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Abstract

Multi-step prediction is considered of major significance for time series analysis

in many real life problems. Existing methods mainly focus on one-step-ahead

forecasting, since multiple step forecasting generally fails due to accumulation

of prediction errors. This paper presents a novel approach for predicting plant

growth in agriculture, focusing on prediction of plant Stem Diameter Variations

(SDV). The proposed approach consists of three main steps. At first, wavelet

decomposition is applied to the original data, as to facilitate model fitting to

them. Then an encoder-decoder framework is developed using Long Short Term

Memory (LSTMs) and used for appropriate feature extraction from the data.

Finally, a recurrent neural network including LSTMs and an attention mecha-

nism is proposed for modelling long-term dependencies in the time series data.

Experimental results are presented which illustrate the good performance of the

proposed approach and that it significantly outperforms the existing models, in

terms of error criteria such as RMSE, MAE and MAPE.

Keywords: multistep prediction, wavelet analysis, LSTMs, deep neural

networks, attention mechanism, time series analysis, plant growth prediction



1. Introduction

Time-series analysis and prediction has been a research topic of significance

in various fields and real-life applications, including smart agriculture and pre-

diction of plant growth, forecasting financial stocks, anomaly, or intrusion, de-

tection, medical imaging and air pollution prediction [10], [1]. Time series data

are generally produced as series of observations aggregated in chronological or-

der. Their complexity is generally quite high, which makes their analysis a very

challenging task [13]. Due to this nature, using shallow machine learning and

neural network models to analyze the data has produced many bottlenecks. As

a consequence, the development and use of more complex models, which can

automatically extract and learn deep representations from time-series, or image

data, has been a topic of major recent work [36, 26, 23, 6].

         Recently, Deep Learning (DL) models have produced great progress in agri-                        

cultural tasks, such as crop management and plant growth. Plants, like other

     bio-systems, are highly complex and dynamic systems. Modelling plant growth

dynamics is a unique challenge, with many different characteristics, e.g., scale

of interest, level of description, integration of environmental parameters [1].

This paper proposes a novel deep learning approach for effective prediction

of plant growth. It consists of three components: wavelet transformation (WT),

encoding-decoding based on LSTM model, and prediction using LSTM with an 

attention mechanism. WT can assist in smoothing the noise effect existing in 

time series data. The encoder-decoder part can extract appropriate features from 

the reconstructed smoothed signal; these features form an appropriate compact 

representation, on which the final prediction step is based. We propose

 the use of a model composed of LSTMs blended with an attention mechanism, in 

order to implement the final prediction of plant growth. As a consequence, the 

proposed approach is based on the combination of these three methods, and

is named as WT-ED-LSTM-AM hereafter. The effectiveness of the WT-ED-

LSTM-AM model is validated using real datasets from greenhouses. Moreover,

the obtained results are compared with those achieved when using a standard
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LSTM network, a multi-layer perceptron (MLP), and a network with gated

recurrent units (GRU).

In summary, the main contributions of this paper are the following:

• A novel tree structure for multi-step prediction of SDV. To the best of

our knowledge, it is the first time that such an approach is used to predict

time series data.

• Extensive experimentation is provided using real-world datasets. The pro-

posed approach is compared with different baseline models; the obtained

results show its superiority over these models.

The remainder of this paper is organised as follows: Section 2 reviews related

work. Section 3 presents the architecture of the proposed approach, as well

as of all utilised models. Section 4 describes in detail the proposed WT-ED-

LSTM-AM approach. Section 5 presents the used datasets and the developed

experimental study. Finally, Section 6 provides conclusions and future work.

     2. Related Work

This section provides a short description of existing deep learning prediction

models applied to horticulture, and in particular, to plant growth analysis, as

well as of attention-based LSTM models for time series analysis and prediction.

In general, modelling crop data can be divided into three stages: a) data pre-

      processing, b) data modelling, c) hybrid analysis approach [45].

