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ABSTRACT 

A truly autonomous machine , therefore, needs to be able to learn and adapt its own models. A machine learning about itself and its 

environment is in the position of being an active part of the system it is trying to learn about; this situation draws interesting parallels 

with learning in human infants. A system is presented here that enables a machine to autonomously learn a model with no prior 

knowledge of its own system or the external environment. The autonomous machine sends out random motor commands to its 

motor system and receives information back from the vision system. This set of evidence is used to learn the structure and 

parameters of the machine in an environment which are then used as input to 3D Convolutional Neural Network, a machine learning 

technique, to create a its own internal model. This model can then be used to enable the autonomous machine to predict 

movements. 

INTRODUCTION  

Self-driving car, also known as a robot car, autonomous car, or driverless car, is a vehicle that is capable of sensing its environment 

and moving with little or no human input. Autonomous cars combine a variety of sensors to perceive their surroundings, such as 

radar, Lidar, sonar, GPS, A odometry and inertial measurement units. Advanced control systems interpret sensory information to 

identify appropriate navigation paths, as well as obstacles . 

 CONCEPT OF AUTONOMOUS DRIVING  

A car capable of autonomous driving should be able to drive itself without any human input. To achieve this, the autonomous car 

needs to sense its environment, navigate and react without human interaction. A wide range of sensors, such as LIDAR, RADAR, 

GPS, wheel odometry sensors and cameras are used by self-driving cars to perceive their surroundings. In addition, the 

autonomous car must have a control system that is able to understand the data received from the sensors and make a difference 

between traffic signs, obstacles, pedestrian and other expected and unexpected things on the road .   

For a vehicle to operate autonomously several real-time systems must work tightly together . These real-time systems, include 

environment mapping and understanding, localisation, route planning and movement control. For these real-time systems to have a 

platform to work on, the self-driving car itself needs to be equipped with the appropriate sensors, computational HW, networking and 

SW infrastructure .  

For a machine to be called a robot, it should satisfy at least three important capabilities: to be able to sense, plan, and act . For a car 

to be called an autonomous car, it should satisfy the same requirements . Self-driving cars are essentially robot cars that can make 

decisions about how to get from point A to point B. The passenger only needs to specify the destination, and the autonomous c ar 

should be able to take him or her there safely.  

SELF – DRIVING  VEHICLES  

The following sensors should be present in all self-driving cars:   

Global positioning system (GPS). Global positioning system is used to determine the position of a self -driving car by triangulating 

signals received from GPS satellites . It is often used in combination with data gathered from an IMU and wheel odometry encoder 

for more accurate vehicle positioning and state using sensor fusion algorithms.   

Light detection and ranging (LIDAR). A core sensor of a self-driving car, this measures the distance to an object by sending a laser 

signal and receiving its reflection . It can provide accurate 3D data of the environment, computed from each received laser s ignal. 

Self-driving vehicles use LIDAR to map the environment and detect and avoid obstacles .   



                                                                                             
 
 
   

Camera. Camera on board of a self-driving car is used to detect traffic signs, traffic lights, pedestrians, etc. by using image 

processing algorithms .   

RADAR. RADAR is used for the same purposes as LIDAR. The advantages of RADAR over LIDAR are that it is lighter and has the 

capability to operate in different conditions .   

Ultrasound sensors. Ultrasound sensors play an important role in the parking of self-driving vehicles and avoiding and detecting 

obstacles in blind spots, as their range is usually up to 10 metres .   

Wheel odometry encoder. Wheel encoders provide data about the rotation of car’s wheels per second. Odometry makes use of this  

data, calculates the speed, and estimates the car’s position and velocity based on it. Odometry is often used with other sensor’s 

data to determine a car’s position more accurately.   

Inertial measurement unit (IMU). An IMU consists of gyroscopes and accelerometers. These sensors provide data on the rotational 

and linear motion of the car, which is then used to calculate the motion and position of the vehicle regardless of speed .  

