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Abstract. 3D skeleton based human representation for gesture recogni-
tion has increasingly attracted attention due to its invariance to camera
view and environment dynamics. Existing methods typically utilize abso-
lute coordinate to present human motion features. However, gestures are
independent of the performer’s locations, and the features should be in-
variant to the body size of performer. Moreover, temporal dynamics can
significantly distort the distance metric when comparing and identifying
gestures. In this paper, we represent each skeleton as a point in the prod-
uct space of special orthogonal group SO3, which explicitly models the
3D geometric relationships between body parts. Then, a gesture skeletal
sequence can be characterized by a trajectory on a Riemannian manifold.
Next, we generalize the transported square-root vector field to obtain
a re-parametrization invariant metric on the product space of SO(3),
therefore, the goal of comparing trajectories in a time-warping invariant
manner is realized. Furthermore, we present a sparse coding of skeletal
trajectories by explicitly considering the labeling information with each
atoms to enforce the discriminant validity of dictionary. Experimental
results demonstrate that proposed method has achieved state-of-the-art
performance on three challenging benchmarks for gesture recognition.

Keywords: Gesture recognition · Manifold · Sparse coding.

1 Introduction

Human gesture analysis is emerging as a central problem in computer vision
applications, such as human-computer interfaces and multimedia information
retrieval. 3D skeleton-based modeling is rapidly gaining popularity due to it
simplifies the problem caused by replacing monocular RGB camera with more
sophisticated sensors such as the Kinect. It can explicitly localize gesture per-
former and yield the trajectories of human skeleton joints. Compared to RGB
data, skeletal data is robust to varied background and is invariant to camer-
a view-point. In the past decade, a considerable number of 3D skeleton-based
recognition methods [23, 24, 19, 4, 3, 2, 16, 7, 21, 20, 22, 15, 5, 13, 14] have been pro-
posed. Although there have been significant advancements in this area, accurate
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recognition of the human gesture in unconstrained settings still remains chal-
lenging. There are two issues need to be thoroughly discussed:

* One important issue in gesture recognition is the feature representation of
models to capture variability of 3D human body (skeleton) and its dynamics.
Existing methods typically utilize absolute (real world) coordinate to present
human motion features. However, activities are independent of performer’s lo-
cations, and the feature should be invariant to the size of the performer.

* Another issue of human gesture recognition lies in the temporal dynamics.
For instance, even the same actions or gestures performed by the same person
can have different implementation rates and different starting/ending points, let
alone different performers.

A common way to deal with the first problem is to transform all 3D joint
coordinates from the world coordinate system to a performer-centric coordinate
system by placing the hip center at the origin, but the accuracy heavily depends
on the precise positioning of the human hip center. Another solution is to con-
sider the relative geometry between different body parts (bones), such as the Lie
Group [19], which utilize rotations and translations (rigid-body transformation)
to represent the 3D geometric relationships of body parts. However, the transla-
tion is not a scale-invariant representation since the size of skeleton varies from
subject to subject.

To account for the second issue, a typical treatment is using the graphical
model to describe the presence of sub-states, where the time series are reor-
ganized by a sequential prototype, and the temporal dynamics of gestures are
trained as a set of transitions among these prototypes [2]. The typical model
is the hidden Markov model (HMM) [22]. However, in these models, the input
sequences have to be previously segmented on the basis of specific clustering
metrics or discriminative states, which itself is a challenging task. With the de-
velopment of deep learning, plenty of researches [5, 13, 14] addressing the prob-
lem of temporal dynamics by recurrent neural networks (RNN), such as the long
short-term memory (LSTM). Although LSTM is a powerful framework for mod-
eling sequential data, it is still arduous to learn the information of the entire
sequence with many sub-events. In fact, the most common solution to temporal
dynamics is the Dynamic Time Warping (DTW) [19, 7], which needs to choose
a nominal temporal alignment, and then all sequences of a category are warped
to that alignment. However, the performance of DTW is highly depends on the
selection of a reference, which is commonly computed by experience.

