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Abstract—Refining 3D aorta segmentation is essential for
clinical aorta analysis. The small tubular diameter of the aorta
branches and the discontinuity of neighbouring information
make it difficult to get a continuous semantic segmentation
map. In this paper, we proposed a novel adaptive octahedron-
shaped convolution (AOSC) based on VNet and signed distance
map(SDM). AOSC aimed to aggregate more contextual informa-
tion for each sample point in the aortic branches with smaller
tubular diameters. The weights of feature fusion introduced
SDM as auxiliary information to measure the similarity of
neighbouring points. Furthermore, we embedded the learned 3D
offset field into AOSC to avoid inaccurate segmentation on the
region around the narrow tubular structures. The AOSC module
prolonged the predicted length of small aorta branches and
then improved the tubular continuity of the aorta segmentation
map. We evaluated the AOSC module on our-collected dataset
and MICCAI ASOCA2020 coronary artery dataset. Our method
achieved the state-of-the-art results in terms of Dice and Jaccard
metrics. The code will be available at this link(******).

Index Terms—aorta segmentation, tubular diameter, aorta
branches, contextual information, tubular continuity.

I. INTRODUCTION

In Computed Tomography(CT) images, the diameters of
aorta vary greatly in different positions. Different points in CT
images contain different semantic information. Consequently,
it is challenging to reduce the discontinuities around the small
tubular branches region.

As shown in Fig.1, different from the aorta trunk, aorta
branches with small tubular diameters extend to various di-
rections in 3D space. The end of the aortic branches are
almost surrounded by a large number of background points,
so there are interferences around. Moreover, in a certain
CT image, the gray values of the foreground points and
their neighbouring background points are very similar. So it
increases the difficulty of the network to classify points.

Wei Wang is corresponding author.
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Fig. 1. At the aorta branches with small tubular diameter, inadequate
contextual information increases the discontinuities of segmentation.

Current methods for refining cardiac substructure segmen-
tation, such as aorta, left atrium and so on, can be cate-
gorized into two classes: shape-aware anatomical structure
based methods and local fine-tuning based methods. The
shape-aware anatomical structure based methods focus on
modelling the shape of the target organ. In recent years, SDM
[1]–[5] describes the relationship between spatial structure
and distance field. After a Heaviside step function [6], the
calculated SDM can be easily converted into a binary seg-
mentation map, but the threshold of the Heaviside function
is a hyperparameter that is difficult to choose. Moreover,
the confidence of a single point in a segmentation map is
relatively smaller than the average confidence of grouped
points. The local fine-tuning based methods are inclined to
rectify segmentation map at the boundary and edge. Cheng
et al. [7] define a Direction Field to exploit the directional
relationship between points. Chu et al. [8] propose to learn
an edge detector to locate the discontinuity and add additional
supervision on these areas. However, due to the complexity
of the boundary information, fine-tuning boundary is very
difficult and is still an open challenge.

To address the discontinuity of the aortic bifurcation, we
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proposed a new convolution to improve the segmentation
results. This convolution helps obtain rich spatial information
in semantic segmentation. The main contributions of this paper
are three folds: 1) we proposed the novel AOSC convolution
to aggregate contextual information for each sample point, and
avoid inaccurate segmentation on the region around the narrow
tubular branches; 2) we introduced SDM as a weight map to
measure the similarity of points, and the learned 3D offset field
was embedded with AOSC; 3) we proposed a method having
strong generalization, and it can be extended to segmentation
tasks easily. Our proposed method improve the final aorta
segmentation map, especially for the narrow tubular branches.

II. METHOD

As is depicted in Fig.2, the framework is based on V-
Net [9]. It mainly consists of two parts: the SDM module
and the AOSC module. The SDM module provides auxiliary
information regarding spatial distance between adjacent points.
This spatial information is significant to identify appropriate
features for discontinuous points; The AOSC proposed a
novel feature fusion mechanism to attenuate extreme features
for points. So it improves the prediction accuracy for the
points around narrow tubular branches. The two parts can be
embedded in other 3D segmentation tasks easily.
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Fig. 2. The framework. AOSC sampled features at discontinuous regions. We
determined the weight of features according to SDM, and the produced new
features help smooth the segmentation maps.