On-board computer. This is the core part of any self-driving car. As any computer, it can be of varying power, depending on how 

much sensor data it has to process and how efficient it needs to be. All sensors connect to this computer, which has to make use of 

sensor’s data by understanding it, planning the route and controlling the car’s actuators. The control is performed by sending the 

control commands such as steering angle, throttle and braking to the wheels, motors and servo of the autonomous car.                                                                             

                                                                                          Vehicle 

Sensor Interface     Perception      Navigation        Interface 

 

 

 

  

 

 

 

  

                                         Common Services                                                                              

 

                                                                                                                                                                                    

LIDAR 

RADARInterface 

Camera 

GPS 

IMU 

Wheel Velocity 

 

 

 

Localisation 

Obstacle 

   Detection 

Object 

   Prediction 

Behaviour 

    Modules 

 

Path Planning 

Steering 

        Control 

 

Motor 

        Control 

On-board Computer 

SW Infrastructure & Sensor Data 

Inter – Process Controls 



                                                                                             
 
 
Figure 1 illustrates the SW block diagram of the standard self-driving car.   

Each block seen in Figure 1 can interact with other blocks using inter-process communication (IPC)  and identified the following 

blocks for the SW block diagram of a typical self-driving car:   

Sensor interface modules. All communication between sensors and the car is performed in this block, as it enables data acquired 

from sensors to be shared with other blocks. 

Perception modules. These modules process perception data from sensors such as LIDAR, RADAR and cameras, then segment 

the processed data to locate different objects that are staying still or moving.   

Navigation modules. Navigation modules determine the behaviour of the self-driving car, as they have route and motion planners, as 

well as a state machine of car’s behaviour .  

Vehicle interface. This interface’s goal is to send control commands such as steering, throttle and braking to the car after the path 

has been plotted in the navigation module.   

Common services. Common services module controls the car’s SW reliability by allowing logging and time-stamping of car’s sensor 

data. 

AGENT & ITs ENVIRONMENT 

An agent: “it is a computer system situated in some environment, and capable of autonomous action in this environment in order to 

meet its design objectives”. First, an agent has to be autonomous; it means that it must be able to act on its own. Second, an agent 

has design objectives, goals that it tries to reach. Indeed, we can distinguish between two key characteristics of an agent: its 

reactivity, its ability to perceive the environment and to respond to changes in it, and its ability to take initiatives and act towards its 

goal.   

To create synthetic self awareness we need to create an “observer agent “ that evaluates machine learning answers (from multiple 
ML applications using different ML techniques) so it learns and retains the derived knowledge. 

The “observer agent “must be independant from the ML applications and it must able to explain what they are learnings and how 

they determined best answers. 

The information coming from the robot car senses, especially the sense of moving objects from which the Autonomous Vehicle will 
learn troubles as well dangers. 

Eventually you will have to define an artificial agent, with sensors , and define an environment in which the agent will live (whether it 
will be the real world or an artifcial world ). The sensors will transfer the perceptions of the agent from the environment to the mind of 
the agent, to create a mental state. 

Given a mental state, the agent may select one or more predefined actions to perform in the environment (including the DoNothing 
action). Some of the algorithms (techniques) we have learned will be applied to the agent to improve its ability to select appropriate 
actions given its mental state. These are the learning algorithms. 

REINFORCEMENT LEARNING 

Reinforcement Learning is a type of machine learning that allows us to create AI agents that learn from the environment by 

interacting with it. Just like how we learn to ride a bicycle, this kind of AI learns by trial and error. The brain represents the AI agent, 
which acts on the environment. After each action, the agent receives the feedback. The feedback consists of the reward and next 

state of the environment. The reward is usually defined by a human. We can define reward as the distance from the original starting 
point of the bicycle. 

DEEP REINFORCEMENT LEARNING 

Google’s DeepMind  in which they introduced a new algorithm called Deep Q Network (DQN for short) . It demonstrated how an AI 
agent can learn to play games by just observing the screen without any prior information about those games. This opened the era of 
what is called ‘deep reinforcement learning’, a mix of deep learning and reinforcement learning. In Q-Learning Algorithm, there is a 

function called Q Function, which is used to approximate the reward based on a state. We call it Q(s,a), where Q is a function 



                                                                                             
 
 
which calculates the expected future value from state s and action a. Similarly in Deep Q Network algorithm, we use a neural 

network to approximate the reward based on the state.  