Aiming to tackle above issues, in this paper, a novel method for gesture
recognition is proposed. The main contributions are summarized as follows:

1) we represent a human skeleton as a point on the product space of spe-
cial orthogonal group (SO3), which is a Riemannian manifold. This representa-
tion is independent to the performer’s location, and can explicitly models the
3D geometric relationships between body parts using rotations. Then a gesture
(skeletal sequences) can be represented by a trajectory composed of these points
(see Fig. 1 (d)). The gesture recognition task is formulated as the problem of
computing the similarity between the shapes of trajectories.
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Fig. 1. (a) Illustration of a 3D skeleton, (b) Representation of bone bm in the local
coordinate system of bn, (c) Representation of bn in the local coordinate system of bm,
(d) Pictorial of the warped trajectory α on a manifold according to a reference µ.

2) we extend the transported square-root vector field (TSRVF) representa-
tion for comparing trajectories on the product space of SO(3) × · · · × SO(3).
Therefore, the temporal dynamic issue of gesture recognition can be solved by
this time-warping invariant feature.

3) we present a sparse coding of skeletal trajectories by explicitly considering
the labeling information with each atom to enforce the discriminant validity of
dictionary. The comparison experimental results on three challenging datasets
demonstrated the proposed method have achieved state-of-the-art performances.

2 Related works

Over the last few years, plenty of 3D skeletal human gesture recognition models
have been explored in various routines. In this section, we limited our review
on the relevant manifold-based solutions. A representative work is the Lie group
[19], which utilized the special Euclidean (Lie) group SE(3) to characterize the
3D geometric relationships among body parts. A convenient way of analyzing
Lie group is to embed them into Euclidean spaces, with the embedding typi-
cally obtained by flattening the manifold via tangent spaces, such as the Lie
algebra se(3) at the tangent space identity I4. In that way, former classification
tasks in manifold curve space are converted into the classification problems in a
typical vector space. Then, the authors of [19] employed the DTW and Fourier
temporal pyramid (FTP) to deal with the temporal dynamics issues of gesture
recognition. However, as discussed in Section 1, the success of DTW is heavily
related to the choice of the nominal temporal alignment empirically. And the
FTP is restricted by the width of the time window and can only utilize limited
contextual information [5]. Following the same representation, Anirudh et al. [3]
introduced the framework of transported square-root velocity fields (TSRVF)
[18] to encode trajectories lying on Lie groups, as such, the distance between
two trajectories is invariant to identical time warping. Since the final feature is
a high-dimensional vector, the principal component analysis (PCA) is used to
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reduce the dimension and learn the basis (dictionary) for representation. While
PCA is an unsupervised model and thus the discriminant of dictionary cannot
be boosted through a labeled training. Based on the square root velocity (SRV)
framework [17], in [4], trajectories are transported to a reference tangent space
attached to the Kendall’s shape space at a fixed point, which may introduce dis-
tortions in the case points are not close to the reference point. In [8], Ho et al.
proposed a general framework for sparse coding and dictionary learning on Rie-
mannian manifolds. Different to [17] which using the fixed point for embedding,
the [8] working on the tangent bundle, namely, each point of manifold is coded
on its attached tangent space into which the atoms are mapped.

3 Product Space of SO(3) for 3D Skeleton Representation

Inspired by the rigid body kinematics, any rigid body displacement can be re-
alized by a rotation about an axis combined with a translation parallel to that
axis. This 3D rigid body displacements forms a Lie group, which is generally
referred to as SE(3), the special Euclidean group in three dimensions:

P (R,v) =

[
R v
0 1

]
(1)

where R ∈ SO(3) is a point in the special orthogonal group SO(3), denotes the
rotation matrix, and v ∈ R3 denotes the translation vector.

