Epistemic Logic Programs with World View Constraints

Patrick Kahl and Anthony Leclerc

June 4, 2018
Epistemic Logic Programs with World View Constraints

Patrick Thor Kahl
Space and Naval Warfare Systems Center Atlantic
North Charleston, SC, USA
patrick.kahl@navy.mil

Anthony P. Leclerc
Space and Naval Warfare Systems Center Atlantic
North Charleston, SC, USA
anthony.leclerc@navy.mil

Abstract

An epistemic logic program is a set of rules written in the language of Epistemic Specifications, an extension of the language of answer set programming that provides for more powerful introspective reasoning through the use of modal operators K and M. We propose adding a new construct to Epistemic Specifications called a world view constraint that provides a universal device for expressing global constraints in the various versions of the language. We further propose the use of subjective literals (literals preceded by K or M) in rule heads as syntactic sugar for world view constraints. Additionally, we provide an algorithm for finding the world views of such programs.

2012 ACM Subject Classification Software and its engineering → Software notations and tools → General programming languages → Language features → Constraints

Keywords and phrases Epistemic Specifications, Epistemic Logic Programs, Constraints, World View Constraints, World View Rules, WV Facts, Answer Set Programming, Logic Programming

Acknowledgements The authors wish to express their thanks to Evan Austin, Michael Gelfond, and ICLP anonymous reviewers for their valued suggestions and comments on drafts of this work.

1 Introduction

The language of Epistemic Specifications extends answer set programming (ASP) by adding modal operators K (“known”) and M (“may be true”). It was introduced by Gelfond [16] after observing a need for more powerful introspective reasoning than that offered by ASP alone. A program written in this language is called an epistemic logic program (ELP), with semantics defined using the notion of a world view—a collection of sets of literals (belief sets), analogous to answer sets of an ASP program. Recent interest has led to a succession of proposed semantics [18, 22, 13, 36, 45] advocating differing perspectives with respect to the meaning of connectives and intended world views of programs. This clash of intuition is only one aspect of the problem as defining a semantics that facilitates understanding and yet accurately reflects intuition appears to be quite difficult as discussed in Section 2.

In this paper, we don’t try to resolve the clash; instead, we focus on the important problem of modeling knowledge using purely epistemic constraints. With the original semantics, such constraints could be used to eliminate possible worlds. As will be shown, this property was lost with the more recent semantics. This leads to substantial difficulties in modeling knowledge. Thus, in an attempt to facilitate ELP development in the midst of language evolution, we propose extending the language with a syntactic construct called a world view
constraint (WVC) to distinguish certain constraints as global. WVCs are universal—immune by design to the various devices (e.g., maximality requirements) used to tweak the semantics.

As an introductory example, let us look at a simple epistemic logic program that features a purely epistemic constraint:

\[
p \lor q. \quad \leftarrow \neg Kp. \quad \% \text{purely epistemic constraint}
\]

The second rule is purely epistemic in that its body consists solely of a subjective literal whose interpretation is global in the sense that its truth value depends on the entire collection of belief sets in some possible world view rather than some current (local) working set. To be precise, the truth value of \(\neg Kp\) depends on whether \(p\) is in all belief sets of some possible world view under consideration. For example, considering \(W = \{\{p\}, \{q\}\}\) as a possible world view, \(\neg Kp\) evaluates to true, thus violating the constraint.

As \(W\) is the only possible world view that is consistent with the rest of the program (i.e., the first rule), this program has no world view under the original semantics [16]. However, under most of the recently proposed semantics [22, 13, 36], its world view is \(\{\{p\}\}\)—a result that some may consider unexpected. To achieve the same result as that of the original semantics, we propose replacing the second rule with the following:

\[
\neg Kp. \quad \% \text{world view constraint}
\]

which results in no world view for any of the proposed ELP semantics (if extended with our new construct). This motivating example and others are discussed in Sections 3 and 5.

The paper is organized as follows. We begin with a summary of related work in development of the language semantics and ELP solvers. Next we discuss the use of constraints in both ASP and Epistemic Specifications, providing motivational argument for the introduction of WVCs. We then present the syntax and semantics of the extended language. We follow with examples demonstrating its use. Finally, we give an algorithm for computing the world views of an ELP with WVCs, and close with suggestions for related extensions.

