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Abstract—In the last month of 2019, a new version of Corona 

disease was observed in Wuhan (China) which is known as 

Covid-19. Several models have been proposed to predict disease 

treatment. The SIR model is considered one of the simplest 

models for the prediction of pandemic disease. This means 

susceptible (S), infected (I), and recovered (R) populations. The 

SIRD model is yet another method that includes one more 

equation, i.e., the number of deaths (D). This paper proposed a 

control law for the first time to prevent the progression of the 

disease. The proposed control law is based on the SIRD model 

that is determined using two methods, i.e., the input-state 

feedback linearization method and the input-output feedback 

linearization method for the nonlinear modeling of Covid-19. 

The goal of control in this model is to reduce the percentage or 

number of infected people and the number of deaths due to 

Covid-19 disease. Simulation results show that the feedback 

linearization methods can have positive results in a significant 

reduction in unfurl of Covid-19. Delay in quarantine of infected 

people and constant percentage of people who should be 

quarantined are investigated as two important parameters. 

Results show that the percentage of infected people decreases 

96.3 % and the percentage of deaths decreases 93.6 % when 

delay in quarantine equals 7 weeks. 

Keywords—COVID-19, SIRD Model, Pandemic, Feedback 
Linearization, Quarantine Management 

I. INTRODUCTION  

 COVID-19 is a contagious disease caused by a newly 
discovered coronavirus. Researchers have tried mathematical 
modeling of COVID-19. Already, there are several models for 
infectious diseases. In 1927, the SIR model was proposed by 
McKendrick and Kermack [1] It is a nonlinear system of 
ordinary differential equations (ODEs). Another model was 
introduced by Weston et al. [2] which is called the SIRD 
model. The SIRD model is also a nonlinear system of ODEs 
that can be written as follows [2]: 

�� = −���/	 (1) 

�� = ���	 − 
�� + ����  (2) 

�� = ��� (3) 

�� = ��� (4) 

A more complicated model is called the SIRASD model 
that is based on splitting the infected individuals into 

symptomatic and asymptomatic [3]. In 2010, Shabbir et al. [4] 
found an exact approach to a specific case of the SIR and 
Susceptible–Infected–Susceptible (SIS) disease models. Since 
the illness does not grant immunity against reinfection, the 
patients in the SIS model return to the susceptible community 
after treatment. Harko et al. [5] obtained an exact empirical 
solution to the SIR model in a parametric manner in 2014. 
They assumed that the death and birth rates were equal. A 
good review of the analytical and numerical solutions of 
different models has been provided by Ref. [5]. In 2017, 
Alasmawi et al.  [6] studied Middle East respiratory syndrome 
coronavirus by an extending SEIR model. This consisted of 
five sets of population that included susceptible (S), infected 
(I), recovered (R), super-spreaders (P), and hospitalized (H). 
In 2020, Zareie et al. [7] locally model the coronavirus 
epidemic using the basic SIR model. They estimated a peak 
by the late March with over thousands of seven hundreds of 
confirmed cases. Sedaghat et al. [8] performed the sensitivity 
analysis on the predictive capability of the SIRD model. In 
2020, Mahmoudi et al. [9] categorized high risk countries 
based on the spread rate of Covid-19. This was done using the 
principal component analysis method. In Wuhan, Toronto, 
and Italy, Xue et al. [10] used a similar SEIR type model for 
COVID-19. They used the MCMC optimization algorithm  to 
find model coefficients. However, they only tested their model 
against two sets of clinical results.  The SEIR-PAD model was 
introduced by Sedaghat et al. [11,12] using the extension of 
the SIR model. The SEIR-PAD model is the extension of the 
SEIR model considering the asymptomatic infected, super-
spreader, and deceased individuals consisting various sets of 
differential equations. Table 1 includes the fundamental 
models of the pandemic [1,2,12]. Further advanced SIRD-
based models and data-driven had been investigated in [13-
21].  

