
EasyChair Preprint
№ 8684

STLmc: Robust STL Model Checking of Hybrid
Systems Using SMT

Geunyeol Yu, Jia Lee and Kyungmin Bae

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 16, 2022

Available

CAV
Evaluation

Artifact

Reusable

CAV
Evaluation

Artifact

STLmc: Robust STL Model Checking of Hybrid
Systems using SMT

Geunyeol Yu[0000−0002−6171−9911], Jia Lee[0000−0002−3263−2550], and Kyungmin
Bae[0000−0002−6430−5175]

Pohang University of Science and Technology, Pohang, Korea
kmbae@postech.ac.kr

Abstract. We present the STLmc model checker for signal temporal
logic (STL) properties of hybrid systems. The STLmc tool can perform
STL model checking up to a robustness threshold for a wide range of
hybrid systems. Our tool utilizes the refutation-complete SMT-based
bounded model checking algorithm by reducing the robust STL model
checking problem into Boolean STL model checking. If STLmc does not
find a counterexample, the system is guaranteed to be correct up to the
given bounds and robustness threshold. We demonstrate the effectiveness
of STLmc on a number of hybrid system benchmarks.

1 Introduction

Signal temporal logic (STL) [31] has emerged as a popular property specification
formalism for hybrid systems. STL formulas describe linear-time properties of
continuous real-valued signals. Because hybrid systems exhibit both discrete and
continuous behaviors, STL provides a convenient and expressive way to specify
important requirements of hybrid systems. STL has a vast range of applications
on hybrid systems, including automotive systems [26], robotics [24, 40], medical
systems [36], IoT [7], smart cities [30], etc.

Due to the infinite-state nature of hybrid systems with continuous dynamics,
most techniques and tools for analyzing STL properties focus on monitoring and
falsification. These techniques analyze concrete samples of signals obtained by
simulating hybrid automata to monitor the system’s behavior [13,15,32] or find
counterexamples [1,37,43], often combined with stochastic optimization. To this
end, STL monitoring and falsification use quantitative semantics that defines the
robustness degree to indicate how well the formula is satisfied. However, these
methods cannot be used to guarantee correctness.

Recently, several STL model checking techniques have been proposed for
hybrid systems [3,29,35]. In particular, the SMT-based bounded model checking
algorithms [3,29] are refutation-complete, i.e., they can guarantee correctness up
to given bounds. However, these techniques are based on the Boolean semantics
of STL instead of quantitative semantics. This is a limitation for hybrid systems
as small perturbations of signals can cause the system to violate the properties
verified by Boolean STL model checking. Moreover, there exists no tool with a
convenient user interface implementing STL model checking techniques.

https://doi.org/10.5281/zenodo.6620846

2 Geunyeol Yu , Jia Lee, and Kyungmin Bae

This paper presents the STLmc tool for robust STL model checking of hybrid
systems. Our tool can verify that, up to given bounds, the robustness degree of
an STL formula φ is greater than a robustness threshold ϵ > 0 for all possible
behaviors of the system. We reduce the robust STL model checking problem
to Boolean STL model checking using ϵ-strengthening (perturbing the problem
by ϵ to make it harder to be true), first proposed in [21] for first-order logic
and extended to STL. We then apply the refutation-complete bounded model
checking algorithm [3, 29] to build the SMT encoding of the resulting Boolean
STL model checking problem, which can be solved using SMT solvers.

Apart from the robust STL model checking method, STLmc also implements
several techniques to improve the usability and scalability of the tool:

– STLmc implements a generic interface to connect with various SMT solvers,
such as Z3 [12], Yices2 [17], and dReal [22]. Since dReal can (approximately)
deal with nonlinear ordinary differential equations (ODEs), STLmc can also
support hybrid systems with nonlinear ODE dynamics.

– STLmc implements parallelized two-step SMT solving to improve scalability.
Instead of directly solving the complex encoding with ODEs, we first obtain
a discrete abstraction without ODEs and find satisfying scenarios. We then
check the discrete refinements of such scenarios using dReal in parallel.

– STLmc provides a visualization command to draw counterexample signals
and robustness degrees. Such graphs intuitively explain why the robustness
degree of the formula is greater than a given threshold, and thus greatly help
in analyzing counterexamples and debugging hybrid systems.

We demonstrate the effectiveness of the STLmc tool on a number of hybrid
system benchmarks—including linear, polynomial, and ODE dynamics—and
nontrivial STL properties. The tool is available at https://stlmc.github.io.

2 Background: Robust STL Model Checking

Hybrid Automata. Hybrid systems are often formalized as hybrid automata [25],
defined as a tuple H = (Q, X, init, inv, jump, flow). A set of modes Q specifies
discrete states. A set of real-valued variables X = {x1,, xl} gives continuous
states. A pair ⟨q, v⃗⟩ of mode q ∈ Q and vector v⃗ ∈ Rl constitutes a state of H. An
initial condition init(q, v⃗) defines a set of initial states. An invariant condition
inv(q, v⃗) defines a set of valid states. A jump condition jump(q, v⃗, q′, v⃗′) defines a
discrete transition from ⟨q, v⃗⟩ to ⟨q′, v⃗′⟩. A flow condition flow(q, v⃗, v⃗t, t) defines
a continuous evolution of X’s values from v⃗ to v⃗t over time t in mode q.

