature. 
This computational method uses random sampling to estimate 
the behaviour of complex systems or processes under 
uncertainty [12, 13]. It involves generating random samples, 
performing simulations or evaluations for each sample, and 
analysing the results statistically. This method is widely used in 
various fields to provide insights into system performance, 
support decision-making, and quantify risk [3, 11]. However, 
The MC technique is unsuitable for large systems due to its high 
computational requirements and the exponential increase in the 
number of simulations needed for accurate results, so this 
technique is not considered efficient [3, 14].  

Different UM techniques have been employed individually 
to address the limitations of MC simulation. For instance, QMC 
has been utilised in frequency stability analysis to model 
uncertainties related to wind power variation and electric vehicle 
charging [15]. The maximum entropy method is employed in 
another study to characterise uncertainties in wind power and 
load variations within large-scale power systems [16]. In cases 
where renewable generation is absent, UM techniques represent 
uncertainties in power oscillation damping [17] and load 
variations [18]. Nevertheless, more comparative evaluations 
regarding the accuracy and efficiency of UM techniques must 
be conducted. Therefore, it is crucial to determine efficient UM 
techniques that can accurately evaluate the effect of network 
uncertainties on probabilistic frequency stability analysis. 

This paper comprehensively investigates various UM 
techniques, including MC and QMC, to determine a more 
efficient and accurate probabilistic frequency stability analysis 
method in large-scale power systems. The study specifically 
focuses on incorporating the intermittent nature of uncertainties 
in system loads and wind generation as input variables in UM 
techniques. The accuracy and efficiency of two commonly used 
UM techniques, MC and QMC, are compared and evaluated. 
The analysis is conducted on the IEEE-39 bus network with 
three integrated wind farms to determine the UM technique that 
achieves optimal efficiency and accuracy. The accuracy of the 
UM techniques is assessed using metrics including R2 and 
RMSE. 

The primary contributions of this research paper can be 
summarised into three key aspects: 

 Implementing MC and QMC techniques with diverse 
computational regulations to produce precise 
uncertainties of wind speed in the sample dataset. 

 Evaluating the efficiency (number of simulations) and 
accuracy (R2, RMSE) of employed UM techniques for 
modelling wind power sample dataset uncertainties. 

 Identifying an efficient and accurate UM technique for 
assessing probabilistic frequency stability in large-
scale power systems. 
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The remaining sections of this paper are organised as follows: 
Section II presents the theoretical background of UM techniques 
in the context of frequency stability. Section III describes the 
research methodology and details the system under study. The 
simulation results and subsequent discussions are presented in 
Section IV. Finally, Section V highlights the critical observation 
and conclusion.  

II. THEORETICAL BACKGROUND OF UM TECHNIQUES FOR 

FREQUENCY STABILITY ANALYSIS 

A. Frequency Stability 

Frequency stability refers to the capability of a power system 
to keep the system frequency within an acceptable range, 
specifically the standard operating frequency limit, following the 
occurrence of a contingency event [19, 20]. Any power system 
must ensure reliable and secure operation by maintaining the 
statutory voltage and frequency limits. Imbalances or instability 
in frequency can result in frequency swings, generator and load 
tripping, and other system failures. Frequency instability is often 
caused by insufficient system support, poor coordination of 
protection and control devices or inadequate generation supply 
[20]. Output indices are used to assess frequency stability, 
including the frequency nadir (minimum frequency level) [21], 
frequency (ROCOF) [21], frequency excursion (deviation from 
nominal frequency) [4, 22], and frequency response inadequacy 
(FRI) [22]. These indices provide valuable information about 
system behaviour and help operators evaluate and maintain stable 
frequency levels, ensuring reliable power system operation [19, 
20]. 

B. The Monte Carlo (MC) Simulation 

The MC technique is widely recognised as the standard UM 
technique and is commonly used in various fields. By generating 
a large number (in the range of a few thousand) of random 
samples, the MC simulation can capture a wide range of possible 
outcomes, reducing the sampling error and improving the 
accuracy of the analysis, as shown in Fig. 1. It is based on 
generating random samples to approximate the outcomes of the 
system or process under investigation. This method involves 
generating random samples, performing simulations or 
evaluations for each sample, and analysing the results 
statistically [3, 7]. 

The MC stopping criteria formula is utilised in Monte Carlo 
simulations to determine the optimal number of samples needed 
for accurate results, as provided in (1) [3]. 

ε =  [{Ø¯¹(1 − (δ/2). α (x)/N)}c/χ ]                        (1) 

In (1), 𝜀  represents the sampling error. The ∅   is the 
inverted Gaussian standard probability distribution with a zero 
mean and one standard deviation. 𝑋 is the mean, 𝛼 (𝑥) describes 
the variance of the samples, and 𝛿  represents the confidence 
level. 