Data-driven models (DDM) that are most often used for signal processing

include Machine Learning (ML) techniques, Artificial Neural Networks [9], Sup-

port Vector Machines [33], and Generalised Linear Models. Those methods have

many desirable characteristics, such as: imposing few restrictions and assump-

tions; ability to approximate nonlinear functions; strong predictive capabilities;     

flexibility  to  adapt to multivariate system inputs [3].   According    to  [40]      and

[27] Machine Learning, linear polarisation, wavelet-based filtering, vegetation
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indices and regression analysis are the most popular techniques used for analyz-

ing agricultural data. Deep Learning (DL) has obtained great popularity in the

 last few years [17]. DL involves Deep Neural Networks (DNNs), which can gen-

erate hierarchical feature structures, leading to more effective representations of 

the data. This improves learning capabilities, providing higher performance and 

improving accuracy. A strong advantage of DL is feature learning, i.e., au-

tomatic feature extraction from raw data, with features from higher levels of the

hierarchy being formed through composition of lower-level features [17]. Con-

sequently, DL can solve more complex problems particularly well [31], provided 

there exists availability of adequately large data-sets describing the problem. 

Gonzalez-Sanchez et al. [16] presented a comparative study of ANN, SVR, M5-

prime, KNN ML and Multiple Linear Regression for crop yield prediction in

ten crop data-sets. In their study, Root Mean Square Error (RMSE), Root 

Relative Square Error (RRSE), Normalized Mean Absolute Error (MAE) and 

Correlation Factor (R) were used as accuracy metrics to validate the models. 

Results showed that M5-Prime achieved the lowest errors across the produced 

crop yield models. The results of that study ranked the techniques from best

to worst, as follows: M5-Prime, kNN, SVR, ANN, MLR. Another study by

[4] applied four ML techniques, SVM, Random Forest (RF), Extremely Ran-

domised Trees (ERT) and Deep Learning (DL) to estimate corn yield in Iowa

State. Comparison of the validation statistics showed that DL provided the

more stable results, overcoming the over-fitting problem. A DL model using

     LSTM was developed by [1] to predict plant growth, using stem diameter vari-

ations as a growth indicator. This papermakes a comparison of the prediction

performance of the LSTM model when compared to other baseline models (RF,

SVR), showing its improved performance.

Stem diameter is considered a parameter of major importance that describes

 the growth of plants during vegetative growth stage. The variation of stem di-

ameter has been widely used to derive proxies for plant water status and, is 

therefore used in optimisation strategies for plant-based irrigation scheduling in

a wide range of species. Plant stem diameter variation (SDV) refers to plant
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    stem periodic shrinkage and recovery movement during the day and night. This

  periodic variation is related to plant water content and can be used as an indi-

cator of the plant water content change. During active vegetative growth and

development, crop plants rely on the carbohydrate gained from photosynthe-

sis and the translocation of photo-assimilates from the site of synthesis to sink

organs [46]. The fundamentals of stem diameter variations have been well doc-

umented in a substantial amount of literature [44]. It has been documented       

that SDV is sensitive to water and nutrient conditions and is closely related to

the response of crop plants to changes of environmental conditions [22]. More-

over, stem diameter is a parameter that describes the growth of crop plants

under abiotic stress during vegetative growth stage. Therefore, it is important

        to generate stem diameter growth models able to predict the response of SDV

to environmental changes and plant growth under different conditions. Many

studies emphasize the need to critically review and improve SDV models for as-

sessment of environmental impact on crop growth [20]. SDV daily models have

been developed to accurately predict inter-annual variation in annual growth in

                balsam fir (Abies balsamea L). Inclusion of daily data in growth-climate models

can improve prediction of the potential growth response to climate by identify-

ing particular climatic events that escape to a classical dendroclimatic approach

[12]. However, models for predicting SDV and plant growth using environmental

variables have so far remained limited.

        Since horticulture management decisions become data-driven, DL is contin-

uously gaining popularity as one of the most successful techniques to model

obtained data. As was mentioned above, this paper proposes a new approach

for multi-step prediction of plant growth using wavelet transformation (WT),

encoder-decoder based on LSTM and RNN-LSTM prediction with an attention

        mechanism.
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3. Problem Definition and Components

3.1. Problem definition

The aim of a model for single step time series prediction, T , is to implement

a mapping from a sequence of input data, (x0,x1, ...,xt), to a single output

target value, yt+1:

ˆyt+1 = T (x0, ...,xt) (1)

where xt is generally an M -dimensional vector, with elements (xt(0), ..., xt(M−

1)) and xt(i), yt ∈ R; ŷt is the estimate of the target value yt. Eq. 2 shows a

multi(k)-step prediction:

(ŷt+1, ...ŷt+k) = T (x0, ...,xt) (2)

Model T is usually estimated through supervised learning, using a collection of

training data and respective labels.