A signal σ represents a continuous execution of a hybrid automaton H, given
by a function [0, τ) → Q × Rl with a time bound τ > 0. A signal σ is called
a trajectory of a hybrid automaton H, written σ ∈ H, if σ describes a valid
behavior of H: formally, there exists a sequence of times 0 = t0 < t1 < ... < τ
such that: (i) σ(t0) is an initial state by init; (ii) for i ≥ 1, H’s state evolves from
σ(ti) according to flow, while satisfying inv, for each time interval [ti−1, ti); and
(iii) for i ≥ 1, a discrete transition occurs by jump at each time point ti.

https://stlmc.github.io

STLmc: Robust STL Model Checking of Hybrid Systems using SMT 3

Signal Temporal Logic. Signal temporal logic (STL) is widely used to specify
properties of hybrid systems [31]. The syntax of STL is defined by:

φ ::= p | ¬φ | φ ∧ φ | φ UI φ

where p denotes state propositions, and I ⊆ R≥0 is any interval of nonnegative
real numbers. Examples of state propositions include relational expressions of
the form f(x⃗) ≥ 0 over variables X with a real-valued function f : Rl → R.
Other common Boolean and temporal operators can be derived by equivalences:
e.g., φ ∨ φ′ ≡ ¬(¬φ ∧ ¬φ′), ♢I φ ≡ ⊤ UI φ, □I φ ≡ ¬♢I ¬φ, etc.

We consider a quantitative semantics of STL based on robustness degrees [15].
The semantics of a state proposition p is defined as a function p : Q × Rl → R
that assigns to a state the degree to which p is true, where R = R ∪ {−∞, ∞}.
Specifically, the robustness degree of a state proposition f(x⃗) ≥ 0 is the value of
f(x⃗). E.g., the robustness degree of x ≥ 4 is the value of x − 4 at a given state.
The robustness degree of an STL formula can be defined as follows [15], where
a time bound τ of a signal is explicitly taken into account.1

Definition 1. Given an STL formula φ, a signal σ : [0, τ) → Rl, and a time
t ∈ [0, τ), the robustness degree ρτ (φ, σ, t) ∈ R is defined inductively by:2

ρτ (p, σ, t) = p(σ(t))
ρτ (¬φ, σ, t) = −ρτ (φ, σ, t)

ρτ (φ1 ∧ φ2, σ, t) = min(ρτ (φ1, σ, t), ρτ (φ2, σ, t))
ρτ (φ1 UI φ2, σ, t) = supt′∈(t+I)∩[0,τ) min(ρτ (φ2, σ, t′), inft′′∈[t,t′] ρτ (φ1, σ, t′′))

The robust STL model checking problem is to determine if the robustness
degree of an STL formula φ is always greater than a given robustness threshold
ϵ > 0 for all possible trajectories of a hybrid automaton H.

Definition 2 (Robust STL Model Checking). For a time bound τ > 0, an
STL formula φ is satisfied at time t ∈ [0, τ) on a hybrid automaton H with respect
to a robustness threshold ϵ > 0 iff for every trajectory σ ∈ H, ρτ (φ, σ, t) > ϵ.

A Running Example. Consider two rooms interconnected by an open door. The
temperature xi of each room, i = 0, 1, changes depending on the heater’s mode
qi ∈ {On, Off} and the temperature of the other room. The continuous dynamics
of xi can be specified as the following ODEs, where Ki, hi, ci, di are determined
by the size of the room, the heater’s power, and the size of the door [2, 19,25]:

ẋi =
{

Ki(hi − (cixi − dix1−i)) (On)

−Ki(cixi − dix1−i) (Off),

1 C.f., in the Boolean semantics of STL [29,31], the satisfaction of an STL formula is
defined as a Boolean value (i.e., true or false).

2 The Minkowski sum of intervals I and J is denoted by I + J . For a singular interval,
{t}+ I is written as t + I. We write supa∈A g(a) and infa∈A g(a) to denote the least
upper bound and the greatest lower bound of the set {g(a) | a ∈ A}, respectively.

4 Geunyeol Yu , Jia Lee, and Kyungmin Bae

Off0 Off1

ẋ0 = −k0(c0x0 − d0x1)

ẋ1 = −k1(c1x1 − d1x0)

x0 > 10 x1 > 10

Off0 On1

ẋ0 = −k0(c0x0 − d0x1)

ẋ1 = k1(h1 − (c1x1 − d1x0))

10 < x0 x1 < 30

On0 Off1

ẋ0 = k0(h0 − (c0x0 − d0x1))

ẋ1 = −k1(c1x1 − d1x0)

x0 < 30 x1 > 10

x0 ≤ 17

x1 ≥ 26 x0 ≥ 25

x1 ≤ 16

x1 ≤ 16

x0 ≤ 17

18 ≤ x0, x1 ≤ 22

Fig. 1: A hybrid automaton for the networked thermostats.

Figure 1 shows a hybrid automaton of our networked thermostat controllers.
Initially, both heaters are off and the temperatures are between 18 and 22. The
jumps between modes then define a control logic to keep the temperatures within
a certain range using only one heater. We are interested in robust model checking
of nontrivial STL properties, such as:

ϕ1: ♢[0,15](x0 ≥ 14 U[0,∞) x1 ≤ 19): at some moment in the first 15 seconds, x1
is less than or equal to 19; until then, x0 is greater than or equal to 14.

ϕ2: □[2,4](x0 − x1 ≥ 4 → ♢[3,10] x0 − x1 ≤ −3): between 2 and 4 seconds,
whenever x0 −x1 ≥ 4, x0 −x1 ≤ −3 holds within 10 seconds after 3 seconds.