C. The Quasi Monte Carlo (QMC) Technique 

Although similar to the standard MC approach, the QMC 
technique utilises a different technique to produce the sample 
sets. Unlike the MC technique, which adjusts sampling to cover 
the intended input domain, QMC employs pseudorandom 
sequences to create equidistant samples that accurately represent 
input distributions, as presented in Fig.1. When using QMC, 
system inputs are defined based on statistical properties, such as 
expectations, standard deviations, correlation matrix, higher 
moments, and the desired low-discrepancy sequences length (n). 
Deterministic simulation performance times are necessary for 
numerical calculations [23, 24]. 

The QMC technique, specifically the use of low-discrepancy 
sequences, is widely preferred for generating accurate and 
efficient samples due to its simplicity in implementation [25]. 
The Sobol sequence is generated using a specific algorithm that 
involves selecting a primitive polynomial of a certain degree (𝑠 ) 
in the field of binary integers (Z2), is selected. This polynomial is 
of the form specified in Equation (2) [26]. Where the coefficients 
𝑎 , ,, ... , 𝑎 ,  are either 0 or 1. These coefficients will be used 
to determine a sequence {𝑚 , 𝑗 , 𝑚 , 𝑗 , ...} of positive integers 
by the recurrence relation  in Equation (3) [26]. For k ≥ sj + 1, 
where ⊕ is the bit-by-bit exclusive-OR operator. The initial 
values 𝑚 ,  , 𝑚 , , ... , 𝑚 ,  can be selected freely presented that 

each 𝑚 , , 1 ≤ k ≤ sj , is odd and less than 2k. The direction 
numbers {𝑣 , , 𝑣 , , ...} are determined by Equation (4) [26]. 
Then Xi, j, the jth components of the ith points in the Sobol 
samples, is calculated by Equation (5) [26]. 

D. Evaluation Criteria 

Various metrics for assessing the goodness of fit can be 
utilized to evaluate the accuracy of the chosen probability 
distribution. This study employs the R2 and RMSE criteria to 
assess the appropriateness of probability distributions for fitting 

x + a , x + .  .  . +a , + 1  (2) 

𝑚 , = 2𝑎 , 𝑚 , ⊕ 2 𝑎 , 𝑚 , ⊕ . . .⊕

2 𝑎 , 𝑚 , ⊕ 2 𝑚 , ⊕ 𝑚 , ,  
(3) 

v , ≔
m ,

2
 (4) 

Χ , = b 𝑣 , ⊕ b 𝑣 ,  ⊕ …, (5) 

  

  

  
Fig. 1. Random samples (100, 500, and 1000) of MC technique and QMC 
technique respectively. 
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wind speed data [27]. The R2 and RMSE values are calculated 
using equations (6) and (7), respectively. 

R2=1 − 
∑ (xi yi)2n

i=1

∑ (xi zi)2n
i=1

  (6) 

RMSE= 
∑ (xi yi)2n

i=1

n
  (7) 

Where, i represents the index value (i = 1, 2, 3, …., n ), n is 
the length of the wind speed data, xi is the original probability, 
y𝑖 represents the predicted probability calculated from different 
PDFs, and z𝑖 is the mean of the original dataset. It can be 
calculated as in (8) [27].  

zi= 
1

n
xi

n

i=1

 (8) 

III. RESEARCH METHODOLGY AND SYSTEM DESCRIPTION 

A. Research Methodolgy  

The research methodology illustrated in Fig. 2 contains two 
separate sections. The first section involves the generation of 
wind speed random samples using the two UM techniques. In 
order to achieve this research's primary purpose, the MC 
technique generates a reference dataset comprising 8760 
samples, accurately representing the actual wind speed data. 
Different UM techniques, including MC and QMC, are utilised 
to generate random samples of different sizes. These samples are 
then compared to the reference dataset to determine the more 
accurate and efficient UM technique for probabilistic frequency 
stability analysis. The comparison is based on R2, RMSE values 
of the probabilistic frequency Nadir, leading to the identification 
of the optimal UM technique.  

B. System Description  

 This study uses a modified version of the IEEE-39 bus 
network to conduct probabilistic frequency stability simulations. 
The network includes three wind farms; their corresponding data 
can be found in [28]. Fig. 3 provides a representation of this 
network. The integration of renewable energy sources (RES) is 
simulated by connecting three wind farms to system busbars 30, 
34, and 37. These wind farms substitute three synchronous 
generators in the network, comprising around 20% (1240 MW) 
of the total generation capacity (6204 MW). DIgSILENT 
PowerFactory and MATLAB, two software platforms, are 
employed to analyse probabilistic frequency stability analysis. 