       3.2. Wavelet transform

The Wavelet transform can be used for data denoising, while handling the

non-stationary nature of the collected time series data. In the following we

use the wavelet transform for representing, decomposing and reconstructing the

original data. Wavelet analysis was firstly introduced by Mallat [30] and since

then has been used in a various domains for signal processing [32], image recog-

nition [18], remote sensing data decomposition [34], time series decomposition

[11], or medical image analysis and medical diagnosis [41]. The Discrete Wavelet

Transform decomposes signals into a low frequency approximation set and sev-

eral high frequency detailed sets. Thus the original time series, represented as

X = [x0, ...,xN−1] with N = 2J , is transformed as shown in Eqs. 3 and 4 :

Wϕ(j, n) =
1√
N

∑
k

xkϕj,n(k) (3)

Wψ(j, n) =
1√
N

∑
k

xkψj,n(k) (4)
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where j = 0, 1, ..., J − 1, k = 0, ..., N − 1 and n = 0, 1, ..., 2j − 1; ϕ and

ψ represent the wavelet function and the scaling function, respectively. To

reconstruct the original series, Eq. 5 is used:

xk =
1√
N

∑
n

Wϕ(j, n)ϕj,n(k) +
∞∑
j=j

∑
n

Wψ(j, n)ψj,n(k) (5)

There are several wavelet families, such as Daubechies (dbN), Coiflets (CoifN)

and Symlets (symN). In this paper we use db2 to decompose the original series

into one approximation and two detail sets.

3.3. Multilayer perceptrons

Multilayer Perceptrons (MLP) [19] have been the main architecture used

for supervised learning and classification tasks; they consist of multiple fully

connected layers of neurons, with feedforward spread of information. Their

training is performed with the backpropagation algorithm.

3.4. Long-short term memory

       Long short-term memory (LSTM) are one variation of the recurrent neu-

ral network (RNN) architecture [21]. They have been able to solve the gradi-

ent vanishing problem in long-term time series analysis. The LSTM structure

contains three modules: the forget gate, the input gate and the output gate.

The forget and input gates control which part of the information should be re-

        moved/reserved to the network; the output gate uses the processed information

to generate the provided output. LSTMs also include a Cell State, which allows

the information to be saved for a long time. The following Eqs. illustrate the

feature mapping from inputs of LSTM units:

it = σ(Wixt + Uiht−1 + bi) (6)

C̃t = tanh(Wcxt + Ucht−1 + bc) (7)
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Let us denote by ft and Ct the value of the forget gate and the state of memory

cell at time t, respectively, calculated by:

ft = σ(Wfxt + Ufht−1 + bf ) (8)

Ct = it ∗ C̃t + ft ∗ Ct−1 (9)

and let ot and ht denote the values of the output gate and memory cell at time

t, respectively, computed as:

ot = σ(Woxt + Uoht−1 + VoCt + bo) (10)

ht = ot ∗ tanh(Ct) (11)

where xt is the input vector to the memory cell at time t; Wi,Wf ,Wc,Wo,

Ui, Uf , Uc, Uo and Vo are weight matrices; bi, bf , bc and bo are bias vectors; ht is

the value of the memory cell at time t; it and C̃t are values of the input gate

and the candidate state of the memory cell at time t, respectively.

3.5. Gated recurrent units

Gated recurrent units (GRU) are simplified LSTMs [6]. They do not have

 an output gate, thus there is no control over the memory content. They can be

used instead of LSTMs. Further information can be found in [8].

3.6. LSTM encoder-decoder models

In LSTM Encoder-Decoder Models, the encoder part compresses the infor-

mation from the entire input sequence into a vector which is generated from the

 sequence of the LSTM hidden states. Consequently, the encoder summarizes the

whole input sequence into the final cell state vector and passes it to the decoder

[5, 29, 43, 28].The latter uses this representation as initial state to reconstruct

the time series, denoted as st in Fig. 1.
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Figure 1: LSTM encoder decoder architecture.

3.7. Attention mechanisms

Attention mechanisms have been recently used as a means to improve deep

networks’ performance, by focusing on feature segments of high significance.