Table 1 Models of pandemic disease 

Name of 
model 

Equations and Flow chart 

 
 
 
 

SIR (or xyz) 

N =  S +   I +   R  =  constant dSdt = − βN  SI dIdt = βN SI −  γI d�dt =  γI 
 



 
 
 
 
 

SIS 

 N =  S +   I =  constant dSdt = − βN  SI +  γI dIdt = βN SI −  γI 
 

 
 
 
 
 
 

SEIR 

N =  S +  E +  I +  R =  constant dSdt = − βN  SI + μN − μS dEdt = βN SI – 
μ + a�E dIdt =  aE − 
γ + μ�I d�dt =  γI −  μR 

 
 
 
 
 
 
 
 
 

SIRD 

N =  S +   I +   R +  D =  constant dSdt = − βN  SI dIdt = βN SI – 
γ + μ�I d�dt =  γI d�dt =  μI 

 
 
 
 
 
 
 
 

SIRASD 
 
 

N =  S +  E +  I +  P +  A +  R +  D =  constant dSdt = −
β&I& + β'I'� SN dI&dt = 
1 − p�
β&I& + β'I'� SN − γ&I& dI'dt =  p
β&I& + β'I'� SN − γ'I'1 − ρ 

dR&dt =  γ+I+ dR'dt =  γ,I, d�dt = ρ1 − ρ γ'I' 

 

 
 
 
 
 

N =  S +  E +  I +  P +  A +  R +  D =  constant dSdt = − x.N  SE dEdt = x.N SE − x/E − x0E − x1E 

 
 
 
 
 
 

SEIR-PAD 
 

dIdt =  x0E − x2I  −  x3I dPdt =  x1E − x4P  − x5P dAdt =  x/E d�dt =  x2I + x5P d�dt =  x3I + x4P 

 

 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

SEIR-PADC 
 

N =  S +  E +  I +  P +  A + C +  R +  D=  constant dSdt = − x.N  SE dEdt = x.N SE − x/E − x0E − x1E dIdt =  x0E − x4I − x2I  − x3I dPdt =  x1E − x5P −  x7P  − x.8P dAdt =  x/E dCdt =   x4I + x7P – x..C – x./C d�dt =  x2I + x5P +  x..C d�dt =  x3I + x.8P +  x./C 

 

 
 

 
 

 

The above results show that social distancing, quarantine, 
and isolation of infected populations support in controlling of 
an epidemic. As can be seen in the literature, none of them 
have examined the effects of control laws on infected 
individuals (I), or other populations. For the first time, we 
investigated the effects of a control law (such as quarantine) 
on the infected individuals. The aim is to prevent the spread 
of the epidemic. 

II. MATHEMATICAL MODELING 

Here, we propose a control law based on SIRD model (See 
Eqs. 1-4). 

�� = −���/	 (5) 



�� = ���	 − 
�� + ���� − �9
:� 
(6) 

�� = ��� (7) 

�� = ��� (8) 

where the total population 	 is considered as constant and can 
be written as 	 = � + � + � + � = constant (9) 

 In the SIRD model, ��, and �� , � are the, the recovery 
rate, the death rate, and transmission rate respectively. as. 
shown in Eq. (6), 9
:� can be interpreted as a control law such 
as quarantine of infected individuals (I). In the SIRD model, 
two variables are independent (i.e., S and I) and two variables 
dependent (R and D) on the infected individuals (I). Therefore, 
it is reasonable that 9
:�  is added into equation. (2) for 
controlling infected individuals. 

To present the effects of control laws on preventing the 
spread of epidemics, we use real data [8] as a case study. Table 
2 represents the coefficients of the SIRD model [8]. 
In this table, removing rate 
�� and Re-production number 
�8� are defined as follows, respectively. For more details, see 
Ref. [8]. � = �� + �� (10) �8 =  �/� (11) 

Table 2: The coefficients of the SIRD model [8] 

No. 

of 

days 

Growth 

rate 
�� 

Recovery 

rate 
���  

Death 

rate 
��� 

Removing 

rate 
��  

Reproduction 

number  
�8� 

20 0.18311 0.01363 0.00435 0.01798 10.18 

40 0.14507 0.03524 0.00215 0.03739 3.88 

60 0.12943 0.02308 0.00156 0.02464 5.25 

80 0.13963 0.04158 0.00137 0.04295 3.25 

100 0.13399 0.03576 0.00154 0.0373 3.59 

116a 0.15188 0.05501 0.00099 0.0560 2.71 

The values of the parameters related to 116 days have been 
used in this study as the values of the model parameters are 
gradually modified over a period of 116 days. 