AUTONOMOUS DRIVING ON A HIGHWAY TO PRODUCE 

SPECIFIC DRIVING BEHAVIOUR 

This is an application of Self-Learning for autonomous vehicle control to produce specific driving behavior on a Highway.           

The first step is to  set the  highway environment; an arbitrary number of straight lanes with exits  

The goal  is to study the behavior of autonomous cars – individual self-learning cars – in traffic,  who make decisions based on their 

current situation on the highway. 

The  key part of our environment is the highway. It is defined by its structure – that is, the lanes, the exits, the size of the lanes, etc – 

and by the cars driving on it  and also the dynamics of cars movement and happening of car crashes. 

The highway can be seen as a group of lanes and a lane can be seen as a group of cells. The position of a car on the highway is 

defined by the lane and the cell of that lane that it is in. To simplify the highway is defined by the lane index as the y coordinate and 

the cell index as the x coordinate. 

The right-end lane of the highway is the exit lane. It is a lane where drivers go only to take an exit. As soon as a car reaches an exit, 

it is considered out of the highway and consequently out of the environment. The same goes for cars that reach the end of a lane 

This is an attempt to mimic real life where highway exits are indicated multiple times with the remaining distance to that exit. The 

distance between two consecutive exits is always the same, as well as the distance between the start of the highway and the fi rst 

exit. 

There are four types of cells: car cells where agents drive, exit cells where agents can leave the highway, exit indication cells that 

indicate the current and next exits, and off-road cells, cells on the exit lane that are not exits nor indications. Cars cannot go on 

these cells and movements passing by or going to these cells are never considered by the drivers. 

Each car has two  attributes: its speed and its acceleration that can change at every time step t.  The speed vt and acceleration αt 

are bounded; the speed cannot be negative or greater than the cars’ maximum speed vmax and the acceleration cannot be greater, in 

absolute value, than the cars’ maximum acceleration αmax. These attributes are discrete variables and can only take integer values. 

The speed at some time step t depends on both the speed and the acceleration of the previous time step t − 1. For example, when 

the speed vt = vmax, the acceleration αt can only be negative or equal to zero. 

Movements 

At each time step, a car c’s x position, denoted by xc,t, is updated according to its speed vc,t and its acceleration αc,t while its y 

position (i.e. the lane), denoted yc,t, depends on their chosen direction, denoted dc,t. 

Regardless of the direction, the length lc,t of the car’s move at the time step t is equal to the car’s updated speed, vc,t+1 of that time 

step and corresponds to the number of cells that it will advance. 

lt = vt+1 = vt + αt  

The x position is then updated as follows: 

Xc,t+1 = xc,t  + lc,t  

When the new speed vt+1 is equal to 0, the destination cell will be the initial position of the car at that time step. 



                                                                                             
 
 
The y position is updated according to the direction dc,t. The car can only change lane when the movement length lc,t is greater than 

0. Otherwise, the car is still and does not move. 

               yc,t −1 if dc,t = LEFT and lc,t > 0 

                  yc,t+1 =              yc,t + 1 if dc,t = RIGHT and lc,t > 0 

                                             yc,t if dc,t = FORWARD or lc,t = 0       

All directions are not always possible; when a car is in the left-end lane, it can only go forward or to the right, as turning left would 

lead outside the highway. Similarly, when it is on the right-end lane, it can only go forward or turn left unless it is taking an exit when 

going to the right. Finally, we add an attribute to the car, the status of their blinkers, denoted bc,t, that indicates which direction the 

car is taking:                                                  

                     LEFT if dc,t = LEFT and lc,t > 0 

                  bc,t  =          RIGHT if dc,t = RIGHT and lc,t > 0 

                                      null if dc,t = FORWARD or lc,t = 0 

Crashes 

When considering two cars c1 and c2 and their respective initial position (xc1,t, yc1,t) and (xc2,t, yc2,t) and destination (xc1,t+1, yc1,t+1) 

and (xc2,t+1, yc2,t+1), we have to determine whether they are crossing paths at the same time step and crashing. 