Our octahedron-shaped Convolution is shown in Fig.3. We
explain how OSC is embedded in the VNet network, and the
way of 3D feature sampling.

A. Structure Related Signed Distance Map

The SDM module is proposed to distinguish foreground and
background points while simultaneously provide an elaborate
weight map for the feature fusion in AOSC module. Noted
that different classes of points are intertwined for discontinu-
ous points in the predicted binary map. To better predict those
discontinuous points, the SDM module introduced an effective
guidance for the prediction of the segmentation results by
measuring the similarities of adjacent points. Moreover, the
SDM module also provided a weight map, which is inversely
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Fig. 3. The way of 3D feature sampling and fusion from a learned 3D offset
Field.

proportional to the difference between SDM values of two
points, and it offers valuable guidance for the feature fusion
in the AOSC module especially for the discontinuous points.

Given the ground truth label T, let S be the surface of the
aorta, which is defined as:

S = {s ∈ Ωin | Ts = 1,∃q ∈ N (s), Tq ∈ Ωout} (1)

where N (s) represents the 26-neighbour points of s in 3D
space. Signed Distance Map (SDM) [1] which maps R3 to R
is defined as:

D(x) =


0,x ∈ S

− inf
y∈S
‖x− y‖2,x ∈ Ωin

+ inf
y∈S
‖x− y‖2,x ∈ Ωout

(2)

where Ωin and Ωout denote the region inside and outside of the
aorta respectively. We adopt Euclidean distance to calculate the
distance from each point to its nearest surface S, because the
Euclidean distance is robust to the tubular structure. Therefore,
SDM ensures the continuity and the surface smoothness to
some extent.

B. Octahedron-shaped Convolution

Many factors cause discontinuities in segmentation. One
of the most important factors is that the gray values from
foreground points and that from background points are approx-
imate, particularly when foreground points and background
points tend to be adjacent. In this section, we proposed
an Octahedron-shaped Convolution (OSC) to decrease the
discrepancy of intra-class points to avoid the segmentation
discontinuity.

As shown in Fig.4, we try to capture relevant features
around each center point, and further fuse these relevant
features based on SDM to achieve more representative feature
embedding. Moreover, the embedding features sampled from
the feature maps are averaged with rich contextual information.
We regard points around each center point as vertices, and the
constructed geometry is shaped like an Octahedron. In this
work, based on the OSC, we further propose two variants:
FOSC and AOSC, which are illustrated as follows.
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Fig. 4. The central point finds the most similar points from 6 directions with
different steps. In FOSC, six steps are all set to 1, while in AOSC six steps
are learned adaptively.

1) Fixed Octahedron-shaped Convolution: To capture
fixed relevant features, we proposed the first variant of
OSC——FOSC. Features that are directly adjacent have high
feature similarity, because they are more likely to be from the
same category. So we define basic offset R as:

R =
{

∆p|∆p ∈ (Mkx ,Mky ,Mkz )
}

(3)

where (Mkx ,Mky ,Mkz ) is a unit vector, and for
(Mkx

,Mky
,Mkz

),Mki
= c,Mkj

= 0, i = x, y, z, j 6= i. In
this unit vector, c is a constant, which is set to 1 or −1,
representing the offset of the current point to its immediate
neighbors. Then we map every single vector ∆p in set R
to a three-dimensional shifting grid. The shifting grid is
used to preserve the spatial information at places where the
discontinuity of prediction results often occurs. Consequently,
the discontinuity of segmentation around aorta branches is
significantly alleviated. The FOSC module is formalized as
below:

F1(pv) =
1∑

∆p∈RW(pv)

∑
∆p∈R

W(pv) · B(pv + ∆p) (4)

Function B represents bi-linear interpolation because the coor-
dinates of points we intend to sample are not always integers.
W(pv) represents the SDM differences between pv and its
6-neighbour points, which are denoted as the following two
forms:
• direct combination of 6 immediate neighbors:

W(pv) =
1

|D (pv)−D (pv + ∆p)|
(5)

where function D(x) is SDM shown as Equation 2.
• combination of some of the points with same SDM

symbols:

W(pv) = 1− |D (pv)−D (pv + ∆p)| (6)

For continuous tubular structures, points with same SDM
symbols are often assigned same labels in prediction.
Function D(x) is SDM shown as Equation 2, too.