III. DESIGN OF NONLINEAR CONTROLLER USING THE 

FEEDBACK LINEARIZATION METHOD 

Feedback linearization is a suitable method for controller 
designing when there is a nonlinear model for the system. The 
main idea of this method is to convert nonlinear system 
dynamics into a linear system. State variables for coronavirus 
disease are defined as follows:                    <. = � and </ = � (12) 

Therefore, according to the mathematical model of disease 
treatment (i.e. Eqs. 5 and 6), f and g matrices can be 
determined as follows [13]:             <� = =
<� + >
<�9 (13) 

Where 

= = ? −���/	���	 − 
�� + ����@     and       > = A 0−�C (14) 

It can be applied the feedback linearization method 
because the conditions of linearly independent 
(controllability) and involutivity are established (See, 
Appendix A).  Here, D.  and D/  The variables must be 
determined as follows: 

D. = ln
��   and       D/ = − ��	   (15) 

Thus, the state equations can be rewritten as follows: D.� = D/ (16) 

And 

D/� = �FGHD/	 − 
�� + ���D/ − D/9  (17) 

 

1) Input-State Feedback Linearization Method 
In to the first step, f and g matrices must be determined as 

follows [13]: D� = =
D� + >
D�9 (18) 

Where 

= = ? D/�FGHD/	 − 
�� + ���D/@       and       > = I 0−D/J 
(19) 

In the second step, the control law can be obtained as 
follows: 

9 = 1KLKMD. NO − KM/D.P   , 
KM/D. = �FGHD/	 − 
�� + ���D/, 

KLKMD. = − �	 O = DQ. = −R8D. − R.D.�  

(20) 

 

If the issue at hand is reference input tracking (D.S
:�), or 
error of tracking (F
:� = D.
:� − D.S
:�), it is enough that O 
is selected by: O = DQ.S − R8F − R.F� (21) 

2) Input-Output Feedback Linearization Method 
In the first step, the output must be selected. It is 

reasonable that infected individuals (I) are considered as 
output since the S,R and D variables can be controlled by the 
controlling of �
:�. Thus, we have: 

                         T = ℎ
D� = D/ (22) 

In the second step, the derivation output, the control law 
can be obtained as follows: 

9 = 1KLT NO − KMTP , 
KMT = �FGHD/	 − 
�� + ���D/,    

(23) 



KLT = − VW, 

O = T� = −R8T 
 In this case, it is enough that O is selected by:  O = T� − R8F (24) 

IV. RESULTS AND DISCUSSION 

In this section, the simulation results of the population of 
50,000 people from Kuwait are examined according to the 
proposed model, in different situations, without applying the 
law of control (without quarantine) and with applying the 
control law (quarantine). 

1) Validation 
Here, to validate the simulation results, the written 

MATLAB code is employed to obtain the results of Ref. [12].  
As shown in Fig. 1, the results are in outstanding agreement 
with those of Sedaghat et al. [12]. It should be mentioned that 
the results of Ref. [12] are without a control law (without 
quarantine). As it can be seen in Fig 1 adapted from Sedaghat 
et al. [12], over a period of ten months, in the worst situation, 
more than 13000 people will be infected with the COVID-19 
and more than 800 people will die. Now, by applying the 
control law (quarantine) using the feedback linearization 
methods, we will evaluate the results.  

2) Investigating Effect of Delay in Implementing the 
Control Law (Quarantine) 

One of the important factors is the delay in applying the 
quarantine. If the expected quarantine rule is delayed for 
several weeks, the output can be expected to be delayed. On 
the other hand, if it is possible to apply the control law from 
the first week, then the disease will be controlled in the first 
weeks. The impact of delays in enforcing the control law is 
shown below. Fig. 2 presents variations in S, I, R, and D 
populations versus time in different values of delay. The 
figure shows that the number of infected individuals first 
increases, reaches a maximum value, and then decrease with 
time. The maximum value without quarantine is 13173, while 
it is12328, 5763, 1908 and 491 for delay values 13, 11, 9 and 
7 weeks, respectively.  