3 The STLmc Model Checker

The STLmc tool can model check STL properties of hybrid automata, given
three parameters ϵ > 0 (robustness threshold), τ > 0 (time bound), and N ∈ N
(discrete bound). STLmc provides an expressive input format to easily specify a
wide range of hybrid automata. STLmc also provides a visualization command
to give an intuitive description of counterexamples.

3.1 Input Format

The input format of STLmc, inspired by dReach [28], consists of five sections:
variable declarations, mode definitions, initial conditions, state propositions, and
STL properties. Mode and continuous variables define discrete and continuous
states of hybrid automata. Mode definitions specify flow, jump, and invariant
conditions. STL formulas can also include user-defined state propositions.

Figure 2 shows the input model of the hybrid automaton described in the
running example above. Constants are introduced with the const keyword. Two
mode variables on0 and on1 denote the heaters’ modes. Continuous variables x0
and x1 are declared with domain intervals. There are three “mode blocks” that
specify the three modes in Fig. 1 and their invariant, flow, and jump conditions.

In mode blocks, a mode component includes a set of logic formulas over mode
variables. An inv component contains a set of logic formulas over continuous
variables. A flow component can include ODEs over continuous variables. A
jump component contains a set of jump conditions of the form guard => reset,
where guard and reset are logic formulas over mode and continuous variables,
and “primed” variables denote states after the jump has occurred.

STLmc: Robust STL Model Checking of Hybrid Systems using SMT 5

const k0 = 0.015; const k1 = 0.045;
const h0 = 100; const h1 = 200;
const c0 = 0.98; const c1 = 0.97;
const d0 = 0.01; const d1 = 0.03;

int on0; int on1;
[10, 35] x0; [10, 35] x1;

{ mode: on0 = 0; on1 = 1;
inv: 10 < x0; x1 < 30;
flow: d/dt[x0] = - k0 * (c0 * x0 - d0 * x1);

d/dt[x1] = k1 * (h1 - (c1 * x1 - d1 * x0));
jump: x0 <= 17 => (and (on0’ = 1) (on1’ = 0)

(x0’ = x0) (x1’ = x1));
x1 >= 26 => (and (on1’ = 0) (on0’ = on0)

(x0’ = x0) (x1’ = x1));
}
{ mode: on0 = 1; on1 = 0;
inv: x0 < 30; x1 > 10;
flow: d/dt[x0] = k0 * (h0 - (c0 * x0 - d0 * x1));

d/dt[x1] = - k1 * (c1 * x1 - d1 * x0);
jump: x1 <= 16 => (and (on0’ = 0) (on1’ = 1)

(x0’ = x0) (x1’ = x1));

x0 >= 25 => (and (on0’ = 0) (on1’ = on1)
(x0’ = x0) (x1’ = x1));

}
{ mode: on0 = 0; on1 = 0;
inv: x0 > 10; x1 > 10;
flow: d/dt[x0] = - k0 * (c0 * x0 - d0 * x1);

d/dt[x1] = - k1 * (c1 * x1 - d1 * x0);
jump:
x0 <= 17 => (and (on0’ = 1) (on1’ = on1)

(x0’ = x0) (x1’ = x1));
x1 <= 16 => (and (on1’ = 1) (on0’ = on0)

(x0’ = x0) (x1’ = x1));
}

init: on0 = 0; 18 <= x0; x0 <= 22;
on1 = 0; 18 <= x1; x1 <= 22;

proposition:
[p1]: x0 - x1 >= 4; [p2]: x0 - x1 <= -3;

goal:
[f1]: <>[0,15](x0 >= 14 U[0, inf) x1 <= 19);
[f2]: [][2, 4](p1 -> <>[3, 10] p2);

Fig. 2: An input model example

STL properties are declared in the goal section, and “named” propositions
are declared in the proposition section. State propositions are arithmetic and
relational expressions over mode and continuous variables. For example, in Fig 2,
the STL formula f1 contains two state propositions x0 ≥ 14 and x1 ≤ 19, and
the formula f2 contains the user-defined propositions p1 and p2.

3.2 Command Line Options

STLmc provides a command-line interface with various options in Table 1. The
options -two-step and -parallel enable the two-step solving optimization in
Sec. 4.3. STLmc supports three SMT solvers to choose from based on continuous
dynamics: Z3 [12] and Yices2 [17] can deal with linear and polynomial dynamics
(solutions of ODEs are linear functions or polynomials), and dReal [22] can
approximately deal with ODE dynamics with Lipschitz-continuous ODEs.

A discrete bound N limits the number of mode changes and variable points
at which the truth value of some STL subformula changes. This is a distinctive
parameter of STL model checking that cannot typically be derived from a time
bound τ or the maximal number of jumps (say, m). E.g., for any positive natural
number n ∈ N, consider the function y(t) = sin(π

τ · n · t); the state proposition
y > 0 has n − 1 variable points even if there is no mode change (m = 0).3

For the input model in Fig. 2, the following command found a counterexample
of the formula f2 at bound 2 with respect to ϵ = 2 in 15 seconds using dReal:
3 This example also hints that STL model checking can be arbitrary complex even for

one mode; τ and m cannot limit such model checking computation, whereas N can
limit the computation involving both discrete and continuous behaviors.