When a car moves from the position (xt, yt) to the position (xt+1, yt+1) at some time step, it does not disappear from its initial position to 

appear in the destination afterwards. The car passes by intermediary positions or passing cells, denoted PC. For the forward direction, 

these passing cells are easily defined as the cells located between the starting and destination cells of the move:  

 P Ct+1 = 
,

(x, yt) | x ∈  [xt + 1, xt+1 – 1 ] 

For the other directions, when the car changes lanes, we consider that the car effectively crosses the lane lines in the middle of the 

movement; at this moment, the car is considered to be in both lanes. Before that, the car is still in its initial lane, and after that it is in 

the new lane. The passing cells are 

                                                :{. (x,yt) | x ∈ (xt + 1,xt +(lt + 1)/ 2 ) } 

           P Ct+1  =      ᴜ 

                                                 {  (x,yt+1) | x ∈ [xt +(lt / 2),xt+1 −1] } 

Two cars crash when they are in or pass by the same cell during the same time step t. A car c1 and a car c2 will crash when 

 {P Cc1,t+1 ∪  (xc1 ,t+1, yc1 ,t+1)} 
 
∩  {P Cc2,t+1 ∪  (xc2 ,t+1, yc2 ,t+1)}

 
≠ ∅  



                                                                                             
 
 
There are  two possible situations where cars cross paths and consequently crash. One situation could be when a car’s destina tion 

is one of another car’s passing cells.  

Environment’s States   

A state s of the highway is a list of all the cells of this highway, with information about what is in the cell at that moment or about 

what type of cell it is. We denote Hx,y the cell located at the xth position on the yth lane. For off-road and exit cells, the only 

information is the type of the cell. For exit indication cells, the information is the exits indicated: the number of this exit ei and of the 

next one ei+1. Finally, for car cells, the information can be one of three things. If there is a car, the information is the speed, 

acceleration, and blinkers’ status of the car. If there is a crash, the information is simply an indication that there is a c rash. If there is 

nothing, the information indicates as much. By unifying everything, we have: 

A highway cell Hx,y is a tuple (o,e,v,α,b,i1,i2) where 

• o indicates if the cell is an off-road cell (1) or not (0); 

• e indicates if the cell is an exit cell (1) or not (0); 

• v indicates the speed of the car currently in the cell, if any; 

• α indicates the acceleration of the car currently in the cell, if any; 

• b is the blinkers’ status of the car currently in the cell, if any; 

• i1 is the number of the indicated exit if the cell is an indication cell; 

• i2 is the number of the next exit, if any, if the cell is an indication cell 

We can now formally define a state s at a time step t:            st ={Ht,x,y | 0 ≤ x < X,0 ≤ y ≤ Y} 

Where Ht,x,y is the highway cell at the position x,y  for the time step t, X is the size of the lanes, and Y is the number of lanes. 

Actions 

The car can choose a direction directly as it corresponds to turning the wheel in a certain way. This direction can be left, right or 

forward. However, the car cannot choose the speed they want to have; changing speed means accelerating or decelerating. 

An action is consequently composed of a direction dt and an acceleration αt. This acceleration is bounded. In conclusion, the  set of 

possible actions A is: 

                A ={(d,α) | d ∈{LEFT,RIGHT,FORWARD},−αmax ≤ α ≤ αmax }  

 At a given time step t, some actions can be “impossible”. Namely, when an action’s corresponding move is forbidden in our sys tem, 

this action will not be considered.. A forbidden move is a situation where the destination or one of the passing cells of that move is 

outside the highway; this includes the off-road cells of the exit lane. Moreover, actions whose acceleration will make the updated 

speed outside the speed bounds defined  are also considered impossible.   For example, when αmax = 1, the set of actions is:   

 

          



                                                                                             
 
 

                                                (LEFT, −1), 

                                                (LEFT, 0), 

                                                (LEFT, +1),  

                                                (FORWARD, −1),  

                     A  =                     (FORWARD, 0),        

                                                (FORWARD, +1), 

                                                    (RIGHT, −1),  

                                                    (RIGHT, 0), 

                                                    (RIGHT, +1)             

Furthermore, the length of the action set depends on the number of directions, which is always 3, and the number of possible 

accelerations.  |A| = 3 × (2αmax  + 1) . 