 

Fig. 1 Results comparison between given work  

Also, the number of deaths decreases as the delay value 
decreases. The maximum number of deaths without 
quarantine is 810, while it is 753, 465, 187 and 52 for delay 
values 13, 11, 9 and 7 weeks, respectively. The calculations 

discover that the number of deaths decreases from 810 to 52 
people. 

Fig. 3 shows the percentage of infected people who should 
be quarantined. This value is around 12.2%, 9.7%, 4.9% and 
0% for delay value 7, 9, 11 and 13 weeks, respectively. The 
figure indicates that after 13 weeks, the percentage of infected 
people who should be quarantined is almost similar to that of 
those without quarantine. Fig. 4 demonstrates the share of S, 
I, R, and D in the total number of population for different 
values of delay. As it can be seen, for example, I increase from 
less than 1% to 4% when delay goes up from 7 to 13 weeks. 
Also, the number of deaths increased to almost one percent of 
the total population after 13 weeks of delay. 

 

 
Fig. 2 Variations of S, I, R, and D population.s versus time in different 

values of delay 

 
Fig. 3 Percentage of infected people who should be quarantined 

 

 
Fig. 4 Share of susceptible (S), infected (I), recovered (R) individuals and 

number of deaths (D) in the total population 
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You can see from the Figs. 2-4 that after a delay of about 
13 weeks, the results are practically similar to situation 
without quarantine. This means that the quarantine of 
individuals has almost no effect on the outcome. The lower 
delay, the better the results, and therefore, a higher percentage 
should be quarantined. 

3) Investigating the Effect of the Percentage of 
Quarantined People 

Another important factor is the percentage of infected 
people who should be quarantined. As seen from Fig.3, after 
a short time, the control law (u) converges to a constant value. 
Therefore, the results of the fixed quarantine (u = constant) are 
examined below. Fig. 5 illustrates the effect of the percentage 
of infected people who should be quarantined 
9� on the S, I, 
R and D populations. Here, the value of 9 is considered as 
constant.  The figure shows that the maximum value of 
infected people (I) (which occurs after 14 weeks) decreases 
with increasing the 9. Also, for example, the maximum values 
of I are 13172, 10145, 3945, 825, and 63 people, for 9 =0,1,4,7 and 10%, respectively where 9 = 0 means without 
quarantine. The number of deaths (D) decreases as 9 
increases. For example, the values of deaths are 810, 762, 560, 
274, and 24 people, for 9 = 0,1,4,7 and 10%, respectively.  

 

Fig. 5 Effect of the percentage of infected people who should be 
quarantined 
9� on the S, I, R, and D populations 

This indicates the importance the values of 9. The results 
show that the number of death decrease 97% for 9 = 10%. 
Fig. 6 represents a comparison between the average values of 
the S, I, R and D populations when 9  increases from 0 to 10%. 

4) Simultaneous Study of the Effect of u and Delay in 
Starting Quarantine 

Here, the effects of delay and 9  (that is considered as 
constant) are simultaneously examined. Results are shown in 
Figs. 7 and 8. You will notice that the higher the percentage 
of people who are quarantined with less delay, the lower the 
number of infected people and the number of deaths. 
According to Fig. 7, for example, the values of deaths  are 706, 
and 364 people, when the value of  9 increases from 4% to 7% 
and delay decreases from 14 to 9 weeks. Also, for example, 
Fig. 8 shows that the infected population increases from 1% 

to 4% when 9 decreases from 7% to 4% and delay increases 
from 9 to 14 weeks. 

 
Fig. 6 Comparison between the values of the S, I, R, and D populations 

 

 
Fig. 7 Variations of S, I, R, and D populations versus time in different 

values of u and delay 

 
Fig. 8 Portion of S, I, R, D in the total number of population for different 

values of u and delay 

5) Comparison Between Input-State Feedback 
Linearization Method and Input-Output Feedback 
Linearization Method 
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Fig. 9 presents the comparison between the input-state 
feedback linearization method and input-output feedback 
linearization method. As it can be seen, the results of the input-
output feedback linearization method are better than that of 
input-state feedback linearization method in different values 
of delay. For example, the number of deaths are 757 and 52 
people for the input-state and the input-output feedback 
linearization methods, respectively. This indicates that the 
second method is more effective as a control law. 

