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Abstract. Prior studies have shown conflicting results about the impact of in-
formation disclosure on human performance– often referred to as transparency 
(i.e., seeing-into) studies. We conducted an experiment to investigate whether 
transparency manipulations predicted whether participants could identify wheth-
er features and their relative weights of a decision aid guided by a Machine 
Learning model were consistent with stated best practices for making mainte-
nance decisions.  We had insignificant results on state estimation, automation re-
liance, trust, workload, and self-confidence. This study shows that disclosing in-
formation about the decision aid rationale does not necessarily impact operator 
performance. 
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1 Introduction  

In Machine Learning (ML)-based decision aid systems, human oversight may be re-
quired to check that the ML rationale aligns with end-user goals and metrics. Further-
more, the end-user may need to verify that the training and validation data are repre-
sentative of real-world conditions. Thus, the ML rationale may have to be disclosed to 
the end-user. However, the effective presentation of this rationale for these end-user 
tasks is still an ongoing research question.  

Doshi-Velez and Kim [1] distinguished between local and global explanations to 
end-users for ML algorithms. A global explanation is one that offers information on 
the logic of an ML algorithm as a whole. A local explanation discloses the logic of an 
ML algorithm that led to a specific decision. Human Factors researchers have evaluat-
ed the impacts of information disclosure about automation logic on end-user perfor-
mance under the notion of transparency. For instance, Seong and Bisantz [2] and Mer-
cado et al. [3] reported that disclosing information about automation had a positive 
impact on human task performance and trust calibration. In contrast, Adhikari et al. [4] 
reported that participants objectively performed the worst when presented with any 
amount and type of information. However, participants self-reported a better under-
standing of the ML-based Decision Support System rationale with greater information 
disclosure. Similarly, Skraaning and Jamieson [5] reported that participants performed 
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worst but calibrated trust with information disclosure as automation capabilities in-
creased. Given these inconsistent and, at times, conflicting results, there is a need to 
conduct more empirical studies on transparency to establish the effective type and 
amount of information disclosure that positively impacts human performance. 

As suggested by [1], we anticipate that local explanations will support participants 
to assess the correctness of a specific decision made by the ML algorithm. Thus, our 
research question is: What are the effects of disclosing the rationale that led to an au-
tomated decision through Feature Weight (also known as Feature Importance) and the 
Decision Rules on human performance (including reliance decisions, trust, task effica-
cy, and workload)? 

2 Method 

2.1 Participants  

We recruited 24 (14 female, 10 male) chemical engineering undergraduate and 
graduate students from the University of Toronto who had completed courses in pro-
cess engineering and statistics. Participants were between the ages of 18 and 30 (M = 
25, SD = 3.17). Ten participants indicated prior work experience in the process opera-
tion industry (M = 23 months, SD = 25). Eleven participants stated moderate familiari-
ty with ML (i.e., had completed ML courses or self-taught ML concepts). Participants 
were paid $15/hour rounded to the nearest 20 minutes. To incentivize participants, 
they were entered into a draw for an extra $25 after study completion. To motivate 
participants to follow the instructions, we told them to imagine that a company hired 
them as a consultant to perform this task. 

2.2 Apparatus  

A machine learning-based micro-world platform for condition-based maintenance 
named Automated Reliability Decision Aid System (ARDAS) was used for this exper-
iment [6]. The architecture of ARDAS comprises the ML algorithm and the user inter-
face. In ARDAS, a supervised ML algorithm is trained to generate models that predict 
the states of four hydraulic components. The models were trained using multi-sensor 
time-series and historical event data to classify sensor measurements [7].  

The original ML model in ARDAS used a random forest algorithm trained with six-
ty-eight features and composed of thousands of trees. These features are extracted 
from the statistical moments (including mean, kurtosis, skewness, and variance) of 
seventeen sensors data. Due to the complexity of the ML model, it was necessary to 
reduce the number of features to employ this ML model while fulfilling the constraints 
of a controlled experiment. The constraint for our experiment was that participants 
must be able to complete the experimental task (i.e., estimate the hydraulic compo-
nent’s state) in every experimental condition while avoiding learning effects in trials.  

To meet this constraint, we simplified the model. First, we obtained the global fea-
ture weights of each components using sixty-eight features. Then, we selected five 
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features for each component imposing the following constraints: First, select features 
that deemed most influential by the original ML model. Second, select only features 
that represent the mean of the sensors data. Third, select only features that adhered to 
process engineering principles about the hydraulic system.  

