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Abstract

Based on methodologies of vari-
ational calculus and di�erential
entropy, we propose in this work
a non-parametric model that pro-
vides a robust estimation of reliability
to be used in a RCM scheme. A
Weibull analysis is presented �rst in
a case study within the usual RCM
schemes. If the sample of data is
severly reduced the weibull analysis
lost preciscion, impacting in the
RCM scheme. To solve this limita-
tion, a maximum entropy aproach is
propoused.

Di�erential entropy has been
shown as a solid tool to model the
response of a random variable when
reduced sample size information is
available. We take advantage of the
formalism of the variational calculus
to express a functional that obeys the
Euler-Lagrange equations and sup-
ported by the Kolmogorov axioms,
we extract a generalized non-para-
metric probability density. By sub-
jecting this density to appropriate
boundary conditions in terms of the
�rst moments of the generalized
probability density.

Keywords: Di�erential Entropy,
Shanon, RCM,Variational Calculus,
Euler-Lagrange,Weibull, Reliability.

1 Introduction

In the framework of reliability-centered maintenance
(RCM) it is usual to have di�culties regarding the fre-
quency of failure of vital components used in the industry
[13,6]. Usually maintenance records, the information
that manufacturers provide in the manufacturing of these
components and the experience of maintenance per-
sonnel are the primary sources for creating amaintenance
plan. In practice, most of these data are non-existent.
At the same time, maintenance plans represent an invest-
ment in �xed assets, personnel training and supply of
spare parts that exceed what medium-sized companies

can a�ord in the short to medium term [14,6]. This seg-
ment is where the need for maintenance plans focused on
reliability is detected for us, working primarily with very
small samples or the experience of the sta�. With this
information and the concepts of entropy in information
theory, it is intended to develop a generalized model that
describes the probability of failure of a severely reduced
sample of failure data in industrial components. One of
themost used probability densities to study the frequency
of failures in the RCM framework is the Weibull, the
scale parameter is determined by the sample size, if the
sample is small, the Weibull probability density is still
able to give results on a small sample. On the other hand,
if there is no faliure data, the data is censored [1,6],
it is a fact that the components will fail. In this paper
we propose to estimate, froma a very small data set of
failure for replaceable systems, the Mean Time To Fal-
iure (MTTF) and, based on the maximization [12,6] of
Shannon's entropy, obtain a non-parametric probability
density, subjecting the maximization process to the Kol-
mogorov axioms and carrying out estimates of the �rst
moments of a generalized probability distribution. With
these tools, our goal is to build a probability density that
can estimate the probability of failure in industrial com-
ponents from severely reduced samples, experience of
the sta� and warranty records.[2,6],[3,6], [4,6].

2 RCM methodology.
The usual schemes of reliability-centered maintenance
require identifying in various stages the characteristics
and processes to which various components are subjected
in order to select the appropriate maintenance scheme
that responds to the industrial process in which a com-
ponent or a set of replaceable components are working.
Roughly, the usual 6 stages of reliability-focused main-
tenance are: 1.-Industrial equipment selection. 2.-Failure
mode identi�cation. 3-.De�ne fail schemes. Identify con-
sequences. 4-.Maintenance Strategy. 5-.Reliability. 6-.
RCM. In this work, we focus primarily on the �fth stage.
Reliability in the RCM scheme is to select the best model
that represents the probability of failure and build with
it, the entire reliability maintenance-centered scheme.
Established in the �fth stage indicated, it is necessary
to determine if the sample is large enough to justify a
Weibull analysis [10,6].
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3 Case Study.

The following data were obtained from the company
Plastics and Metals of Coahuila (PYCSA), it is the
replacement times in hours of valves that are used to con-
trol the pressurewithwhich plastic is injected into various
molds. They represent a system of replaceable parts and
can be analyzed within reliability-centered maintenance
schemes.

Tabla 1: Valves Time To Failure Sample

23890

24210

27142

25731

26584

28215

25321

21972

30121

25134

The experience of the technician indicates that the
valves will fail around 28,000 hours of operation.