Lanes’ Preferred Speed 

To overtake another car, a car must go to the lane on the left and drive faster. This leads to the observation that the average speed 

in a lane should be higher the farther to the left this lane is.The preferred speed of a lane between these two extremes will depend 

on both the number of lanes (excluding the exit lane) and the number of possible speeds (excluding 0). We denote  the ith lane Li 

and its preferred speed vLi . We want to guarantee a fair and balanced distribution of the preferred speeds across the lanes. The 

simplest case is when the number of lanes Y is a multiple of the number of possible speeds m. In such cases, each speed vk will be 

the preferred speed of nvk = Y/ m lanes, ordered from highest (left-end lane) to lowest (right-end lane). For example, if Y = 6 and m 

= 3, the preferred speeds of the lanes, from left to right, will be 3, 3, 2, 2, 1, 1. When Y is not a multiple of m,   nvk  is not the same 

for all speeds vk. Some speeds will be the preferred speeds of more lanes. We decided that these speeds should be the higher 

ones. For example, if Y = 4 and m = 3, the preferred speeds of the lanes will be 3, 3, 2, 1. The number of speeds that appear more 

times as a preferred speed is given by the rest of the division of Y by m.. 

With this construction, the preferred speeds’ distribution will always respect the following conditions  

                     nvk   = {  [ Y/m ] if k ≤ (Y mod  m },  [Y/m]+ 1 otherwise    

In conclusion, once we know how many times each speed should appear as a lane’s preferred speed, we just need to distribute 

them correctly, by respecting the first condition. 

Generating Traffic 

 A driver arrives actually in Highway refers to when – which time step – and where – which lane – they arrive in the environment. To 

do so, we use a new parameter for the highway, the traffic density, denoted τ, that serves as the probability, at each time step and 

for each lane, that a new driver is arriving in this lane. 

The traffic generation process is summarized as below : 



                                                                                             
 
 
For all lane do 

                      if lane’s initial position is free then 

                                    if random < τ, with probability τ then 

                                         driver ← randomly initialized driver 

                                          driver enters lane  

                                     end  

                        end  

end 

Highway Steps 

The highway is updated sequentially from right to left. To implement this, we divide a highway time step into two “sub-steps”, that we 

call the observation step where the drivers observe the environment and choose an action, and the update step where we update 

the highway’s state by executing the drivers’ actions. The observation step is done sequentially from right to left. During this step, 

the drivers choose their action; if they are going to change lanes, their blinkers are turned on so that drivers behind them can know 

which direction they are going to take. After the observation step, all drivers have chosen their action, and we can now update the 

highway: this is the update step, which is done sequentially from left to right. We update the highway from lef t to right because we 

want the crashes that can happen in different cells to actually happen in the first possible cell – starting from the left.  

Highway Parameters 

We can identify the parameters  of the highway. 

• Number of lanes X > 0, L ∈N 

 • Size of the lanes Y > 0, C ∈N 

 • Number of exits E ≥ 0, E ∈N 

 • Size of the exits Se > 0, Se ∈N 

 • Size of the space between two exits Ss > 0, Ss ∈N 

 • Crash duration Tf > 0, Tf ∈N  

 • Traffic density τ ∈ [0,1] 

 • Cars’ maximum speed vmax > 0, vmax ∈N 

 • Cars’ maximum acceleration σmax > 0, σmax ∈N 

Highway Performance 

 We have a fully functional Highway with traffic  and, we would like to see how well it performs and mirrors real-world traffic. First, we 

have to define what a good performance is; we want to maximize the ratio of cars that reach their goal and minimize the number of 



                                                                                             
 
 
crashes. It is clear that the result of a Highway depends on the chosen parameters . Hence, we focus on what   we consider to be 

the most important ones: the traffic density. We run a series of tests to analyze the percentage of each outcome and. to do that, we 

fixed the other parameters: 

 • Number of lanes = 5 

 • Size of the lanes = 80 

 • Number of exits = 2 

 • Size of the exits = 5 

 • Size of the space between two exits = 7 

 • Crash duration = 10 

 • Cars’ maximum speed = 3 

 • Cars’ maximum acceleration = 2 

The possible outcomes are called goal if the driver reaches their goal, crash if they crash and missed goal if the driver does not 

reach their goal (e.g. misses their exit).  We run the Highway for 2000 time steps and repeat it 20 times to compute the average.  