They are usually implemented through attentive neural network models [15, 47,

14, 35, 37, 7, 42]. Bahdanau et al [2] introduced an attention mechanism to

model a long-term dependence, by generating a context vector as a weighted

sum of all provided information. In this paper, the attention mechanism is

used both across the different internal LSTM layers, as well as over the LSTM

output layers. Prediction of the output signal is derived using the conditional

probability distribution of the input signal and of the previous sample of the

output signal, i.e.,

p(yi | x1, ...,xi−1, yi−1) (12)

This is, however, impossible to compute in most cases. Eq. 12 is therefore

approximated by the non-linear function:

g(yi, hi, Ci) (13)

9



Where g is the LSTM, hi is the internal state of the LSTM and Ci is the current

context, i.e., a vector holding information of which inputs are important at

the current step. The context is derived from both the current state,hi, and

the input sequence x. After the LSTM has stepped through the whole input

sequence, the attention mechanism of the network decides on the attention that

should be put on the annotation provided at each step. The transition functions

of the attentive neural network are described by Eqs. 14-16. The attention

mechanism begins by computing et:

et = vT . tanh (We.ht + Ue.dt−1 + b) (14)

where v, b, ht, dt−1 ∈ Rn and We, Ue ∈ Rn∗n. The attention score, at, is com-

puted by the softmax function, as follows:

at =
exp(et)∑N
t=1 exp(et)

(15)

The context vector, Ct, is computed as the weighted sum of all internal LSTM

states:

Ct =

T∑
t=1

at.ht (16)

        4. The Proposed Method

4.1. Setting up the prediction framework

In the following, we introduce the models and methods, described in the pre-

vious Section, in a novel deep prediction framework. The proposed architecture

(WT-ED-LSTM-AM) includes wavelet-based transformation of the collected sig-

 nals, followed by an encoding-decoding step, using LSTM and attention models

for final prediction.

Figure 2 shows the proposed approach for SDV multi-step prediction. The

target is to predict SDV in the following few hours, based on current information

and history sensory signal data.
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Figure 2: Deep model architecture (WT-ED-LSTM-AM) for SDV prediction.

       4.2. The WT-ED-LSTM-AM architecture

As was aforementioned, we propose a novel WT-ED-LSTM-AM architecture

for plant growth prediction. This architecture, as shown in Figure 2, is composed

of five steps:

• Step 1: Data cleaning and preparation is performed first, by using the

wavelet transform (WT). In particular, we decompose each input signal

in two components, generating a subsampled (by 2) time series approxi-

mation and eliminating noise in the high frequency component. By up-

sampling (by 2) and filtering, a reconstructed signal is obtained, which is

provided to the next step of our approach.

• Step 2: The encoder-decoder stage is then implemented. The encoder

is pre-trained to extract useful and representative embeddings from the
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reconstructed time series data (xt); these embeddings can be used next

for prediction purposes. Two-layer LSTM cells are used in the encoder

implementation. Based on the learned embedding states, the decoder has

learnt to generate the (reconstructed) input signal. We designed this step,

inspired by the success of video representation learning, where a similar

architecture was introduced [43].

• Step 3: The encoder-decoder step consists an intelligent feature extraction

component of the proposed approach. Then, an LSTM network, with

attention mechanism, is trained to make single, or multi-step prediction,

using the learned embedding as input features. LSTMs use the transition

functions {h1, h2, ..., hn} of the embedding states learned in Step 3.

• Step 4: As shown in Figure 2, the attention mechanism is applied to

the outputs of each LSTM unit to model a respective long-term depen-

dence. The learned embedding states, the attention weights corresponding

to these states, and the respective context, as described in the previous

Section, are used for implementing the attention mechanism.

• Step 5: A single layer neural network is responsible for the final prediction

of the SDV value, as described in Eq. 18.

hs = tanh(WpC +Wxhn) (17)

ŷ = Wshs + bs (18)

5. The Experimental Study

An extensive experimental study has been carried out to evaluate the per-

 formance of the proposed approach, targeting supervised multi-step prediction

of SDV in real-world data sets. The obtained results illustrate the effectiveness

and efficiency of the proposed approach in predicting the SDV.
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5.1. Experimental set up

The proposed architecture was used to predict growth of Ficus plants (Ficus

benjamina), based on data collected from four cultivation tables in a 90 m2

greenhouse compartment of the Ornamental Plant Research Centre (PCS) in

Destelbergen, Belgium. Plant density was approximately 15 pots per m2, where

every pot contained cuttings.