6 Geunyeol Yu , Jia Lee, and Kyungmin Bae

Table 1: Some command line options for STLmc.
Option Explanation Option Explanation

-bound ⟨N⟩ a discrete bound -two-step enable two-step solving
-time-bound ⟨τ⟩ a time bound -parallel parallel two-step solving
-threshold ⟨ϵ⟩ a robustness threshold -visualize generate visualization data
-solver ⟨Name⟩ z3, yices, or dreal -goal goals to be checked

 5

 10

 15

 20

 25
x0

x1

 0

 5

f2

f21

-10

-5

 0

 5

0 5 10 15 20 25

f22

f23 -10

-5

 0

 5

0 5 10 15 20 25

p1
p2

Fig. 3: Visualization of a counterexample (horizontal dotted lines denote ϵ = 2).

$./stlmc ./therm.model -bound 5 -time-bound 25 -threshold 2 \
-goal f2 -solver dreal -two-step -parallel -visualize

result: counterexample found at bound 2 (14.70277 seconds)

Similarly, the following command verified the formula f1 up to bounds N = 5
and τ = 25 with respect to ϵ = 0.5 in 819 seconds using dReal:

$./stlmc ./therm.model -bound 5 -time-bound 25 -threshold 0.5 \
-goal f1 -solver dreal -two-step -parallel

result : True (818.73110 seconds)

STLmc provides a command to visualize counterexamples for robust STL
model checking. It can generate images representing counterexample trajectories
and robustness degrees. Figure 3 shows the visualization graphs, showing the
values of variables or robustness degrees over time, generated for the formula
f2 = □[2,4](x0 − x1 ≥ 4 → ♢[3,10](x0 − x1 ≤ −3)) with the subformulas:

f21 = x0 − x1 ≥ 4 → ♢[3,10](x0 − x1 ≤ −3) f22 = ¬(x0 − x1 ≥ 4)
f23 = ♢[3,10](x0 − x1 ≤ −3) p1 = x0 − x1 ≥ 4 p2 = x0 − x1 ≤ −3

The robustness degree of f2 is less than ϵ at time 0, since the robustness degree
of f21 goes below ϵ in the interval [2, 4], which is because both the degrees of
f22 and f23 are less than ϵ in [2, 4]. The robustness degree of f23 is less than ϵ
in [2, 4], since the robustness degree of p2 is less than ϵ in [5, 14] = [2, 4] + [3, 10].

STLmc: Robust STL Model Checking of Hybrid Systems using SMT 7

N, τ

H

ϵ-Strengthening Reduction
ϵ

Encoding of Boolean STL
Model Checking

SMT Solving
Interface

Two-Step
Solving

SMT
Solvers

Z3 Yices2 dReal

Counterexample
(Visualization)

No counterexample
up to bounds

Fig. 4: The STLmc architecture

4 Algorithms and Implementation

Figure 4 shows the architecture of the STLmc tool. The tool first reduces robust
STL model checking into Boolean STL model checking using ϵ-strengthening. It
then applies an existing SMT-based STL model checking algorithm [3, 29]. The
satisfiability of the SMT encoding can be checked directly using an SMT solver
or using the two-step solving algorithm to improve the performance for ODE
dynamics. Our tool is implemented in around 9,500 lines of Python code.

4.1 Reduction to Boolean STL Model Checking
As usual for model checking, robust STL model checking is equivalent to finding
a counterexample. Specifically, an STL formula φ is not satisfied on a hybrid
automata H with respect to a robustness threshold ϵ > 0 iff there exists a
counterexample for which the robustness degree of ¬φ is greater than or equal
to −ϵ. (Formally, ¬(∀σ ∈ H. ρτ (φ, σ, t) > ϵ) iff ∃σ ∈ H. ρτ (¬φ, σ, t) ≥ −ϵ.)

Consider a state proposition x < 0. Its robust model checking is equivalent to
finding a counterexample σ ∈ H with ρτ (x ≥ 0, σ, t) ≥ −ϵ, which is equivalent to
ρτ (x ≥ −ϵ, σ, t) ≥ 0. Observe that x ≥ −ϵ is weaker than x ≥ 0 by ϵ. The notion
of ϵ-weakening is first introduced in [21] for first-order logic, and we extend the
definitions of ϵ-weakening and ϵ-strengthening to STL as follows.
Definition 3. The ϵ-weakening φ−ϵ and ϵ-strengthening φ+ϵ of φ are defined
as follows: (p−ϵ)(s) = p(s) − ϵ and (p+ϵ)(s) = p(s) + ϵ for a state s, and:

(¬φ)−ϵ ≡ ¬(φ+ϵ) (φ1 ∧ φ2)−ϵ ≡ φ−ϵ
1 ∧ φ−ϵ

2 (φ1 UI φ2)−ϵ ≡ φ−ϵ
1 UI φ−ϵ

2

(¬φ)+ϵ ≡ ¬(φ−ϵ) (φ1 ∧ φ2)+ϵ ≡ φ+ϵ
1 ∧ φ+ϵ

2 (φ1 UI φ2)+ϵ ≡ φ+ϵ
1 UI φ+ϵ

2

Finding a counterexample of φ for robust STL model checking can be reduced
to finding a counterexample of the ϵ-strengthening φ+ϵ for Boolean STL model
checking. The satisfaction of φ by the Boolean STL semantics [29,31] is denoted
by σ, t |=τ φ. We have the following theorem (see our report [42] for details).
Theorem 1. (1) ∃σ ∈ H. σ, t |=τ ¬(φ+ϵ) implies ∃σ ∈ H. ρτ (¬φ, σ, t) ≥ −ϵ,
and (2) ∀σ ∈ H. σ, t ̸|=τ ¬(φ+ϵ) implies ∀σ ∈ H. ρτ (φ, σ, t) ≥ ϵ.