The human skeleton can be modeled by an articulated system of rigid seg-
ments connected by joints. As such, the relative geometry between a pair of
body parts (bones) can be represented as a point in SE(3). More specifically,
given a pair of bones bm and bn, their relative geometry can be represented in a
local coordinate system attached to other [19]. Let bi1 ∈ R3, bi2 ∈ R3 denote the
starting and ending points of bones bi respectively. The local coordinate system
of bone bn is calculated by rotating with minimum rotation and translating the
global coordinate system so that bn1 act as the origin and bn coincides with the
x−axis, Fig. 1 give an example to explain this pictorially. As such, at time t, the
representation of bone bm in the local coordinate system of bn (Fig. 1 (b)), the
starting point bnm1(t) ∈ R3 and ending point bnm2(t) ∈ R3 are given by

[
bnm1(t) bnm2(t)

1 1

]
=

[
Rm,n(t) vm,n(t)

1 1

]
0 lm
0
0
1

0
0
1

 (2)

where Rm,n(t) and vm,n(t) respectively denote the rotation and translation mea-
sured in the local coordinate system attached to bn, and lm is the length of bm.
According to the theory of rigid body kinematics, the lengths of bones do not
vary with time, thus, the relative geometry of bm and bn can be described by

Pm,n(t) =

[
Rm,n(t) vm,n(t)

1 1

]
∈ SE(3), Pn,m(t) =

[
Rn,m(t) vn,m(t)

1 1

]
∈ SE(3)

(3)
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One restriction of this motion feature is the translation v is relative to the size
of performer (subject). But as we known it is very important to obtain a scale-
invariant skeletal representation for recognition task in an unconstrained envi-
ronment. To remove the skeletons scaling variability, in this paper, we discard the
translation from motion representation, then the relative geometry of bm and bn
at time t can be described by rotations Rm,n(t) and Rn,m(t) , and expressed as el-
ements of SO(3). Then, let M denotes the number of bones, the resulting feature
for an entire human skeleton is interpreted by the relative geometry between all
pairs of bones, as a point C(t) = (R1,2(t), R2,1(t), . . . , RM−1,M (t), RM,M−1(t))
on the curved product space (see Fig. 1 (d)) of SO(3) × · · · × SO(3), and the
number of SO(3) is 2C2

M , where C2
M is the combination formula.

4 Trajectories Identification on Riemannian Manifold

As presented above, gesture recognition is formulated as the problem of com-
puting the similarity between shapes of trajectories. The basis for these compa-
rability determinations are related to a distance function on the shape space.

To be specific, let α denote a smooth oriented curve (trajectory) on a Rie-
mannian manifold M , and let M denote the set of all such trajectories: M =
{α : [0, 1] → M |α is smooth}. Re-parameterizations will be represented by in-
creasing diffeomorphisms γ : [0, 1] → [0, 1], and the set of all these orientation
preserving diffeomorphisms is denoted by Γ = {γ → [0, 1]}. In fact, γ plays the
role of a time-warping function, where γ(0) = 0, γ(1) = 1 so that preserve the
end points of the curve. More specifically, if α in the form of time observations
α(t1), ..., α(tn), is a trajectory on M , the composition α ◦ γ in the form of time-
warped trajectory α(γ(t1)), ..., α(γ(tn)), is also a trajectory that goes through
the same sequences of points as α but at the evolution rate governed by γ [18].

For classify trajectories, a metric is needed to describe the variability of a class
of trajectories and to quantify the information contained within a trajectory. A
directly and commonly solution is to calculate point-wise difference, since M is
a Riemannian manifold, we have a natural distance dm between points on M
[18]. Then, the distance dx between any two trajectories: α1, α2 : [0, 1]→M :

dx(α1, α2) =

∫ 1

0

dm (α1(t), α2(t)) dt (4)

Although this quantity describes a natural extension of dm from M to M [0,1],
it suffers from the issue that dx(α1, α2) 6= dx(α1 ◦γ1, α2 ◦γ2). As discussed in the
Section 1, in the task of recognition, the temporal dynamics is a key issue that
need to be solved when a trajectory (gesture) α is observed as α◦γ, for a random
temporal evolution γ. That is, for arbitrary temporal re-parametrizations γ1, γ2
and arbitrary trajectories α1, α2, a distance d(·, ·) is wanted that enable

d(α1, α2) = d(α1 ◦ γ1, α2 ◦ γ2) (5)