 

a) input-output feedback linearization method 

 

b) input-state feedback linearization method 

Fig. 9 Variations of S, I, R, and D populations versus time for two methods 

V. CONCLUSION 

In this study, the SIRD model has been employed to 
investigate the effects of a control law (quarantine of people 
infected) on the propagation of Covid-19.  For this purpose, 
real data on Covid-19 disease in Kuwait for 116 days were 
used. Then by enforcing the control law using the input-output 
feedback linearization method shows that controlling the 
propagation of Covid-19 has been very successful. The main 
results can be summarized as follows: 

• Delay in quarantine of infected people and constant 
percentage of people who should be quarantined 
9� are the important parameters.  

• The maximum value of infected people without 
quarantine is 13173, while it is12328, 5763, 1908 
and 491 for delay value 13, 11, 9 and 7 weeks, 
respectively. This means that the number of infected 
people decreases by 96.3 % and also, the number of 
deaths decreases from 810 to 52 people when delay 
equals 7 weeks (i.e. 93.6 % decreasing) (Fig. 2). 

• The percentage of infected people who should be 
quarantined is approximately 12.2%, 9.7%, 4.9%, 
and 0% (at steady state) for delay values of 7, 9, 11, 
and 13 weeks, respectively (Fig. 3).  

• The results show that the quarantine of infected 
people had almost no effect on the propagation of 
Covid-19 after 13 weeks’ delay. 

• The values of deaths are 810, 762, 560, 274, and 24 
people, for 9 = 0,1,4,7 and 10%, respectively, i.e., 
97% decreasing for 9 = 10% (Fig. 5). 

The infected population increases from 1% to 4% when 9 
decreases from 7% to 4% and delay increases from 9 to 14 
weeks (Fig. 8). For future studies, a comparative analysis of 
the ensemble [22,23], tree-based [24],  ANFIS [25], deep 
learning [26], artificial neural network [27] support vector 
machine [28], hybrid [29,30], clustering and classification 
[31], and other advanced statistics methods [32,33] is 
proposed for an insight into an optimal model with higher 
accuracy.    

APPENDIX 

Consider the nonlinear system adapted from [13] as 
follows.  <� = =
<, 9� (A.1) 

The input-state linearization method solves this problem in 
two steps. In the first step, a diffeomorphism D = D
<� and a 
control law 9 = 9
<, O� must be obtained where model of 
nonlinear system convert into model of linear time invariant 
system in the form as follows [13]. D� = [D + \O (A.2) 

Where 

[ =
⎣⎢⎢
⎢⎡0 1 00 0 1 ⋮ 00⋮ ⋮ ⋮0 0 00 0 0 ⋮ 10⎦⎥⎥

⎥⎤       and      \ = d0⋮01e 

(A.3) 

 

In the second step pole placement method is used to form 
the input v. Fig. A.1 which is adapted from [13] shows the 
closed-loop system under the input-state feedback 
linearization method. In this figure you can see that there were 
two feedback loops. The inner loop is for input-state 
relationship linearization while the external loop is to achieve 
stability of the closed-loop dynamics. This indicates that u 
control input is a combination of a nonlinear elimination part 
and a linear compensation part. Consider the affine, SISO and 
nonlinear system as follows adapted from [13].  <� = =
<� + >
<�9 (A.4) 

and, T = ℎ
<� (A.5) 

where, f and g are smooth vector fields on  �
f� and < =g<. </ … <fi . Also, ℎ
<�  is the output of the system as a 
scalar function. The Lie derivative is now defined as follows. 

KMℎ
<� = jℎj< . =
<�  
 

(A.6) 

Therefore, higher-order derivatives are obtained as 
follows: 
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KM
l�ℎ
<� = KM
KM
lm.�ℎ
<�� (A.7) 

On the other hand, 

KLKM ℎ
<� = KL njℎj< . =
<�o = j
jℎj< . =
<��j< . >
<� 

(A.8) 

 
Fig. A1 Closed-loop system under input-state linearization method  
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