C. Wind Generation 

In this study, wind speed data collected from Northolt, UK 
[29] is utilised, spanning hourly measurements over one year, 
and is obtained to model wind farms connected to busbars 30, 34, 
and 37. The wind speed datasets are represented using the 
Weibull distribution, a commonly utilised probability 
distribution for describing wind speed fluctuations in previous 
studies [2, 30].  

IV. SIMULATION RESULTS AND DISCUSSION 

A.  Samples Generation using Different UM Techniques 

The accuracy of the MC technique improves with increasing 
the number of simulations. Thus, the Monte Carlo technique 
generates the reference dataset of 8760 samples. Consequently, a 
reference dataset of 8760 samples is generated using the MC 
technique, providing a precise benchmark for comparison with 
wind speed datasets of different sizes of the two UM techniques 
(MC and QMC). The objective is to identify the more efficient 

and accurate UM technique between MC and QMC for further 
probabilistic analysis. 

Moreover, Fig. 4 shows the PDF of wind speed datasets 
generated by the two UM techniques at varying sizes (100, 500, 
and 1000) and the reference data (indicated by the solid red line). 
Regarding accuracy, the observations from Fig. 4 indicate an 
incremental improvement in the accuracy of each UM technique 
as the number of generated samples increases to represent the 
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Fig. 3. The modified IEEE-39 bus network. 

Start

M= 2 (number of the UM techniques)
N= n (size of the samples)

Collect the wind speed data and model them to 
the Weibull distribution

Produce 8760 MC samples and determine them 
as a reference dataset 

Generate random samples based on MC and 
QMC techniques with N size 

Calculate R2 and RMSE values and determine 
the more efficient technique

Conducting  RMS simulation for the reference 
data with two dataset that generated by the two 

UM techniques

Plot and calculate the pdf for probabilistic 
frequency Nadir using Kernel density function

Calculate the R2 and RMSE values and identify 
the more efficient technique

Based on the results and the validation, the best 
UM technique is chosen

N= n?

End

No

Yes

M= 2?
No

Yes

 
Fig. 2. The flowchart of this paper explaining the methodology. 
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reference dataset. This improvement is particularly noticeable 
and rapid in the MC technique. This observation is anticipated 
since increasing the generated samples can cover the entire 
space, particularly for the MC, as shown in Fig. 1. This outcome 
can be prominently observed in Fig. 4 (1000 samples), where the 
two UM techniques effectively replicate the reference dataset. 
Additionally, this outcome is validated by calculating R2 and 
RMSE values, which demonstrate an increase in R2 values and 
a decrease in RMSE values for each technique as the number of 
sample generations increases, as depicted in Fig. 5. 

 Regarding efficiency, it is observed from Fig. 4 that the 
accuracy of the sampling techniques with fewer samples (100 
and 500) varies across different techniques. The QMC 
technique shows better efficiency in illustrating the reference 
data than the MC technique. This finding is also verified by the 
R2  and RMSE values, as shown in Fig. 5. The UM technique 
with the highest R2 value and the lowest RMSE value is 
determined as a more efficient and accurate technique. This 
observation is reasonable due to using low-discrepancy samples 
in the QMC technique. These samples are uniformly distributed 
to cover the entire space, even with fewer samples. In 
comparison, the MC technique generates random number 
samples in a non-uniform manner across the entire space, as 
illustrated in Fig. 1. Consequently, the MC technique is not 
considered an efficient approach. It is not suitable for scenarios 
with fewer simulations. 

Overall, the QMC technique is a more efficient UM, 
accurately representing the reference data. Conversely, the MC 
technique shows the poorest representation of the reference 
dataset when fewer samples are generated. 

B. Probablistic Frequency Nadir 

In order to verify the more accurate and efficient UM 
technique for probabilistic frequency stability analysis, the RMS 
simulation was conducted in DIgSILENT PowerFactory 
software. This analysis encompassed the reference dataset 
comprising 8760 samples and sample datasets of varying sizes 
generated using MC and QMC techniques. Fig. 6 presents the 
PDF of the probabilistic frequency Nadir obtained from 100, 
500, and 1000 simulations using MC and QMC techniques 
compared to the reference data. Furthermore, Fig. 7 shows the 
R2 and RMSE values of the probabilistic frequency Nadir for 
varying numbers of simulations compared with the reference 
dataset. 

The observation of Fig. 6 confirms that the UM techniques' 
accuracy improves as the number of simulations increases. 
RMS simulation analysis uses an extensive set of wind speed 
datasets comprising (8760 samples) to confirm the accurate 
alignment of the two UM techniques with the results obtained 
from the reference dataset, as shown in Fig. 6 (1000 samples). 
This finding is also confirmed by the high R2 and low RMSE 
values obtained for the two UM techniques, as presented in Fig. 
7. This result is consistent with the previous outcome shown in 
Fig. 4 and 5. 