A distance that is particularly well-suited for our goal is the one used in
the Square Root Velocity (SRV) framework [17]. Based on the concept of elastic
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trajectories in [17], Su [18] proposed a Transported Square-Root Vector Field
(TSRVF) to represent trajectories, and the original Euclidean metric based SRV
has been generalized to the manifold space based framework. Specifically, for a
smooth trajectory α ∈M, the TSRVF is a parallel transport of a scaled velocity
vector field of α to a reference point c ∈M according to

hα(t) =
α̇(t)α(t)→c√
|α̇(t)|

∈ Tc(M) (6)

where α̇(t) is the velocity vector along the trajectory at time t, and α̇(t)α(t)→c is
its transport from the point α(t) to c along a geodesic path, and | · | denotes the
norm related to the Riemannian metric on M and Tc(M) denotes the tangent
space of M at c. Especially, when |α̇(t)| = 0, hα(t) = 0 ∈ Tc(M). Since α is
smooth, so is the vector field hα. Let H ⊂ Tc(M)[0,1] be the set of smooth curves
in Tc(M) obtained as TSRVFs of trajectories in M , H = {hα|α ∈ M} [18]. By
means of TSRVF, two trajectories such as α1 and α2, can be mapped into the
tangent space Tc(M), as two corresponding TSRVFs, hα1 and hα2 . The distance
among them can be measured by `2-norm on the typical vector space

dh(hα1
, hα2

) =

√∫ 1

0

|hα1
(t)− hα2

(t)|2dt (7)

The motivation of TSRVF representation comes from the following fact. If a
trajectory α is warped by γ, to result in α ◦ γ, the TSRVF of α ◦ γ is given by

hα◦γ(t) = hα(γ(t))
√
γ̇(t) (8)

Then, for any α1, α2 ∈M and γ ∈ Γ , the distance dh satisfies

dh(hα1◦γ , hα2◦γ) =

√∫ 1

0

|hα1
(s)− hα2

(s)|2ds = dh(hα1
, hα2

) (9)

where s = γ(t). For the proof of equality, we refer the interested reader to [18,
17]. From the geometric point of view, this equality implies that the action of
Γ on H under the `2 metric is by isometries. It enable us to develop a fully
invariant distance to time-warping and use it to properly register trajectories
[18]. Also, this invariability in execution rates is crucial for statistical analyses,
such as sample means and covariance. Then, we define the equivalence class [hα]
(or the notation [α]) to denote the set of all trajectories that are equivalent to a
given hα ∈ H (or α ∈M ).

[hα] = {hα◦γ |γ ∈ Γ} (10)

Clearly, such an equivalent class [hα] (or [α]) is associated with a cate-
gory of gesture. In this framework, the task of comparison two trajectories
is performed by comparing their equivalence classes, in other words, an opti-
mal re-parametrization γ∗ is need to be found to minimize the cost function
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dh(hα1
, hα2◦γ). Let H/ ∼ be the corresponding quotient space, this can be bi-

jectively identified with the set M/ ∼ using [hα] 7→ [α] [3]. The distance ds on
H/ ∼ (or M/ ∼) is the shortest dh distance between equivalence classes in H
[18], given by:

ds([α1], [α2]) ≡ ds([hα1
], [hα2

]) = inf
γ∈Γ

dh(hα1
, hα2◦γ)

= inf
γ∈Γ

(∫ 1

0

|hα1
(t)− hα2

(γ(t))
√
γ̇(t)|2dt

)1/2 (11)

In practice, the minimization over Γ is solved for using dynamic programming
[18, 17]. One important parameter of TSRVF is the reference point c, which
should remain unchanged in the whole process of computing. Since the selection
of c can potentially affect the results, typically, a point is a natural candidate for c
if most of trajectories pass close to that one. In this paper, the Karcher mean [11]
as Riemannian center of mass is selected, since it is equally distant from all the
points thereby minimizing the possible distortions. Given a set {αi(t)t=1,..,n}mi=1
of sequences (trajectories), its Karcher mean µ(t) is calculated using the TSRVF
representation with respect to ds in H/ ∼, defined as

hµ = arg min
[hα]∈H/∼

m∑
i=1

ds([hα], [hαi ])
2 (12)