The autonomous car enters the Highway without any prior knowledge of highway dynamics, other cars and its own position. After a 

brief period of stay on the highway, the autonomous agent appears experimenting with different movements but does not yet 

produce any recognizable output. 

The Highway has been implemented in Python . 

Autonomous Cars 

Agents – Attributes 

We opt for the agents; they have  the  attributes: the sight and the goal. While the goal is chosen randomly when an agent arrives on 

the highway, the sight is always fixed to the some value. The other noticeable fact is that our learning agents do not have a desired 

speed. We define the autonomous cars as entities whose primary concern is to avoid crashing; they should consequently not exhibit 

any preference for a certain speed as long as they are driving safely. Furthermore, we add an attribute ϵ to these learning agents; 

this is their probability of choosing a random action at each time step. 

Given that we define learning agents the same way as the human drivers, we can seamlessly add them to the highway. The only 

difference is how they will choose an action: by using their learning  model, a neural network. We can therefore adapt the highway’s 

time step’s algorithm  to take the learning agent into account for the observation step. To decide what action it should take, the 

reinforcement learning agent uses a neural network to approximate the Q-function . Thus, at every time step t, the agent c observes 

its state sc,t; this state is then processed in some way so that it can be passed to a neural network whose outputs correspond to all 

the possible actions. The values of these outputs are the estimated Q-values, Q(sc,t, a ); as it is using a neural network θ, we denote 

the Q-function approximated with that network by Q(s,t;θ). The agent then uses an ϵ-greedy strategy to choose the action  ac,t. 

Rewards 

We need to define the reward function R; there are three different final states the agents can be in. First, they can reach their goal, 

whether it is taking an exit or not. Second, they can miss their goal; they either took a wrong exit or missed their exit. Finally, they 

can crash. Hence, we define the following rewards:  



                                                                                             
 
 

•  ρω , the reward received by the agent when it reached its goal 

•  ρω̄ ,  the  reward  received  by  the  agent  when  it  failed  to  reach  its  goal  but  did  not crash 

•  ρf , the reward received by the agent when it crashed 

Since reaching the goal and crashing are completely opposite outcomes, we define  ρω = - ρf . Moreover, since missing the goal but 

not crashing is preferable to causing an accident but is a less desirable outcome than reaching the goal, the value of this reward 

should be smaller, such that  ρf  = −ρω < ρω̄ < ρω . The agent gets these final rewards at the time step that effectively ends its run on 

the highway. For all the other previous time steps, it receives a default reward that is always equal to 0. However, the agent receives 

another reward ρ0, a small penalty, when the agent’s speed is 0; our environment is a highway and cars should not be still, unless 

there is congestion. 

 

Required Information 

We  start by defining the minimum amount of information that  an autonomous agent should have. Consequently, the encoding on 

the highway will possess these pieces of information. They are: 

• The current lane that the agent is in 

• The current speed of the agent 

• The goal of the agent 

• What the agent sees; cars, crashes and exit indications 

Time-Step Encoding 

 The  encoding is based on the idea as the cars presence at different time steps; we use information about the previous time step 

(the cars’ presence represented by the observation matrix O) instead of the current speed of the cars. The observation matrix of the 

previous time step t−1, denoted Ot−1, is not additional inputs, but it forms, along with the current observation matrix, a 3-

dimensional matrix with time as the third dimension. We then pass this matrix through a 3-dimensional convolutional neural network 

. We also keep decreasing the number of inputs by including the learning agent itself in its observation matrix. To differentiate itself 

from the other cars, the value is not 1 but 0.5. This way, the only additional information required are the exits and the agent’s goal. 

Figure 2 illustrates time-step encoding, as it encodes the cars’ presence at different time steps. 