Conversely, the RMS simulation analysis was conducted for 
lower random sample generations (100 and 500 samples) to 
determine and validate the more efficient UM techniques. Fig. 6 
(100, 500 samples) demonstrates that the QMC technique 
exhibits the nearest and adequate results that observe the 
reference data compared to the MC technique in Fig. 4.  

On the other hand, the MC technique has a less accurate 
representation of the reference dataset when using fewer 
samples. This finding is proved by Fig. 7, where the QMC 
technique indicates the lowest RMSE values and highest R2 
values compared to the MC technique for 100 and 500 random 

 

 

 
Fig. 4. The PDFs of the wind speed datasets (100, 500, and 1000 samples 
respectively). 
 

 

 

Fig. 5. The R2 and RMSE values of 100, 500, and 1000 generated wind speed 
samples. 



5 
 

samples. These results align with the R2 and RMSE values 
presented in Fig. 5. 

The MC and QMC techniques can be used for probabilistic 
frequency stability analysis. However, the MC technique is 
unsuitable for realistic large-scale power systems due to its high 
computational requirements. In contrast, the QMC technique is 
efficient and accurate, making it well-suited for such systems. 

Fig. 8, illustrates the R2 values of wind speed samples 
generated by the two UM techniques across different sample 
sizes. This comparison enables the assessment of accuracy and 
efficiency for each technique, aiding in selecting an appropriate 
technique for wind data sampling in power system frequency 
stability studies. 

According to Fig. 8, with 100 samples, the random wind 
speed data generated using MC and QMC techniques exhibit 
73% and 95.5% accuracy, respectively. As the number of 
simulations increases, the accuracies improve, reaching 86% 
and 98.9% for MC and QMC techniques, respectively, with 500 
samples. Beyond 1000 simulations, both techniques reach near 
saturation, with MC achieving an accuracy of 97% and QMC 
achieving an accuracy of 99.5%. 

Based on the results, the QMC technique outperforms the 
MC technique in terms of efficiency for generating wind speed 
data samples. Conversely, the MC technique demonstrates lower 
efficiency in representing the wind speed data. This observation 
aligns with expectations, as the QMC technique utilises low-
discrepancy sequences that follow a uniform distribution for 
generating random samples. 

In summary, from Fig. 9, an efficient UM technique exhibits 
notable time-saving advantages compared to conducting 
simulations for all 8760 samples. The QMC technique requires 
only 300 simulations, which can be accomplished within three 
minutes while maintaining an accuracy of 96.5%. In contrast, 
the MC technique requires 1000 simulations to achieve a similar 
accuracy level, taking approximately 12 minutes for completion. 
This significant reduction in simulation time demonstrates the 
efficiency and time-saving benefits of employing the QMC 
technique in the analysis. Notably, these simulation times are 
recorded for a test network, while the multitude of the simulation 
time will be escalated with the size of the network. 

 

 

 
Fig. 6: The PDFs of the probabilistic frequency Nadir datasets (100, 500, and 
1000 samples respectively). 

 

 

Fig. 8. The R2 and RMSE values against the sample number for the generated 
wind speed. 

 

 

Fig. 7. The R2 and RMSE values of 100, 500, and 1000 simulations of the 
probabilistic frequency Nadir. 
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V. CONCLUSIONS 

This study conducts a comparative analysis to evaluate 
accurate and efficient UM techniques for assessing their 
applicability for probabilistic frequency stability analysis in 
large-scale power systems, considering the time-consuming and 
computationally expensive MC technique. As a result, different 
UM techniques, namely MC and QMC, were implemented and 
compared. To verify the suitability of the more accurate and 
efficient UM techniques for probabilistic frequency stability 
analysis, RMS simulation analysis was conducted on the IEEE-
39 bus network. The evaluation was based on the criteria of R2 
and RMSE. 

The simulation outcomes demonstrate that the accuracy of 
the two UM techniques improves as the random sample numbers 
increase in the analysis of wind speed generation. Moreover, the 
UM techniques perfectly align with the reference data by 
generating many random samples. The outcomes also have been 
verified by the frequency stability simulation. Finally, these 
outcomes show that the QMC is a more accurate and efficient 
technique that shows the best representation by generating fewer 
random samples for the reference data. It provides more than 
(96.5%) accuracy with fewer samples and less time (300 
samples in 3 minutes), while MC requires 1000 samples and 
approximately 12 minutes for the same accuracy level (96.5%). 
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Fig. 9. The accuracy (R2) vs. efficiency (number of simulations and simulation 
time) curve of the frequency Nadir for the MC and the QMC generated data 
compared to the reference data. 