As a consequence, a counterexample of φ+ϵ for Boolean STL model checking
is also a counterexample of φ for robust STL model checking. If there is no
counterexample of φ+ϵ for Boolean STL model checking, then φ is satisfied on
H with respect to any robustness threshold 0 < ϵ′ < ϵ. It is worth noting that
φ may not be satisfied on H with respect to ϵ itself.

8 Geunyeol Yu , Jia Lee, and Kyungmin Bae

4.2 Boolean STL Model Checking Algorithm
For Boolean STL model checking, there exist refutationally complete bounded
model checking algorithms [3, 29] with two bound parameters: τ for the time
domain, and N for the number of mode changes and variable points. A time
point t is a variable point if a truth value of φ’s subformula changes at t. The
algorithms build an SMT encoding ΨN,τ

H,¬φ of Boolean STL model checking:

Theorem 2. [3, 29] ΨN,τ
H,¬φ is satisfiable iff there is a counterexample trajectory

σ ∈ H, with at most N variable points and mode changes, such that σ, t ̸|=τ φ.
For hybrid automata with polynomial continuous dynamics, the satisfiability

of the encoding Ψ can be precisely determined using standard SMT solvers,
including Z3 [12] and Yices2 [17]. For ODE dynamics, the satisfiability of Ψ is
undecidable in general, but there exist specialized solvers, such as dReal [22] and
iSAT-ODE [18], that can approximately determine the satisfiability.

To support various SMT solvers, the implementation of STLmc utilizes a
generic wrapper interface based on the SMT-LIB standard [5]. Therefore, if it
follows SMT-LIB, a new SMT solver can be easily integrated with our tool.
Moreover, STLmc can also detect the most suitable solver for a given input
model; e.g., if the model has ODE dynamics, then the tool chooses dReal.

The encoding Ψ includes universal quantification over time, e.g., because of
invariant conditions. Several SMT solvers (including Z3 and Yice2) support these
∃∀-conditions but at high computational costs [27]. For polynomial dynamics, we
implement the encoding method [10] to simplify ∃∀-conditions to quantifier-free
formulas. For ODE dynamics, dReal natively supports ∃∀-conditions [23].

4.3 Two-Step Solving Algorithm
To reduce the complexity of ODE dynamics, we propose a two-step solving
algorithm in Algorithm 1, inspired by the lazy SMT solving approach [38]:
1. We obtain the discrete abstraction of the encoding Ψ by substituting the

flow and invariant conditions with Boolean variables. We then enumerate a
satisfying scenario π, a conjunction of literals, where π implies Ψ .

2. For each scenario π, we check the satisfiability of its discrete refinement with
the flow and invariant conditions using dReal. If any refinement is satisfiable,
we obtain a counterexample; otherwise, there is no counterexample.

We also implement a simple method to avoid redundant scenarios by minimiz-
ing a scenario. A scenario π = l1 ∧· · ·∧ lm is minimal if (¬li ∧

∧
j ̸=i lj) → Ψ—one

literal in π is false—is not valid. To minimize a scenario π, we use a dual prop-
agation approach [33]. Since π implies Ψ , π ∧ ¬Ψ is unsatisfiable. We compute
the unsatisfiable core of π ∧ ¬Ψ using Z3 to extract a minimal scenario from π.

We parallelize the two-step solving algorithm by running the satisfiability
checking of refinements in parallel. If any of such refinements is satisfied and a
counterexample is found, then all other jobs are terminated. If all refinements,
checking in parallel, are unsatisfiable, then there is no counterexample. As shown
in Sec 5, it greatly improves the performance for the ODE cases in practice.

STLmc: Robust STL Model Checking of Hybrid Systems using SMT 9

Algorithm 1: Two-Step SMT Solving Algorithm
Input: Hybrid automaton H, STL formula φ, threshold ϵ, bounds τ and N

1 for k = 1 to N do
2 Ψ ← abstraction of the encoding Ψk,τ

H,¬(φ+ϵ) without flow and inv;
3 while checkSat(Ψ) is Sat do
4 π ← a minimal satisfying scenario;
5 π̂ ← the refinement of π with flow and inv;
6 if checkSat(π̂) is Sat then
7 return counterexample(result.satAssignment);
8 Ψ ← Ψ ∧ ¬π;
9 return True;

5 Experimental Evaluation

We evaluate the effectiveness of the STLmc model checker using a number of
hybrid system benchmarks and nontrivial STL properties.4 We use the following
models, adapted from existing benchmarks [2,6,19,20,25,34]: load management
for two batteries (Bat), two networked water tank systems (Wat), autonomous
driving of two cars (Car), a railroad gate (Rail), two networked thermostats
(Thm), a spacecraft rendezvous (Space), navigation of a vehicle (Nav), and a
filtered oscillator (Oscil). We use a modified model with either linear, polynomial,
or ODE dynamics to analyze the effect of different continuous dynamics. For each
model, we use three STL formulas with nested temporal operators. More details
on the benchmark models can be found in the longer report [42].

We measure the SMT encoding size and execution time for robust STL model
checking, up to discrete bound N = 20 for linear models, N = 10 for polynomial
models, and N = 5 for ODEs models, with a timeout of 60 minutes. We use
different time bounds τ and robustness thresholds ϵ for different models, since
τ and ϵ depend on each model. As an underlying SMT solver, we use Yices
for linear and polynomial models, and dReal for ODE models with a precision
δ = 0.001. We run both direct SMT solving (1-step) and two-step SMT solving
(2-step). We use 25 cores for parallelizing the two-phase solving algorithm. We
have run all experiments on Intel Xeon 2.8GHz with 256 GB memory.