As a result, each trajectory is recursively aligned to the mean µ(t), thus,
another output of Karcher mean computing is the set of aligned trajectories
{α̃i(t)t=1,...,n}mi=1. For each aligned trajectory α̃i(t) at time t, the shooting vector
vi(t) ∈ Tµ(t)(M) is computed so that a geodesic that goes from µ(t) to α̃i(t) in
unit time [18] with the initial velocity vi(t)

vi(t) = exp−1µ(t)(α̃i(t)) (13)

Then, the combined shooting vectors V (i) = [vi(1)T vi(2)T ... vi(n)T]T is the
final feature of a trajectory αi.

5 Discriminative Sparse Coding of Riemannian
Trajectories

Since the final feature of a trajectory (gesture sequence) lies on a high dimen-
sional vector, a common solution is to utilize the principal component analysis
(PCA) to reduce the dimension and learn the basis for representation, such
as [18, 17] did. As we know, PCA is an unsupervised learning model without
labeled training. Compared to the component analysis techniques, the sparse
coding model with labeled training has superior capability to capture inherent
relationship among the input data and label information. To the best of our
knowledge, few manifold representation-based models considered the connection
between the labels and the dictionary learning. In this paper, we try to associate
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label information with each dictionary atom to enforce the discriminability of
sparse codes during the dictionary learning process.

Given a set of observations (feature vectors of gestures) Y = {yi}Ni=1, where
yi ∈ Rn, and let D = {di}Ki=1 be a set of vectors in Rn denoting a dictionary
of K atoms. The learning of dictionary D for sparse representation of Y can be
expressed as

< D, X >= arg min
D,X
‖Y − DX‖22 s.t. ∀i, ‖xi‖0 ≤ T (14)

where X = [x1, ..., xN ] ∈ RK×N represents the sparse codes of observation Y,
and T is a sparsity constraint factor. The construction of D is achieved by
minimizing the reconstruction error ‖Y − DX‖22, and satisfying the sparsity
constraints. The K-SVD [1] algorithm is a commonly used solution to (14).

Inspired by [25, 10], the classification error and label consistency regulariza-
tion are introduced into the objective function:

< D,W,A,X >= arg min
D,W,A,X

‖Y − DX‖22 + β‖L−WX‖22

+ τ‖Q−AX‖22 s.t. ∀i, ‖xi‖0 ≤ T
(15)

where W ∈ RC×K denotes the classifier parameters, and C is the number of
categories. L = [l1, ..., lN ] ∈ RC×N represents the class labels of observation Y,
and li = [0, ..., 1, ..., 0]T ∈ RC is a label vector corresponding to an observation yi,
where the nonzero position (index) indicates the class of yi. Then, the additional
term ‖L−WX‖22 denotes the classification error for label information.

For the last term ‖Q − AX‖22, where Q = [q1, ..., qN ] ∈ RK×N and qi =
[0, ..., 1, ..., 1, ..., 0]T ∈ RK is a sparse code corresponding to an observation yi for
classification, the purpose of setting nonzero elements is to enforce the “discrim-
inative” of sparse codes [10]. Specifically, the nonzero elements of qi occur at
those indices where the corresponding dictionary atom dn share the same label
with the observation yi. The A denotes a K×K transformation matrix, which is
utilized to transform the original sparse code x to be a discriminative one. Thus,
the term ‖Q−AX‖22 represents the discriminative sparse code error, which en-
forces that the transformed sparse codes AX approximate the discriminative
sparse codes Q. It forces the signals from the same class to have similar sparse
representations. β and τ are regularization parameters which control the relative
contributions of the corresponding terms. Equation (15) can be rewritten as:

< D,W,A,X >= arg min
D,W,A,X

∥∥∥∥∥∥
 Y√

βL√
τQ

−
 D√

βW√
τA

X

∥∥∥∥∥∥
2

2

s.t. ∀i, ‖xi‖0 ≤ T

(16)
Let Y ′ = (YT,

√
βLT,

√
τQT)T, D′ = (YT,

√
βWT,

√
τAT)T. Then, the opti-

mization of Equation (16) is equivalent to solving the (14) (replace Y and D with
Y ′ and D′ respectively), this is just the problem that K-SVD [1] solves. In this
paper, a similar initialization and optimization solution of K-SVD described in
[10] is adopted. For parameter settings, the maximal iteration equals to 60, the
sparsity factor T = 50 is used, and β and τ are set to 1.0 in our experiments.
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6 Experiments

In this section, the proposed 3D skeletal gesture recognition method is evaluated
in comparison to state-of-the-art methods using three public datasets, namely,
ChaLearn 2014 gesture [6], MSR Action3D [12], and UTKinect-Action3D [23].

In order to testify the effectiveness of the proposed method, eighteen state-of-
the-arts are compared, we simply divided these methods into three groups. The
first group is the methods most related to us, including four Lie group based
algorithms, the Lie group using DTW [19] (Lie group-DTW), Lie group with
TSRVF [18] (Lie group-TSRVF) and using PCA for dimensionality reduction [3]
(Lie group-TSRVF-PCA), and K-SVD for sparse coding [1] (Lie group-TSRVF-
KSVD). And also including two TSRVF related methods, the body part features
with SRV and k-nearest neighbors clustering[4] (SRV-KNN), TSRVF on Kendal-
l’s shape space [2] (Kendall-TSRVF). The methods in second group are based on
classic feature representations, like histogram of 3D joints (HOJ3D) [23], Eigen-
Joints [24], actionlet ensemble (Actionlet) [20], histogram of oriented 4D normals
(HON4D) [16], rotation and relative velocity with DTW (RVV+DTW) [7], naive
Bayes nearest neighbor (NBNN) [21]. The last group including seven deep learn-
ing methods, namely the convolutional neural network based ModDrop (CNN)
[15], HMM with deep belief network (HMM-DBN) [22], LSTM [9], hierarchical
recurrent neural network (HBRNN) [5], spatio-temporal LSTM with trust gates
(ST-LSTM-TG) [13], and global context-aware attention LSTM (GCA-LSTM)
[14]. The baseline results are reported from their original papers.

To verify the effectiveness of the TSRVF on product space of SO(3)× · · · ×
SO(3) (SO3-TSRVF), we present its discriminative performance without any
further step (such as PCA or sparse coding) on three datasets. For comparison of
dictionary learning ability, we also report the results of the classic coding such as
K-SVD [1] (SO3-TSRVF-KSVD) and the proposed sparse coding scheme (SO3-
TSRVF-SC). In order to fairly comparison, we follow the same classification
setup as in [19, 3, 2, 18, 1] , namely, we utilized an one-vs-all linear SVM classifier
(the parameter C set to 1.0). All experiments are carried out on an Intel Xeon
CPU E5-2650 PC with a NVIDIA Tesla K80 GPU.

The ChaLearn 2014 [6] is a gesture dataset with multi-modality data, includ-
ing audio, RGB, depth, human body mask maps, and 3D skeletal joints. This
dataset collects 13585 gesture video segments (Italian cultural gesture) from 20
classes. We follow the evaluation protocol provided by the dataset which assigns
7754 gesture sequences for training, 3362 sequences for validation, and 2742 se-
quences for testing. The detailed comparison with other approaches is shown in
Table 1 (second column). It can be seen that the proposed method achieves the
highest recognition accuracy as 93.2%. Compared to Lie group based methods,
the effectiveness of SO3-TSRVF has been proved by the experimental results. It
is noted that Lie group-DTW [19] is only 79.2%, this is due to the performance
of DTW is highly depends on the reference sequences for each category, and
that empiric selection task turn to difficult as the size of dataset get larger. It
also can be observed that the accuracy of the LSTM [9] is 6 percents less than
the proposed method. Although LSTM is designed for perceiving the contextual
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Table 1. Comparison Of Recognition Accuracy (%) With Existing 3D Skeleton-Based
Methods on ChaLearn 2014 [6], MSR Action3D [12] and UTKinect-Action3D [23]
Datasets (best: bold, second best: underline).