3.1 Weibull analysis

The data provided is a sample of failure times. In order
to be able to o�er a RCM scheme, we carried out an
adjustment ofWeibull parameters [8,6], through themax-
imum likelihoodmethod. With the scale parameter on the
average of the data and the shape parameter equal to one,
these initial data provide through the Newton-Rhapson
method the values: η=26818.4, β =12.7290. The
cumulative probability function is then:

F(T )=1- e(-(T /26818.4)
12.729)

Therefore, reliability is given by: R(T )=1-F(x �T )

Figure 1: Weibull reliability.

3.2 Mean Time To Faliure (MTTF).

We then proceed to determine the MTTF (related to
the expected value E(t)), since we have the reliability
function, the MTTF turns out to be a value of critical
importance to make decisions regarding the reliability-
centered maintenance scheme.

E(t)=∫0
∞
R(t)dt

Likewise, the instantaneous fail frequency is given by:

h(t)=
d
dt
ln[R(t)]

The instantaneous frequency of failure is also known as a
hazard function, it indicates the speed at which reliability
decreases as the time in which the device in question is
in operation.

Figure 2: Hazard Function

The graph of the hazard function, such as reliability
decreases sharply after theMTTF, inducing a risk process
if inspection measures are not taken at least around
25,000 hours of operation on the valves.

3.3 Reliability.

With the data provided by the company Plasticos y Met-
ales of Coahuila,we can establish the following reliability
centered maintenance scheme.

Model
Weibull

R(T )=e
-(((((((x

η)))))))
β

Parameters
η=26818.4
β =12.7290

MTTF
25755.11

h(t)>25000
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In this way it is recommended to the company's
administration that the valve replacements must be made
before 25000 hours of operationwithoutwaiting to reach
the MTTF, since the risk of failure steeply grows around
25700 hours. In addition, if we consider the value of
the probability of failure in 28000 hours (suggested by
experience of the technician) we can see that it repre-
sents a high risk quantile for the machinery:

F(28000)=0.82293

4 Generalized non-parametric prob-
ability density.

In this sectionwe elaborate a non-parametric approxima-
tion with the data to compare themwith the results of the
previous section. It is necessary to understand that, what
is being o�ered is an example of how to work with the
maximum entropymodel when the sample size is extremely
small and we only have the experience of the technician.
In no way the scheme that will be addressed below cor-
responds to a complete approach on how to perform the
estimation of the moments in the equation (14), what we
intend is to give an indicative idea of how to proceed once
we have a well de�ned theoretical scheme to estimate the
moments of the generalized non-parametric proba-
bility density. As we do not have a su�ciently large data
sample to ensure that the Weibull analysis is reliable, we
developed the nonparametric scheme hereinafter. [10,6]

4.1 Theoretical considerations.

We begin with the entropy S. It quanti�es the lack of
information from a randomized experiment. If the exper-
iment is governed by a probability distribution pi then
the function that measures the uncertainty is de�ned as:

S =-k∑
i=1

n

piln(pi) (1)

andwe assume that 0� pi�1which ensures themonotony
property of entropy: S � 0 along the entire path of pi,
from a linear point of view, S represents a base that diag-
onalizes p

(

. Thus, when we have the maximum system
information, S reaches its minimum value. In this idea,
S will reach its maximum value when all pi, have the
same probabilities for each pi. Following this hypoth-
esis, we could assign probabilities through the relative
frequency pi = 1/n that directly associates the entropy:
S=kln (n), so that S grows in direct proportion with n
in the cited case. In general, we expect entropy to sat-
isfy the following: [5,6]

De�nition 1. Principle of maximum entropy.

�The statistical entropy of a random system reaches the
maximum compatible with the restrictions imposed�

The basic idea behind this principle is that, there
is no reason to privilege a particular state or event in a
randomized experiment. In the continuous case, we can
de�ne a functional subject to conditions of continuity in
its random variable, in this sense, Shanon's entropy [5,6]
can be de�ned as:

S(P,P′)=-∫
K

f (t)ln[f (t)]dt (2)

P, are probabilities, and f represents probability densi-
ties. Subjecting (2) to restrictions:

∫
K

f(t)dt=1 ; ∫
K

hk(t)f(t)dt=ck with k=0,1,2,...,n (3)