The learning agent is shown in orange while cars in its field of view are in grey. All the input vectors are concatenated and passed to 

the network. 

  

 

 

 

 

     

    



                                                                                             
 
 

                                                                                    Exits 

                                                         

         

           CNN Outputs              Exits   Goal      

                   Figure 2 :  Time-Step  Encoding. 

 In an attempt to decrease the number of inputs, we now encode the exits in a relative way; instead of having a vector for each exit, 

we have only one vector, and the value is not binary anymore. If the exit indication in the field of view is, for example, the first exit 

out of 3, the value will be 1/3  = 0.33. Likewise, the encoding of the goal of the agent is now a single real-value that is 0 if the goal is 

to continue on the highway, or the relative number of the exit it wants to take. 

 Single-Agent Setting 

 In a single-agent environment; there is only one learning agent on the highway, other cars are our simulated human drivers.  This  

has been implemented in Python  with the module Keras with TensorFlow as back-end. 

 Now that we have defined  our neural network, a machine learning technique, and the highway, it is time to tackle our main 

problem: making an autonomous car learn on its own how to drive. 

The training environment  set up for our learning agent is divided into episodes. One episode consists of a full run of the agent on 

the highway. 

First, as the agent could potentially stay still indefinitely, if it always chooses to stay at the speed zero, we need to guarantee that its 

run on the highway will come to an end. We thus define a maximum number of steps  T max ; if the agent’s run on the highway 

reaches this upper bound, we consider the run over: the overtime outcome. Furthermore, the value of  T max must be chosen wisely. 
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The bound must not be too low nor too great. As the time required for an agent to leave the highway depends on the size of the lane 

X, we need to define the overtime bound based on this value. We could then use twice that value, 2×X, but it means that the agent 

could potential stay still half of the time and still finish its run. Finally, we define arbitrarily    T max as 2×X −10; we want the agent to 

actually drive more often than it is not moving. 

Second, we want our learning agent to arrive in a highway after some time, to ensure that it arrives in a situation where it is not the 

only car on the highway. To do that, we perform an arbitrary number of highway time step updates, usually 20, before adding the 

agent in the system. Then, we randomly initialize the attributes – speed v and lane y – of the agent and add it on the highway. Note 

that if it cannot, for some reason, be placed in its lane, we perform other highway time step updates until it is possible.  

Finally, we use experience replay  to train the network in an online fashion; at each time step, we sample a batch of experiences 

from the memory and train the network with it. 

 This whole process of learning is formalized in below Algorithm. 

Algorithm : Single-agent learning algorithm 

Initialize replay memory D of length M 

for episode = 1, ..., N do 

Initialize highway H according to fixed highway parameters 

for t = 1, ..., 20 do 

Perform one time step update of the highway H 

end 

Initialize learning agent c with a fixed sight φc
+ and s 

Choose randomly lane y in which to add the agent, and speed v  of the agent 

while agent cannot enter lane y do 

Perform one time step update of the highway H 

end 

Add the learning agent c on the highway 

for t = 1, ..., T max do 

Perform one time step update of the highway H 

/* Experience replay */ 

Observe the state st, action at and reward rt of the agent for that time step, and the 

next state st+1 

Store experience (st, at, rt, st+1) in D 

Create empty neural net model with parameters 

if replay memory D is full then 

Sample minibatch of size B from experience memory D 

Initialize batch learning buffer of size B   

                                      Load the neural net model           

for experience (sk, ak, rk, sk+1) in minibatch do 

Get network outputs y according to Q(sk, a; θ) 

 

 

       Set yak    

=  
rk    if state sk+1 is final 

                                                              rk + γ max Q(sk+1, aj; θ)       if state sk+1 is not final                                       

                                                                                                       aj 
Store (sk, y) in batch learning buffer 



                                                                                             
 
 

 

End 

Train network θ against batch learning buffer                   

                                   end 

                               end 

         end 

 

Training Parameters 

A training experiment is defined by numerous parameters of the highway, and all the parameters regarding the learning agent and the 

training algorithm. These parameters are: 

• φc
+ ,   the sight of the learning agent (its backsight φc

− = φc
+ − 1) 

 