The experiment started on 23 March 2016. Greenhouse microclimate was

 set by controlling the window openings, a thermal screen, an air heating sys-

tem, assimilation light and a CO2 adding system. Plants were irrigated with an

automatic flood irrigation system, controlled by time and radiation sum. Set-

points for microclimate and irrigation control were similar to the ones used in

commercial greenhouses. The microclimate of the greenhouse was continuously

        monitored. Photosynthetic active radiation (PAR) and CO2 concentration were

measured with an LI-190 Quantum Sensor (LI-COR, Lincoln, Nebraska, USA)

and a carbon dioxide probe (Vaisala CARBOCAP GMP343, Vantaa, Finland),

respectively. Temperature and relative humidity were measured with a tem-

perature and relative humidity probe (Campbell Scientific CS215, Logan, UT,

        USA), which was installed in a ventilated radiation shield.

Stem diameter was continuously monitored on three plants with a linear

variable displacement transducer (LVDT, Solartron, Bognor Regis, UK) sensor.

The hourly variation rate of stem diameter (mm d−1) was calculated as the

     difference between the current stem diameter and the stem diameter recorded

        on one hour earlier, at a given time point. Thus, the frequency of collected data

has been at one hour basis.

We performed experiments on one-step, two-step and three-step forecasting.

In one-step-ahead forecasting, we used input data collected in previous 15

hours, to predict the SDV value in the current hour.

        In two-step-ahead, i.e., 6 hours forecasting, we used input data collected in

the previous 6 hours, with a 6-hour stride.

In three-step-ahead, i.e., 12 hours forecasting, we used the previous 12 hours,

with a 12-hour stride.

13



In all experiments, we used the first 70% of data samples as training set, the

 next 10% of data samples as validation set and the rest 20% of data samples as

test set.

5.2. Performance evaluation

The Mean Absolute Error (MAE), the Root Mean Squared Error (RMSE)

and the Mean Absolute Percentage Error (MAPE) were used to evaluate the

 performance of prediction models. Formulas of these measures are shown below:

RMSE =

√√√√ 1

n

n∑
t=1

(
At − Ft
At

)2

(19)

MAE =
1

n

n∑
t=1

|At − Ft|
|At|

(20)

MAPE =
1

n

n∑
t=1

∣∣∣∣At − FtAt

∣∣∣∣ (21)

where At denotes the actual values and Ft the predicted values.

5.3. Feature normalization

In all experiments we used min-max normalization (min-max scaling) on

the extracted features, re-scaling their values in the range [0, 1] through the

following formula:

gi =
fi −min(f)

max(f)−min(f)
(22)

where gi and fi are the values of the normalised and original i − th feature 

and min(f) and max(f) are the minimum and maximum values of the original  

features.

5.4. Experimental results

The experimental results illustrate the very good performance of the pro-

posed methodology, which outperforms respective baseline methods. For com-

parison purposes, we used the same hyper-parameters in the proposed approach

 and in the baseline models. A two-layer stacked GRU, LSTM and MLP with
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Stochastic Gradient Descent (SGD), learning rate ls = 0.001 and batch size

= 32 were adopted. All models were trained for 100 epochs, using the same

training, as well as validation and test data sets. In the proposed method, we

used a two layer LSTM encoder-decoder structure, with 128 and 32 neurons

        respectively. In the prediction model, we used a single layer LSTM with 128

neurons.

The results for the multi-step prediction tasks are shown in Table 1.

Table 1: Performance of the proposed and baseline models for multi-step prediction

Steps One Step (1hr) Two steps (6hr) Three steps (12hr)

Models

Error
RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

MLP 0.0034 0.0023 2.72 0.0045 0.0029 2.20 0.0048 0.0027 1.63

GRU 0.0031 0.0022 3.43 0.0039 0.0026 2.74 0.0080 0.0040 1.93

LSTM 0.0031 0.0022 3.27 0.0033 0.0024 2.46 0.0054 0.0031 1.60

Proposed 0.0026 0.0017 2.14 0.0028 0.0021 2.03 0.0029 0.0023 1.35

The performance of the LSTM and GRU models for one-step-ahead predic-

tion were very similar, with the LSTM model showing an (edge) improvement

 over GRU one, as far the MAPE criterion was concerned. The MLP model per-

formance was lower than LSTM and GRU when considering RMSE and MAE

criteria; it scored better than the LSTM and GRU when MAPE criterion was

considered.

The proposed approach (WT-ED-LSTM-AM) outperformed all baseline mod-

els on all multi-step prediction tasks. Figure 3 illustrates this achievement, over

prediction steps ranging from 1 to 12.
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Figure 3: Comparison of the predictive performance of the different models at each step.