If: F(f , f ′, t)=-f (t)ln[f (t)]-λk∑
k
hk(t)f (t), is a functional

[6,6], �nding its extreme points subject to the restrictions
imposed by hk(t)f(t) by the Lagrange multiplier method,
then F (f , f ' , t) also satis�es the Euler-Lagrange equa-
tion:

d
dt

∂F
∂f ′
- ∂F

∂f
=0 (4)

The direct consequence is clear, every problem propose
in the Lagrange multiplier frame work, is equivalent to
a set of di�erential equations that are obtained from
the Euler-Lagrange equation. Moreover, Lagrange mul-
tipliers cannot ensure that the system of equations is
overdetermined, consequently, Lagrangemultipliers lead
to a set of equations that include implicit derivatives, since
it is not assured that the variables are all independent. In
the case of a problemwith a set of constraints and a single
probability function, Lagrangemultipliers and the Euler-
Lagrange equation provide the same generalized model
for probability density. However, in the case of modeling
systems that respondwithmultiple probabilities [8,6], the
Euler-Lagrange equations will always provide a decou-
pled set of second-order di�erential equations for each
degree of freedom [6,6], which in this contextwill always
be a probability density. Given the above, when sub-
mitted the functional: F(f , f ′, t)=-f (t)ln[f (t)]-∑

k
λkhk(t)f (t) to the

equation (4) we get:

∂F
∂f
=-1- ln[f (t)]-∑

k

λkhk(t)=0

Also we can de�ne:φ(t)=1+ ∑
N

k=0
λkhk(t) to obtain the general-

ized non-parametric probability density:[7,6]

f (t)=Ae
-φ(t)

(5)

The λk are the Lagrange multipliers, needed to estab-
lish the model, in k=0 we will have the normalization
constant of the model: A=eλ0. Now, to ensure the con-
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vergence of the probability model, we need to demand
that:

N =2m withmapositive integer. (6)

Lagrange multipliers can be found using the following
[9,6] procedure; taking the derivative of (5) and inte-
grating over its domain we get:

d
dt

f (t)=-f (t)
d
dt

φ(t) (7)

∫-∞
∞ d

dt
f (t)dt =0 (8)

(8) vanishes by the boundary properties must be satisfy
by a probability density, the integral of the left member
of (8) is then expressed as:

∫-∞
∞ f (t)∑

N

k=1
λkktk

-1f (t)dt = ∑
N

k=1
λkk∫-∞

∞ tk-1f (t)dt =0 (9)

So we can see that the moments of the density in (5) are
given by: μk =∫

-∞
∞ tkf (t)dt

And (9) give us one �rst equation for the λk:

λ1+2λ2μ1
+3λ3μ2

+ ...+NλNμ
N-1
=0 (10)

The argument used that leads to (10) can be extended if
we take the derivative from the probability model, mul-
tiplied by tn and integrated over its entire domain, the
new parameter n will count the restrictions that can be
imposed on the functional that arises from the Euler-
Lagrange equation. We proceed then:

tn
d
dt

f (t)=-f (t)∑
N

k=1
λkktk+n-1f (t) (11)

∫-∞
∞ tn

d
dt

f (t)dt = tnf (t) /
-∞

∞
-n∫-∞

∞ tn-1f (t)dt

Discarding the term evaluated for reasons already
explained get:

n∫-∞
∞ tn-1f (t)dt = ∑

N

k=1

λkk∫-∞
∞ tk+n-1f (t)dt (12)

and again, using the de�nition of moments, we can con-
clude with:

nμ
n-1
=λ1μn

+2λ2μn+1
+ ...+NλNμ

n+N -1
(13)

(10) and (13) form a system of equations that determine
Lagrange multipliers based on the Moments of the dis-
tribution:

((((((((((((((((
((((((((((((((((
((((((((((((((((
((((((((((((((((
((((((((((((((((
((((

(

( 1
μ1

μ2

.

.

.
μN+1

μ1

μ
2

μ3

.

.

.
μN+2

.

.

.

.

.

.

.

.

.

μN-1

μN

μN+1

.

.

.
μ2N ))))))))))))))))

))))))))))))))))
))))))))))))))))
))))))))))))))))
))))))))))))))))
))))

)

)

((((((((((((((((
((((((((((((((((
((((((((((((((((
((((((((((((((((
((((((((((((((((

(

( λ1
2λ2
3λ3
.
.
.