           • s, the agent’s probability of choosing a random action 

• R, the reward function; which corresponds to defining the different rewards ρω, 

ρω̄ , ρf , ρ0 and ρT 

• µc, the neural network model used by the agent 

• γ, the discount factor as defined for the MDP 

• α, the learning rate for the neural network training 

• N , the number of training episodes 

• M , the size of the experience memory buffer 

• B, the size of the batches of experiences 

 
Moreover, the hidden structure of the neural network model µc can also be chosen; this includes the number of hidden layers, 

the number of neurons in these layers, their activation function, and the dropout rate δc (0 if we do not want to use dropout) to apply 

to each layer. Finally, if the chosen model is a CNN one, the structure of the convolutional networks can also be set: the number 

of convolutional layers with their stride and the number and size of the filters. 

Learning – sampling batches of experiences to update the network’s weights – starts once the experience memory buffer is 

full: after encountering M experiences. 

Experiments 
For our experiments,  we trained our model with TensorFlow as back-end. We also considered different possible hidden structures 

for the neural networks. 

Settings 
For our experiments, most of the parameters are fixed. We present them in Table 1. The structure of the CNNs  are also fixed: 

there are two convolutional layers, the first with a stride of 1 and 16 filters of   size 4 × 4,  and the second with a stride of 1 and 

32 filters of size 2 × 2. 

Finally, the reward system of our learning agent is fixed, and the values are shown in Table 2. 

 

Results 
The learning results are  the evolution of the percentage of outcomes (accumulated) throughout the training process.  



                                                                                             
 
 
 

  

                                                                                  Table 1: Single-agent training’s fixed parameters 

                                                  

 

 

 

 

 

                                               Table 2: Single-agent training’s reward system 

 
We tested three different configurations for the hidden structures of the networks: 

 

•   2 hidden layers: the first with 60 neurons and a tanh activation function; the second with 30 neurons and a linear activa tion 

fucntion. No dropout. 

 

•   2 hidden layers: the first with 150 neurons and a tanh activation function; the second with 75 neurons and a linear activation 

fucntion. No dropout. 

 

•   2 hidden layers: the first with 300 neurons and a tanh activation function; the second with 150 neurons and a linear activation 

fucntion. No dropout. 

 
The results  for our CNN based model – a modern machine learning technique –  are mixed and the learning agent is able to reach 

the goal with low success rate. The networks that do not use dropout seem to learn well.  The percentage of goal reached for the  

networks (without dropout ) is high and increases with the number of hidden neurons. As the training is done for fewer episodes, the 

models aptitude to learn and adapt on its own is limited. 

 

CONCLUSION 

 
Autonomous Driving systems are complex and present a challenging environment. Self-Thinking for Autonomous Systems 

development is very promising where the required behaviours to be learned from scratch and further improved from deep learning 

technique. An overview of autonomous vehicles and its components is provided. Designed neural network model with convolutions 

 Reward ρ Value 

Goal ρω +1 

Missed goal ρω̄ -0.15 

Crash ρf -1 

No speed penalty ρ0 -0.01 

Overtime ρT -0.4 

 

Highway parameters 

Number of lanes Y 3 

Lane size X 40 

Number of exits E 0 

Exit size Se 5 

Space size Ss 7 

Crash duration D 10 

Traffic density τ 0.25 

Cars’ maximum speed vmax 3 

Cars’ maximum acceleration αmax 2 

 

Learning parameters 

Number of episodes N 50000 

Batch size B 25 

Experience memory size M 50 

Learning rate α 0.01 

Discount factor γ 0.9 

Agent’s sight φc
+ 

 
6 

Agent’s s 0.05 

 



                                                                                             
 
 
and Q-learning in order to solve the problem of autonomous driving to produce specific driving behavior on a highway with deep 

learning. At first the autonomous agent enters the highway without prior knowledge of highway dynamics, other cars and its own 

position. After a brief period of stay on the highway, the autonomous agent experiments with different movements and then used 

deep learning, a modern machine learning technique, to create internal model to accurately predict movements. As the training is 

done for fixed number of episodes, the models aptitude to learn and adapt on its own is limited.  
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