The experimental results are summarized in Table 2, where |Ψ | denotes the
size of the SMT encoding Ψ (in thousands) as the number of connectives in Ψ . For
the model checking results, ⊤ indicates that the tool found no counterexample
up to bound N , and ⊥ indicates that the tool found a counterexample at bound
k ≤ N . For the algorithms (Alg.), we write one of the results with a better
4 For reachability properties, STLmc has a similar performance to other SMT-based

tools, because STLmc uses the same SMT encoding. Indeed, our previous work [29]
shows that the underlying algorithm used for STLmc has comparable performance
to other tools for reachability properties. Nonetheless, our companion report [42]
also includes some experimental results comparing STLmc with four reachability
analysis tools (HyComp [9], SpaceEx [20], Flow* [8], and dReach [28]).

10 Geunyeol Yu , Jia Lee, and Kyungmin Bae

Table 2: Robust Bounded Model Checking of STL (Time in seconds)
Dyn. Model τ STL formula ϵ |Ψ | Time Result k Alg. #π

Li
ne

ar
(N

=
20

)

Car 40
(♢[3,5] p1) U[2,10] p2 0.1 2.5 7.6 ⊥ 5 1-step -
□[3,10](♢[5,15] p1) 0.5 10.8 559.2 ⊤ - 1-step -
(□[2,5] p1) R[0,10) p2 1.0 2.5 7.8 ⊥ 5 1-step -

Wat 20
□[1,3](p1 R[1,10] p2) 2.5 18.8 25.1 ⊤ - 1-step -
(♢[1,10) p1) U[2,5] p2 0.1 1.9 4.3 ⊥ 4 1-step -
♢[4,10](p1 → □[2,5] p2) 0.01 11.2 16.3 ⊤ - 1-step -

Bat 30
♢[4,10](p1 → □[4,10] p2) 0.1 12.9 119.5 ⊤ - 1-step -
(♢[1,5] p1) R[5,20] p2 3.5 2.8 6.0 ⊥ 5 1-step -
□[4,14](p1 → ♢[0,10] p2) 0.1 3.8 44.6 ⊥ 8 1-step -

Po
ly

(N
=

10
)

Thm 10
(□[2,10] p1) U[1,4] p2 0.5 2.0 4.4 ⊥ 4 1-step -
♢[0,5](p1 → □[2,5) p2) 0.1 3.9 5.0 ⊤ - 1-step -
♢[0,10](p1 R[2,4] p2) 1.0 5.7 6.3 ⊤ - 1-step -

Car 15
□[0,4](p1 → ♢[2,5] p2) 0.5 2.2 5.5 ⊥ 5 1-step -
(♢[0,4] p1) U[0,5] p2 2.0 1.7 4.7 ⊥ 3 1-step -
♢[0,3](p1 U[0,5] p2) 0.1 7.3 7.7 ⊤ - 1-step -

Rail 20
♢[0,5](p1 U[1,8] p2) 1.0 2.3 3.0 ⊥ 5 1-step -
♢[0,4](p1 → □[2,10] p2) 5.0 3.8 3.8 ⊤ - 1-step -
(□[0,5) p1) U[2,10] p2 4.0 1.9 2.7 ⊥ 4 1-step -

O
D

E
(N

=
5)

Thm 25
♢[0,15](p1 U[0,∞) p2) 0.5 1.2 818.7 ⊤ - 2-step 3,580
□[2,4](p1 → ♢[3,10] p2) 2.0 0.7 14.7 ⊥ 2 2-step 91
□[0,10](p1 R[0,∞) p2) 2.0 1.2 161.7 ⊥ 4 2-step 279

Space 5
□[0,2](p1 → ♢[0,3] p2) 1.5 0.8 278.3 ⊥ 2 2-step 79
♢[2,3](□[1,2] p1) 0.1 1.1 37.0 ⊥ 3 2-step 138
♢[0,4](p1 U[0,∞] p2) 0.5 1.3 716.8 ⊤ - 2-step 2,681

Oscil 8
♢[0,3](p1 R[0,∞) p2) 0.1 1.5 108.9 ⊤ - 2-step 326
♢[2,5](□[0,3] p1) 1.0 1.2 192.8 ⊥ 3 2-step 601
(□[1,3] p1) R[2,5] p2 0.1 1.8 112.1 ⊥ 3 2-step 258

Nav 10
♢[2,4](p1 → □[1,5] p2) 3.0 1.2 399.3 ⊥ 3 2-step 1,388
♢[2,4](□[3,6] p1) 2.0 1.1 332.2 ⊥ 3 2-step 1,213
♢[1,5](p1 R[0,∞) p2) 1.0 1.4 749.6 ⊤ - 2-step 2,411

performance. For the 2-step case, we also write the number of minimal scenarios
generated (#π). Actually, two-step SMT solving timed out for all linear and
polynomial models, and direct SMT solving timed out for all ODE models.

As shown in Table 2, our tool can perform robust model checking of nontrivial
STL formulas for hybrid systems with different continuous dynamics. The cases
of ODE models generally take longer than the cases of linear and polynomial
models, because of the high computational costs for ODE solving. Nevertheless,
our parallelized two-step SMT solving method works well and all model checking
analyses are finished before the timeout. In contrast, for linear and polynomial

STLmc: Robust STL Model Checking of Hybrid Systems using SMT 11

models with a larger discrete bound N ≥ 10, direct SMT solving is usually
effective but the two-step SMT solving method is not. There are too many
scenarios, and the scenario generation does not terminate within 60 minutes.
Therefore, the two algorithms implemented in our tool are complementary.