This process resulted in five different global influential features in determining each 
hydraulic component’s states. At this stage we employed Wizard of Oz technique [8]. 
We used the same five features specific for each component in each trial but assigned 
a unique local weight to each feature. Using engineering principles, the feature’s 
weights were calculated based on how far the value of the feature is into the threshold 
as a function of the threshold’s size. Finally, we estimated a component's state based 
on the weighted average of the estimated probabilities. These probabilities were guid-
ed by the thresholds of the different decision trees within the ML model. 

The user interface of ARDAS (Fig.1) included a hydraulic process diagram (top-
left), three mean sensor data graphs (top-right), and a confidence probabilities table 
(bottom-right). Depending on the experimental condition, the user interface also in-
cluded the Local Feature Weights (Fig.1, dashed red box), the Decision Rules (Fig.1, 
solid green box), or both. The Feature Weights and Decision Rules presented the au-
tomation rationale that led to a particular state estimation.  

 

 
Figure 1: The user interface of ARDAS 

Hydraulic Process Diagram 
The top left section in Fig. 1 shows the hydraulic process diagram that includes the 

positions of the components in the yellow rectangles (Valve (V10), Pump (MP1), 
Cooler (C1)), and seventeen sensors in blue squares and circles. Each hydraulic com-
ponent has three states (normal functioning, minor malfunctioning, failure).   

Mean Sensor Value Graphs 
The top right section in Fig.1 displays up to three-line graphs of mean sensor values 

over a 12-hour period. The minimum and maximum mean sensor values are written at 
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the top of each graph. If a fourth sensor is selected, the earliest line graph will be re-
placed by the newly selected sensor's mean graph. In this experiment, the point of 
interest is the sensor value at the current time. 

Confidence Probabilities Table 
The bottom right section in Fig.1 shows a confidence probabilities table. For each 

component, probabilities are shown for each state, given the thresholds for each fea-
ture. Each feature’s value is compared against a threshold for determining each state's 
probability for given component.  

2.3 Experimental design  

A 2x2 within-subject design was employed, with Local Feature Weights (displayed, 
not displayed) and Decision Rules (displayed, not displayed) as factors. The result is 
four levels of Display: none [baseline], Local Feature Weights, Decision Rules, and 
Combined (Local Feature Weights and Decision Rules). Each level was presented in a 
separate block of twelve independent trials. Each participant completed all four blocks.  

We used the method proposed by Zeelenberg and Pecher [9] to counterbalance the 
order of the four experimental conditions, and the assignment of trial sets 1 – 4 to 
these conditions. This method systematically identifies 8 block-condition orders (a pair 
of Latin squares) that balance the immediate and remote sequence effects. The order of 
trials within a set was not randomized.  

We created a total of 48 independent trial stimuli by selecting three unique hydrau-
lic components (Valve (V10), Pump (MP1), Cooler (C1)), each with three states. The 
state of each hydraulic component was generated based on five features. Each feature 
was assigned a unique value in each trial. Furthermore, in the conditions wherein the 
feature weights were disclosed, the feature weights and their orders were randomized. 
The 48 stimuli were divided into four sets of 12 trials, labelled 1 – 4, each having the 
three hydraulic components appear four times but with unique values for each feature.  

The automated decisions were manipulated to produce incorrect estimates in 8 out 
of 48 trials (83.3% reliability) We challenged participants to identify whether the deci-
sion aid’s features, and their relative weights were consistent with the company’s best 
practices. Thus, we simulated incorrect automated decisions due to incorrect features 
(4 trials) and incorrect weights (4 trials). There were two incorrect trials in each block. 
The order of these eight incorrect trials was randomized throughout the blocks. 