NλN ))))))))))))))))
))))))))))))))))
))))))))))))))))
))))))))))))))))
))))))))))))))))

)

)
=

((((((((((((((((
((((((((((((((((
((((((((((((((((
((((((((((((((((
((((((((((((((((
((

(

( 0
1
2μ

1

.

.

.
(N +1)μN ))))))))))))))))

))))))))))))))))
))))))))))))))))
))))))))))))))))
))))))))))))))))
))

)

)
(14)

In equation (14) we then need to feed the momentum
operator with some reasonable estimation of them, and
in that case, proceed to solve the system of equations for
Lagrange multipliers.

5 Weibull vs the generalized non-
parametric probability density.

The alternative we propose is a probability density that
comes from maximizing entropy, that is, we propose an
identical model to the one in equation (5), choosing a
polynomial: φ(t)=1+ ∑

N

k=1

λkt
k to set the model parameters in

the model and equation (14) leads us to consider some
system of equations, previously estimating the moments
of the function f (t), and of course, the question arises,
how many terms must be included in φ (t ) to adequately
represent the model? If we decide to include the mean,
variance, asymmetry and kurtosis, [11,6], [10,6], [9,6]
suggest consider the �rst fourmoments in absolute value,
pointing that, evenwhen the information in themoments
operator is extremely di�cult to obtain in the context of
achieving base that diagonalizes the moment operator,
the �rst two moments are su�cient to determine, in an
acceptable way the probability density Lagrange multi-
pliers. In that case, we would have a system of equations
given by:

((((((((((((((
1
μ
1

μ
1

μ
2 ))))))))))))))((((((((((((

λ1
2λ2 ))))))))))))=(((((((((((( 01 )))))))))))) (15)

5.1 Moments estimation.

To estimate the moments, we take the descriptive statis-
tics of the data and obtain the �rst four moments. Like-
wise, for moments greater than the fourth, we assume a
uniform distribution in order of completing the moments
operator. The system of equations arises:




((((((((((((((((
((((((((((((((((
((((((((((((((((
(((((((((((

(

( 1 25832 5379576 0.284135
25832 5379576 0.284135 0.316593

5379576 0.284135 0.316593
1
10

0.284135 0.316593
1
10

1
10 ))))))))))))))))

))))))))))))))))
))))))))))))))))
)))))))))))

)

)

((((((((((((((((
((((((((((((((((
((((((
(
( λ1
2λ2
3λ3
4λ4 ))))))))))))))

))))))))))))))))
))))))))
)
)
=

((((((((((((((((
((((((((((((((((
((((((
(
( 0
1
51664
16138728 ))))))))))))))))

))))))))))))))))
))))))
)
)

Solving for multipliers, we obtain the probability density
whose graph is:

Figure 3: generalized probability density.
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The MTTF for this distribution is then:

∫
0

∞
R(T )dT=22851.178637423861

Thus, the MTTF indicates that we are facing a lack of
maintenance situation, putting the components of the
entire injection system at risk. In this case, reliability sug-
gests taking the following measures:

Model
non-parametric

f (t)=Ae
-φ(t)

MTTF
Wibull: 25755hr

MaximumEntropy:22851hr

Inspections:
3years
2/5 years

In this way, the company administration is recom-
mended to prepare its inspection plans more frequently
to avoid lack of maintenance.

6 Discussion and Conclusions.

The maximum entropy method provides us with a useful
tool when establishing the reliability of a maintenance

scheme, in the case presented, the lack of maintenance
is detected by the generalized probability density and cor-
rective measures are taken, in this case, increase the
inspection frequency to avoid the abrupt risk of a valve
failure. At the same time, we reduce replacement costs
by ensuring an optimum inspection frequency within the
scheduled shutdowns at the plant. Subsequent develop-
ments will focus on considering censored data and the
technician's experience to estimate the moments in the
equation (14). The state of the investigation indicates that
we can develop reliability indications with the tool devel-
oped up to this point, the subsequent developments will
strengthen the proposed framework and will give much
more certainty to the maintenance plans that we develop
for the industry. On the other hand, given that the formal
language of probability is the mesure theory, we do not
rule out entering this �eld to extract the necessary tools
that allow us a signi�cant improvement of the results and
future investigations planned in this line of research.
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