Figure 4 shows the accuracy of Ficus growth prediction by all methods for
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about 600 data samples. It can be seen that the proposed model successfully 

performs one-step ahead prediction, outperforming the other methods and pro-

viding accurate estimates of almost all peak values in the original data.
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Figure 4: Obtained accuracy in one-step prediction of Ficus growth (SVD) by the proposed

and baseline methods

In addition, to compare the distribution of the prediction errors provided

by the baseline models with that of the proposed approach, we performed a

statistical analysis of them. The histograms of the produced one-step-prediction

errors are shown in Figure 5. It can be seen that in the proposed approach, close

 to 57% of predictions resulted in prediction errors around 0.00 and the remaining

43% prediction errors ranging between -0.010 and 0.015.

The results obtained in the two-step prediction problem are shown in Table

1. The proposed approach outperformed all baseline models, providing lower

RMSE, MAE and MAPE values in this case as well. Fig. 6 shows that almost      

all peak original values are precisely predicted by the proposed approach.

The resulting histograms for two-step-prediction errors are shown in Fig. 7.

In the proposed approach, close to 77% of predictions resulted in prediction

errors between -0.004 and 0.002; the remaining 23% of prediction errors ranged

between -0.008 and 0.008. This greatly outperformed the other baseline models.
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Figure 5: Error distribution for one step prediction (1 hour ahead)
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Figure 6: Obtained accuracy in two-step prediction of Ficus growth (SVD) by the proposed

and baseline methods

The proposed approach also provided a superior three-step-ahead prediction.

Table 1 shows that the proposed approach outperformed the baseline models,
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Figure 7: Error distribution for two step prediction (6 hours ahead)
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Figure 8: Obtained accuracy in three-step prediction of Ficus growth (SVD) by the proposed

and baseline methods

in terms of RMSE, MAE and MAPE criteria. In Fig. 8, it can be seen that

all baseline models failed to capture the peak at data sample 14, with the pro-
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Figure 9: Error distribution for three step prediction (12 hour ahead)

posed approach providing much better estimates of the targeted values than the

baseline models. Fig. 9 shows the prediction error distributions for all baseline 

models, as well for the proposed approach. It shows that close to 56% of predic-

tions provided by the proposed approach, produced prediction errors between 

-0.002 and 0.002; the remaining 44% of prediction errors ranged between -0.006  

and 0.006. In this case, as well, the proposed method outperformed all other  

baseline models.

6. Conclusions and Future Work

This paper proposed a novel multi-step-ahead time series prediction ap-

proach. The first step of the proposed method has been to use a wavelet 

transform to decompose and smooth the original data. As a consequence, a

 better model fitting could be achieved on the reconstructed signals. The second 

step introduced an encoder-decoder framework based on LSTMs, which man-

aged  to  effectively produce appropriate features  for  multi-step  prediction.  The
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third step which used LSTMs coupled with an attention mechanism was able to    

successfully implement the prediction tasks.

            The proposed approach was used for multi-step-ahead prediction of Ficus

Benjamina stem diameter variations, providing high prediction accuracy.

Real-world data have been collected and constituted a data set that was

used to evaluate the proposed methodology.

A comparison was carried out, over these real-world data, with state-of-the-

 art baseline models, showing that the developed approach provides much better

prediction results.

Hourly time intervals were used in the input data, as well in our multi-step-

ahead predictions. These intervals can be different, i.e., shorter (in minutes,

or in seconds), or longer (daily, weekly). Such a scaling of the input data

 and of the produced predictions require further model developments, as well as

experimentation and constitute topics of our future work.

Moreover, another topic of future research is to merge the data driven ap-

proach presented in this paper with knowledge-based one, especially for mod-

elling the context, i.e., the relations among the considered variables; we will

 be adapting former research of ours in fuzzy analysis [38, 39] and description

logics [24, 25].
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[6] Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F.,

Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using

rnn encoder-decoder for statistical machine translation. arXiv preprint

arXiv:1406.1078 , .

[7] Choi, E., Bahadori, M. T., Sun, J., Kulas, J., Schuetz, A., & Stewart,

W. (2016). Retain: An interpretable predictive model for healthcare us-

ing reverse time attention mechanism. In Advances in Neural Information

Processing Systems (pp. 3504–3512).

[8] Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical eval-

uation of gated recurrent neural networks on sequence modeling. arXiv

preprint arXiv:1412.3555 , .
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