The company’s best practice was to estimate the state of each component using the 
five designated features. If the decision aid system used any other features, then its 
decision should deem incorrect (i.e., incorrect features error trial). Furthermore, there 
is a chance of noisy measurement readings in virtual sensors (i.e., cooling efficiency 
and system efficiency) since their values are computed based on multiple sensors. 
Thus, the company practice is that if these virtual sensors’ feature values are at or 
within ± 0.5% higher or lower than the threshold, the least weight should be associated 
with it. If that is not the case, then the automated decision is incorrect (i.e., incorrect 
weights error trial). 
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2.4 Experimental Task  

Participants estimated the state of a hydraulic component given three possible 
states. In all trials, the state estimation for that component was given. To estimate the 
state of a hydraulic component and assess whether they agreed with the decision aid 
system’s state estimation, the participants were expected to compare the automated 
estimation against their domain knowledge. However, participants’ domain knowledge 
may differ. To minimize the effect of prior domain knowledge on subjects’ assessment 
of the automation rationale, were trained participants on what information to incorpo-
rate in their decisions. Participants were trained to complete the task in the following 
steps: First, determine the value for each of the five designated features at the current 
time using the mean sensor value graphs. Second, compare the values against the des-
ignated threshold given in the confidence probabilities table to determine each state’s 
probability. Finally, calculate the average of the probabilities for each of the three 
states. The state with the highest probability is the company’s desired estimation. Par-
ticipants were told to use ML’s rationale as appropriate. 

Transparency conditions  

Local Feature Weight Graph  
The feature weights represent the amount that each feature contributed to the final 
prediction. The local feature weight graph (Fig.1, dashed red box) presents the weights 
of the five most prominent features used to estimate the hydraulic component state. In 
each trial, each feature of a component is assigned a weight by the automation. The 
sum of the five weights is one.  

Decision Rules  
The decision rules present the IF-THEN rules (solid green box, Fig.1) guided by the 
decision trees within the ML algorithm to estimate the hydraulic component condition. 
The decision rule condition statement included the features weighted more than or 
equal to 0.2 and the threshold that the feature value was compared against.  

Combined (Local Feature Weight Graph + Decision Rules)  
In this condition, both the local feature weight and the decision rules were presented. 

2.5 Procedure  

The experiment was conducted online with the experimenter present. The protocol was 
executed over two consecutive days, and on average, participants took 4 and a half 
hours to complete the study. At the start of the first day, participants signed a consent 
form and completed a demographic questionnaire. They then watched a video explain-
ing the platform and experiment task. Afterwards, participants were given three prac-
tice trials where they were encouraged to think-aloud before proceeding with the ex-
periment.  
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In each trial, after submitting their state estimation, participants were asked to state 
their confidence on a scale of whole numbers between 0 and 5 inclusively with 0 = 
“not confident at all” and 5 = “extremely confident”. After each trial, the participants 
were asked to indicate the sensor data that they used to arrive at a state estimation for 
the component (in descending order of influence). This question was asked to ensure 
that participants were not randomly choosing a state but rather were using the sensors 
to estimate the components’ states. After each block, participants rated their mental 
workload on the NASA-TLX questionnaire modified to a seven-point scale [10]. They 
rated their trust in the automated estimation on a modified trust questionnaire designed 
by [11]. After the final block, participants completed the relative weighting portion of 
the NASA-TLX questionnaire as it applied to all the experimental tasks throughout the 
blocks. Finally, we conducted a semi-structured interview asking participants about 
their experience using the platform and their strategies in estimating component states.  

3 Results  

For the analysis below, trial data was aggregated by block (N = 96). State estima-
tion, correct automation usage, correct automation rejection, were treated as proportion 
data. Respectively, that is the number of correct estimations out of 12 trials, the num-
ber of correct automation usage event out of 10 trials, and the number of correct auto-
mation rejections out of 2 error trials in each block. 

We used the glmer() function from the lme4 package to build a generalized linear 
mixed model with a binomial distribution for state estimation, correct automation us-
age, and correct automation rejection. First, we built a baseline model from only the 
intercept. Then, we added Display as a predictor to our model. We specified a random 
part to our model. The random effect was specified as the Display nested within partic-
ipant ID to account for our data dependency. For each of these dependent variables, 
we compared the baseline to the main model with the Display predictor.  

3.1 State Estimation 

The state estimation is categorical with either correct or incorrect estimation. The 
correct estimation is the most probable state among three states. Display was not a 
significant predictor of correctly estimating a state, Χ2(3) = 5.27, Pr (> Chisq) = 0.15.  
Non-orthogonal contrasts revealed that state estimations were not significantly more 
correct for Feature Weight compared to Baseline, B(SE) = 0.42(0.22), z = 1.91, p = 
0.06, odds ratio = 1.52, or between Decision Rules or Baseline, B(SE) = -0.03(0.21), z 
= -0.16, p = 0.88, odds ratio = 0.96, or between Combined or Baseline, B(SE) = 
0.21(0.22), z = 0.97, p = 0.33, odds ratio = 1.23. 