2) Adaptive Octahedron-shaped Convolution: Each sepa-
rated point aggregates several feature points that are similar
to the current point adaptively. We introduce a 3D offset
field to record the coordinates of the most similar features

in a grid. Then the discontinuous points are reduced so as
to decrease the discontinuities of segmentation around aorta
branches. We detail the notation of the 3D offset field: for
each point pv , we find its neighbour points mi(i = 0, 1, ..., 5)
which are several unit steps far from pv . The final offset vector
−−−→pvmi is the product of the learned variable γ and unit vector
(Mkx

,Mky
,Mkz

)(which is defined in II-B1). Offset vectors
−−−→pvmi are denoted as:
−−−→pvmi = pv + γ∆p

= {(xv + γxMkx
, yv + γyMkx

, zv + γzMkx
)}Nk=1

(7)

where γ is a positive float number in the range of [0, 1] learned
by the network, and the distance of the entire feature map is
normalized to float between 0 and 1. N = 6, because there are
six fused features of point pv . Then we formalized the fusion
features of AOSC as:

F2(pv) =
1∑

∆p∈RW(pv)

∑
∆p∈R

W(pv) · B(pv + γ∆p) (8)

Similarly, W(pv) represents the SDM differences between pv
and its 6-neighbour points, which also has two forms as Eq.5
and Eq.6. R is the offset set represented in Eq.3, and function
D(x) is SDM shown as Equation 2. Function B represents
bi-linear interpolation.

The most difference between function F2(pv) and F1(pv)
is that we add an extral variable γ to adjust the steps of the
adaptive aggregated features. This allows each point to find
neighbour points that are more similar to its feature expression,
thereby increasing the similarity of inter-class features.

C. Training Objective

To obtain the final segmentation map out map, we pro-
cessed the SDM [1] branch in the network as follows:

out map = Sigmoid(µ · out dis) (9)

where µ is a hyperparameter set to -1500 in this experiment,
and out dis is learned by SDM of VNet.

The proposed method involved loss function on three parts:
• Li

Dice: the initial pixel-wise segmentation loss
• L1: the regression SDM output loss, which is given by
Ls

1 = |out dis− T |
• Ls

Dice: the final segmentation map coming out from
the out dis, so we calculate between out map and
groundtruth T

The overall loss function is defined as follows, where α is set
to 0.5:

LA = α(Ls
1 + Ls

Dice) + (1− α)Li
Dice (10)

III. EXPERIMENT

A. Datasets and Implementation Details

We conducted experiments on two datasets:
• ***: the corresponding manual annotation comes from

***. This dataset contains cardiac CT of 87 patients
ranging from 5-day-old infants to 68-year-old adults. We



further divide the 87 training images into 85% training,
5% validation and 10% test.

• MICCAI ASOCA2020: The organization provides both
image and groundtruth which are totally of number 40.
We divide the datasaet into 55% training, 25% validation
and 20% test.

a) Evaluation metrics: We adopt the widely used 3D
Dice coefficient [9], 3D Jaccard coefficient [10] to measure
our method.

b) Implementation Details: The ultimate optimization
goal of the network is the proposed loss function in Eq. 10
using ADAM optimizer [11] with the learning rate set to
0.01 for 80 epochs. Data augmentation is applied to prevent
over-fitting including random rotation with the random angle
between −25 and 25 (degree measure), as well as adding
random Gaussian noise. We train the network on GeForce
GTX TITAN X, and due to the limitations of GPU, the batch
size of each GPU is 1 with resized 160× 160× 160 inputs.

B. Results

We evaluated our proposed method on our-collected dataset
and the MICCAI ASOCA2020 dataset. Firstly, in order to
verify that the SDM module is effective, we use SDM as
the only output, which is the SOTA work proposed by Ma.
et al [12]. Another VNe MultiHead architecture is conducted
where one head is for distance output and the other for
segmentation output conducted by [13]. Secondly, in the fixed
octahedron-shaped convolution module, we try to add features
of adjacent points termed as FOSC/6−Neighbor. Finally,
we let the network learn an offset map as AOSC module
named AOSC/6−Offset. Table.I shows the comparison of
those prior SOTA networks and our methods.