Methods ChaLearn 2014 MSR Action3D UTKinect-Action3D

Lie group-DTW [19] 79.2 92.5 97.1
Lie group-TSRVF [18] 91.8 87.7 94.5
Lie group-TSRVF-PCA [3] 90.4 88.3 94.9
Lie group-TSRVF-KSVD [1] 91.5 87.6 92.7
SRV-KNN [4] - 92.1 91.5
Kendall-TSRVF [2] - 89.9 89.8

EigenJoints [24] 59.3 82.3 92.4
Actionlet [20]* - 88.2 -
HOJ3D [23] - 78.9 90.9
HON4D [16]* - 88.9 90.9
RVV-DTW [7] - 93.4 -
NBNN [21] - 94.8 98.0

ModDrop (CNN) [15]* 93.1 - -
HMM-DBN [22] 83.6 82.0 -
LSTM [9] 87.1 88.9 72.7
HBRNN [5] - 94.5 -
ST-LSTM-TG [13] 92.0 94.8 97.0
GCA-LSTM [14] - - 98.5

Ours (SO3-TSRVF) 92.1 93.4 96.8
Ours (SO3-TSRVF-KSVD) 92.8 93.7 97.2
Ours (SO3-TSRVF-SC) 93.2 94.6 98.1

* The method use skeleton and RGB-D data.

information, it is still challenging to model the sequence with temporal dynam-
ics, especially when training data is limited. It is important to mention that
the ModDrop [15] ranked the first place in the Looking at People challenge [6].
While our method can achieve a higher score than ModDrop but without using
RGB-D and audio data.

The MSR Action3D [12] is a commonly used dataset, where actions are highly
similar to each other and have typical large temporal misalignments. This dataset
comprises of 567 pre-segmented action instances, and 10 people performing 20
classes of actions. For a fair comparison, the same evaluation protocol, namely
the cross-subject testing as described in [12] is followed, where half of the subjects
are used for training (subjects number 1, 3, 5, 7, 9) and the remainder for testing
(2, 4, 6, 8, 10). We compare the proposed method with the state-of-the-arts, the
recognition accuracies on MSR Action3D dataset are recorded in Table 1 (third
column). We can see that the proposed method achieves better performance than
Lie group based and classical feature representation approaches. And again, the
performance of proposed sparse coding is superior than K-SVD and PCA based
coding methods. Actually, the recognition accuracy of the proposed is only 0.2%
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inferior to the NBNN [21] and ST-LSTM-TG [13], which are recently proposed
approaches.

The UTKinect-Action3D [23] is a difficult benchmark due to its high intra-
class variations. This dataset collects 10 types of actions using the Kinect. We
follow [23] and use the Leave-One-Sequence-Out Cross Validation setting which
selects each sequence as the testing sample in turn, regards others as training
samples and calculates the average (20 rounds of testing) recognition rate. Table
1 (fourth column) reports the comparisons of the proposed to state-of-the-art
methods. Obviously, our approach outperforms other methods except the GCA-
LSTM [14] which is a sophisticated deep learning model proposed recently.

7 Conclusion

In this paper, a new human gesture recognition method is proposed. We repre-
sented a 3D human skeleton as a point in the product space of special orthogonal
group SO3, as such, a human gesture can be characterized as a trajectory in the
Riemannian manifold space. To consider re-parametrization invariance proper-
ties for trajectory analysis, we generalize the transported square-root vector field
to obtain a time-warping invariant metric for comparing trajectories. Moreover,
a sparse coding scheme of skeletal trajectories is proposed by thoroughly consid-
ering the labeling information with each atom to enforce the discriminant valid-
ity of dictionary. Experiments demonstrate that proposed method has achieved
state-of-the-art performances. Possible directions for future work include study-
ing on an end-to-end deep network architecture in the manifold space to handle
the issues of 3D skeletal gesture recognition.
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