3.2 Correct Automation Usage  

The correct automation usage is categorical with two categories of yes or no. Dis-
play was not a significant predictor of correctly using automation, Χ2(3) = 5.90, Pr (> 
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Chisq) = 0.12. Non-orthogonal contrasts revealed that automation usage was not sig-
nificantly more correct for Feature Weight compared to Baseline, B(SE) = 0.47(0.26), 
z = 1.83, p = 0.07, odds ratio = 1.61, or between Decision Rules or Baseline, B(SE) = -
0.12(0.24), z = -0.5, p = 0.60, odds ratio = 0.88, or between Combined or Baseline, 
B(SE) = 0.17(0.25), z = 0.70, p = 0.48, odds ratio = 0.17.  

3.3 Correct Automation Rejection  

The correct automation rejection is categorical with two categories of yes or no. Dis-
play was not a significant predictor of correctly rejecting automation, Χ2(3) = 0.88, Pr 
(> Chisq) = 0.83. Non-orthogonal contrasts revealed that automation usage was not 
significantly more correct for Feature Weight compared to Baseline, B(SE) = 
0.35(0.44), z = 0.80, p = 0.42, odds ratio = 1.43, or between Decision Rules or Base-
line, B(SE) = 0.26(0.44), z = 0.60, p = 0.55, odds ratio = 1.30, or between Combined 
or Baseline, B(SE) = 0.35(0.44), z = 0.80, p = 0.42, odds ratio = 1.43. 

3.4 Mean Confidence, Mean Trust, Workload, Mean Response Time  

We calculated workload scores using the method advised by [3]. We scaled the work-
load scores and the first 10 questions in the modified trust questionnaire to 0 to 100 
(inclusive) for the analysis. 

According to Levene’s test, the homogeneity of variance assumption was met for 
mean confidence F (3,92) = 0.11, Pr(>F) = 0.96,   mean trust F (3,92) = 2.21, Pr(>F) = 
0.09, and workload F (3,92) = 0.36, Pr(>F) = 0.78. According to Shapiro-Wilk test, 
mean confidence (W = 0.99, p = 0.50), mean trust (W = 0.97, p = 0.06), and workload 
(W = 0.98, p = 0.40) met the assumption of normality. 

We conducted ezANOVA on these variables with orthogonal contrasts. Mauchly’s 
test indicated that the assumption of sphericity had been met for mean confidence	
(W = 0.91, p = 0.85), mean trust (W = 0.72, p = 0.21), and workload (W = 0.73, p = 
0.24). The results showed that mean confidence F (3,69) = 2.56, p = 0.66, η2= 0.02, 
mean trust F (3,69) = 0.43, p = 0.73, η2 = 0.01, and workload F (3,69) = 0.40, p = 0.75, 
η2 = 0.01were not significantly affected by the type of Display. 

According to Levene’s test, the homogeneity of variance assumption was met for 
mean response time, F (3,92) = 0.13, Pr (>F) = 0.94. However, according to Shapiro-
Wilk test, the assumption of normality has been violated for mean response time (W = 
0.94, p < 0.05). Log transformation was used after which it met the assumption of 
normality (W = 0.99, p = 0.82). We conducted ezANOVA on mean response time. 
Mauchly’s test indicated that the assumption of sphericity had been violated for mean 
response time (W = 0.33, p <.05), therefore, degrees of freedom were corrected using 
Huynh-Feld estimates of sphericity (ε = 0.74). The results showed that mean response 
time was not significantly affected by the type of display, F (2.21,50.85) = 0.67, p = 
0.53, η2 = 0.01. 
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4 Discussion and Conclusion  

We found no evidence to corroborate the common belief that presenting a rationale 
for a decision aid’s conclusion will positively impact automation reliance and efficacy. 
Disclosing information about the decision process in the form of local feature weights, 
decision rules or both combined did not predict performance on state estimation, au-
tomation reliance, trust or self-confidence, workload, or mean response time.  

One of many limitations is the constraints that we imposed on the ML features (see 
2.2). It is possible that, had we not restricted the ML features in the described manner, 
participants may have benefitted more from the rationale disclosure. However, it is 
also possible that the complex nature of ML models may not lend itself to controlled 
experimental traditions that characterize human factors and ergonomics research. 
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