6 Related Work.

There exist many tools for falsifying STL properties of hybrid systems, including
Breach [14], S-talrio [1], and TLTk [11]. STL falsification techniques are based on
STL monitoring [13,32], and often use stochastic optimization techniques, such as
Ant-Colony Optimization [1], Monte-Carlo tree search [43], deep reinforcement
learning [41], and so on. These techniques are often quite useful for finding
counterexamples in practice, but, as mentioned, cannot be used to verify STL
properties of hybrid systems.

There exist many tools for analyzing reachability properties of hybrid systems
based on reachable-set computation, including C2E2 [16], Flow* [8], Hylaa [4],
and SpaceEx [20]. They can be used to guarantee the correctness of invariant
properties of the form p → □I q, but cannot verify general STL properties.
In contrast, STLmc uses a refutation-complete bounded STL model checking
algorithm to verify general STL properties, including complex ones.

Our tool is also related to SMT-based tools for analyzing hybrid systems,
including dReach [28], HyComp [9], and HybridSAL [39]. These techniques also
focus on analyzing invariant properties of hybrid systems, but some SMT-based
tools, such as HyComp, can verify LTL properties of hybrid systems. Unlike
STLmc, they cannot deal with general STL properties of hybrid systems.

7 Concluding Remarks

We have presented the STLmc tool for robust bounded model checking of STL
properties for hybrid systems. STLmc can verify that, up to given bounds, the
robustness degree of an STL formula φ is always greater than a given robustness
threshold for all possible behaviors of a hybrid system. STLmc also provides a
convenient user interface with an intuitive counterexample visualization.

Our tool leverages the reduction from robust model checking to Boolean
model checking, and utilizes the refutation-complete SMT-based Boolean STL
model checking algorithm to guarantee correctness up to given bounds and find
subtle counterexamples. STLmc can deal with hybrid systems with (nonlinear)
ODEs using dReal. We have shown using various hybrid system benchmarks
that STLmc can effectively analyze nontrivial STL properties.

Future work includes extending our tool with other hybrid system analysis
methods, such as reachable-set computation, besides SMT-based approaches.

Acknowledgments. This work was supported in part by the National Research
Foundation of Korea (NRF) grants funded by the Korea government (MSIT)
(No. 2021R1A5A1021944 and No. 2019R1C1C1002386).

12 Geunyeol Yu , Jia Lee, and Kyungmin Bae

References

1. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-taliro: A tool for
temporal logic falsification for hybrid systems. In: Proc. TACAS. LNCS, vol. 6605,
pp. 254–257. Springer (2011)

2. Bae, K., Gao, S.: Modular SMT-based analysis of nonlinear hybrid systems. In:
Proc. FMCAD. pp. 180–187. IEEE (2017)

3. Bae, K., Lee, J.: Bounded model checking of signal temporal logic properties using
syntactic separation. Proc. ACM Program. Lang. 3, POPL(51), 1–30 (2019)

4. Bak, S., Duggirala, P.S.: Hylaa: A tool for computing simulation-equivalent reach-
ability for linear systems. In: Proc. HSCC. pp. 173–178. ACM (2017)

5. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.5. Tech.
rep., Dept. of Computer Science, University of Iowa (2015), www.SMT-LIB.org

6. Chan, N., Mitra, S.: Verifying safety of an autonomous spacecraft rendezvous mis-
sion. In: Proc. ARCH. EPiC Series in Computing, vol. 48. EasyChair (2017)

7. Chen, G., Liu, M., Kong, Z.: Temporal-logic-based semantic fault diagnosis with
time-series data from industrial internet of things. IEEE Transactions on Industrial
Electronics 68(5), 4393–4403 (2020)

8. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: An analyzer for non-linear
hybrid systems. In: Proc. CAV. LNCS, vol. 8044, pp. 258–263. Springer (2013)

9. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: HyComp: an SMT-based model
checker for hybrid systems. In: Proc. TACAS. LNCS, vol. 9035. Springer (2015)

10. Cimatti, A., Mover, S., Tonetta, S.: A quantifier-free SMT encoding of non-linear
hybrid automata. In: Proc. FMCAD. pp. 187–195. IEEE (2012)

11. Cralley, J., Spantidi, O., Hoxha, B., Fainekos, G.: TLTk: A toolbox for parallel
robustness computation of temporal logic specifications. In: Proc. RV. LNCS, vol.
12399, pp. 404–416. Springer (2020)

12. De Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Proc. TACAS. LNCS,
vol. 4963, pp. 337–340. Springer (2008)

13. Deshmukh, J.V., Donzé, A., Ghosh, S., Jin, X., Juniwal, G., Seshia, S.A.: Robust
online monitoring of signal temporal logic. Form. Methods Syst. Des. 51(1) (2017)

14. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: Proc. CAV. pp. 167–170. Springer (2010)

15. Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In: Proc.
CAV. LNCS, vol. 8044. Springer (2013)

16. Duggirala, P.S., Mitra, S., Viswanathan, M., Potok, M.: C2E2: A verification tool
for stateflow models. In: Proc. TACAS. pp. 68–82. Springer (2015)

17. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) Proc. CAV. LNCS, vol. 8559,
pp. 737–744. Springer (2014)