TABLE I
COMPARISON OF OUR METHODS WITH SOTA METHODS

Method DICE JACCARD
our-collected dataset

3D U-Net(baseline) [14] 0.6681(±0.1323) 0.5113(±0.0092)
VNet SDM [1] 0.7309(±0.1543) 0.5990(±0.1910)

VNet MultiHead [15] 0.7909(±0.0656) 0.0669(±0.1002)
Ours(FOSC) 0.8301(±0.0959) 0.7221(±0.1370)
Ours(AOSC) 0.8493(±0.0971) 0.7499(±0.1410)

MICCAI ASOCA2020
VNet SDM [1] 0.7122(±0.1992) 0.5633(±0.0112)

VNet MultiHead [15] 0.7039(±0.0758) 0.5483(±0.0889)
Ours(FOSC) 0.7399(±0.1928) 0.5901(±0.0318)
Ours(AOSC) 0.7434(±0.0385) 0.5930(±0.0473)

For ablation study, we respectively verified that aggregating
immediate neighbour 6 feature points into a new feature
(named Fixed/Direct 6− neighbours) and aggregating
only several features with same symbols of SDM (named
Fixed/Signed 6− neighbours) in FOSC module. While
in AOSC module, we explored whether different offsets in
three axial directions affect the segmentation results. So we
designed Adaptive/Same− steps to regular the same off-
set steps in x,y and z axis, and Adaptive/Diff − steps) to

learn different offset steps in three axis respectively. Table.II
illustrates the results of ablation experiments.

TABLE II
COMPARISON OF OUR METHODS WITH SOTA METHODS

Method DICE JACCARD

Fixed Direct 6-neighbours 0.8310(±0.0959) 0.7221(±0.1370)
Signed 6-neighbours 0.8321(±0.0990) 0.7238(±0.1348)

Adaptive Same-steps 0.8493(±0.0971) 0.7499(±0.1410)
Diff-steps 0.8339(±0.1010) 0.7278(±0.1464)

We visualized the aorta segmentation results from our-
collected dataset as Fig.5 and Fig.6. We compared the results
of VNet, VNet MultiHead, FOSC and AOSC, then we visu-
alized the segmentation results from MICCAI ASOCA2020
dataset as Fig.7. Experiment results demonstrated that the
segmentation of 3D U-Net is obviously discontinuous at the
aortic branches while significant improvements have been
achieved in the proposed FOSC and AOSC, because our
proposed network aggregated feature vectors and made better
use of contextual information.

Fig. 5. Three-view slices of a patient: from the first to the third row, we
show the axial, sagittal and coronal view of segmentation results respectively.
From left to right, slices are image, groundtruth, VNet, VNet MultiHead,
FOSC/Direct 6-neighbours, and AOSC/Same-steps. For the second row, (a)-
(e) represent image, groundtruth, VNet SDM, VNet MultiHead, AOSC/Diff-
steps.

Fig. 6. 3D reconstruction results of the Signed Hausdorff Distance: from
left to right, they are VNet, VNet MultiHead, FOSC/Direct 6-neighbours,
AOSC/Same-steps and groundtruth.



(a) groundtruth (b) VNet-MultiHead (c) AOSC(offset=6) (d) AOSC(offset=18)

Fig. 7. The segmentation results two patients with coronary artery, from left
to right, they are groundtruth, VNet, AOSC/Same-steps and AOSC Diff-steps.
Reconstruction result

The results demonstrated that, compared with VNet, the
adaptive octahedron-shaped convolution can improve the ac-
curacy of segmentation. When the branch bifurcation points
are predicted accurately, the small diameter branches are seg-
mented more finely, and the predicted length of the branches
are also increased. The reason why AOSC/Diff-steps is better
than AOSC/Same-steps is that, in 3D space, different offsets
of the x, y, and z axes can find more diverse similar features.
Although the relative positions of these features are difficult to
determine, more offsets make the coordinates more accurate.

IV. CONCLUSION

In this paper, we presented an effective method making
octahedron-shaped convolution for CT images. In order to
explore the contextual semantic relationship between points,
the proposed method aggregated feature vectors of sampling
points, especially at the narrow tubular branches. Besides, we
introduced signed distance map to constrain the shape of seg-
mentation organs, and this map can measure the similarity of
points. The experiment results demonstrated that our method
achieved the state-of-the-art results.
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