18. Eggers, A., Ramdani, N., Nedialkov, N.S., Fränzle, M.: Improving the SAT mod-
ulo ODE approach to hybrid systems analysis by combining different enclosure
methods. Software & Systems Modeling 14(1), 121–148 (2015)

19. Fehnker, A., Ivančić, F.: Benchmarks for hybrid systems verification. In: Proc.
HSCC. pp. 326–341. Springer (2004)

20. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable verification of hybrid systems.
In: Proc. CAV. LNCS, vol. 6806, pp. 379–395. Springer (2011)

21. Gao, S., Avigad, J., Clarke, E.M.: Delta-decidability over the reals. In: 2012 27th
Annual IEEE Symposium on Logic in Computer Science. pp. 305–314. IEEE (2012)

www.SMT-LIB.org

STLmc: Robust STL Model Checking of Hybrid Systems using SMT 13

22. Gao, S., Kong, S., Clarke, E.M.: dReal: An SMT solver for nonlinear theories over
the reals. In: Proc. CADE. LNCS, vol. 7898, pp. 208–214. Springer (2013)

23. Gao, S., Kong, S., Clarke, E.M.: Satisfiability modulo ODEs. In: Proc. FMCAD.
pp. 105–112. IEEE (2013)

24. Goldman, R.P., Bryce, D., Pelican, M.J., Musliner, D.J., Bae, K.: A hybrid archi-
tecture for correct-by-construction hybrid planning and control. In: Proc. NFM.
LNCS, vol. 9690. Springer (2016)

25. Henzinger, T.: The theory of hybrid automata. In: Verification of Digital and Hy-
brid Systems, NATO ASI Series, vol. 170, pp. 265–292. Springer (2000)

26. Jin, X., Deshmukh, J.V., Kapinski, J., Ueda, K., Butts, K.: Powertrain control
verification benchmark. In: Proc. HSCC. ACM (2014)

27. Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Proc. IJCAR. pp.
339–354. Springer (2012)

28. Kong, S., Gao, S., Chen, W., Clarke, E.M.: dReach: δ-reachability analysis for
hybrid systems. In: Proc. TACAS. LNCS, vol. 7898, pp. 200–205. Springer (2015)

29. Lee, J., Yu, G., Bae, K.: Efficient SMT-based model checking for signal temporal
logic. In: Proc. ASE. pp. 343–354. IEEE (2021)

30. Ma, M., Bartocci, E., Lifland, E., Stankovic, J., Feng, L.: SaSTL: spatial aggrega-
tion signal temporal logic for runtime monitoring in smart cities. In: Proc. ICCPS.
pp. 51–62. IEEE (2020)

31. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Proc. FORMATS. LNCS, vol. 3253, pp. 152–166. Springer (2004)

32. Ničković, D., Lebeltel, O., Maler, O., Ferrère, T., Ulus, D.: AMT 2.0: qualita-
tive and quantitative trace analysis with extended signal temporal logic. In: Proc.
TACAS. vol. 10806, pp. 303–319. Springer (2018)

33. Niemetz, A., Preiner, M., Biere, A.: Turbo-charging lemmas on demand with don’t
care reasoning. In: Proc. FMCAD. pp. 179–186. IEEE (2014)

34. Raisch, J., Klein, E., Meder, C., Itigin, A., O’Young, S.: Approximating automata
and discrete control for continuous systems — two examples from process control.
In: Hybrid systems V. LNCS, vol. 1567, pp. 279–303. Springer (1999)

35. Roehm, H., Oehlerking, J., Heinz, T., Althoff, M.: STL model checking of contin-
uous and hybrid systems. In: Proc. ATVA. LNCS, vol. 9938. Springer (2016)

36. Roohi, N., Kaur, R., Weimer, J., Sokolsky, O., Lee, I.: Parameter invariant moni-
toring for signal temporal logic. In: Proc. HSCC. pp. 187–196. ACM (2018)

37. Sankaranarayanan, S., Fainekos, G.: Falsification of temporal properties of hybrid
systems using the cross-entropy method. In: Proc. HSCC. pp. 125–134 (2012)

38. Sebastiani, R.: Lazy satisfiability modulo theories. Journal on Satisfiability,
Boolean Modeling and Computation 3(3-4), 141–224 (2007)

39. Tiwari, A.: HybridSAL relational abstracter. In: Proc. CAV. Lecture Notes in
Computer Science, vol. 7358, pp. 725–731. Springer (2012)

40. Xu, Z., Belta, C., Julius, A.: Temporal logic inference with prior information: An
application to robot arm movements. IFAC-PapersOnLine 48(27), 141–146 (2015)

41. Yamagata, Y., Liu, S., Akazaki, T., Duan, Y., Hao, J.: Falsification of cyber-
physical systems using deep reinforcement learning. IEEE Transactions on Software
Engineering 47(12), 2823–2840 (2020)

42. Yu, G., Lee, J., Bae, K.: Robust STL model checking of hybrid systems using SMT
(2022), https://stlmc.github.io/assets/files/stlmc-techrep.pdf

43. Zhang, Z., Lyu, D., Arcaini, P., Ma, L., Hasuo, I., Zhao, J.: Effective hybrid system
falsification using Monte Carlo tree search guided by QB-robustness. In: Proc.
CAV. LNCS, vol. 12759, pp. 595–618. Springer (2021)

https://stlmc.github.io/assets/files/stlmc-techrep.pdf

	STLmc: Robust STL Model Checking of Hybrid Systems using SMT