2 Background and Related Work

With his good friend and colleague Vladimir Lifschitz, the foundations for what we now call answer set programming (ASP) had been laid down in the seminal works of Michael Gelfond [20, 21] by 1991. It seems strange in hindsight that, in the same year, a far less known language called Epistemic Specifications was proposed by Gelfond [16] in an attempt to address an observed inadequacy in the expressiveness of its better known predecessor. Gelfond noticed that the following ASP program does not entail a required interview for a scholarship applicant whose eligibility is not able to be established:

\[
% \text{rules for scholarship eligibility at a certain college where } S \text{ represents a scholarship applicant}
\]

\[
\text{eligible}(S) \leftarrow \text{highGPA}(S).
\]

\[
\text{eligible}(S) \leftarrow \text{fairGPA}(S), \text{minority}(S).
\]

\[
\neg \text{eligible}(S) \leftarrow \neg \text{highGPA}(S), \neg \text{fairGPA}(S).
\]

\[
% \text{ASP attempt to express that an interview is required if applicant eligibility can’t be determined}
\]

\[
\text{interview}(S) \leftarrow \neg \text{eligible}(S), \neg \neg \text{eligible}(S).
\]

\[
% \text{applicant data}
\]

\[
\text{fairGPA}(mike) \text{ or } \text{highGPA}(mike).
\]

The program correctly reflects that Mike’s eligibility can not be determined, but its answer sets, \(\{\text{fairGPA}(mike), \text{interview}(mike)\}\) and \(\{\text{highGPA}(mike), \text{eligible}(mike)\}\), do not conclude that an interview is required since only one contains \text{interview}(mike).
Gelfond’s solution was to extend the language by adding modal operator K (“known”) and changing the fourth rule above as follows:

% updated rule to express interview requirement using modal operator K
interview(S) ← $\neg K$ eligible(S), $\neg K$ ¬ eligible(S).

The updated rule says that $interview(S)$ is to be believed if both $eligible(S)$ and $¬ eligible(S)$ are each $not known$ (i.e., not in all belief sets of the world view). The program has world view \{fairGPA(mike), interview(mike), highGPA(mike), eligible(mike), interview(mike)\} with its belief sets both containing $interview(mike)$; thus, the required interview is entailed.

Although the language of Epistemic Specifications was revised in the first years of its introduction, after 1994 [6, 17] (referred to hereafter as ES1994) little concerning its semantics was seen in the literature for almost two decades. In the intervening years before 2011, Chen [11] proposed GOL, a generalization of Levesque’s logic of only knowing (OL) [29], that “covers Gelfond’s important notion of Epistemic Specifications.” Preda [34] proposed an alternative to Epistemic Specifications using multiple levels of negation (perhaps a precursor to the 2016 Shen-Eiter proposal discussed later). Wang and Yan Zhang [42] offered another alternative, proposing an epistemic extension to Pearce’s equilibrium logic of here-and-there [33]. Efforts in 2011 by Faber & Woltran [14] and Truszczyński [40] mark the beginning of a renewed interest in Epistemic Specifications.

With the resurgence of interest, Gelfond felt an update to Epistemic Specifications was needed. His proposal [18] (referred to hereafter as ES2011) specifically addressed unintended world views due to recursion through modal operator K, as exemplified here:

\[p ← K p. \]

Under ES1994 semantics, this program has two world views, \{\} and \{p\}. Under ES2011 semantics, only the first is a world view, which is arguably more intuitive. It was observed, however, that unintended world views due to recursion through modal operator M remain, as demonstrated by the following one-line program:

\[p ← M p. \]

Under ES2011 semantics the program has two world views, \{\} and \{p\}. This result did not seem intuitive. Following Gelfond’s lead, Kahl et al. [23, 22] proposed another update (referred to hereafter as ES2014) to address the issue, with semantics supporting only the latter world view.

It was suggested by Fariñas del Cerro et al. [13] that there remain unintended world views for certain programs with ES2014 semantics, particularly the following:

\[p ← M q, \neg q. \]
\[q ← M p, \neg p. \]

Per ES2014, the program has two world views, \{\} and \{p, \{q\}\}, of which the first, they argue, seems unintended. Their notion of autoepistemic equilibrium models (AEEMs) attempts to address this concern with a new epistemic extension of equilibrium logic that includes a maximality condition on epistemic equilibrium models. Using AEEMs successfully eliminates \{\} from the above program’s world views.

Shen and Eiter [36] offered another update to the semantics, albeit using different syntactic notation, that focused on resolving unintended world views due to:

- *epistemic circular justification* in which a literal is considered *true* solely on the assumption that it is in all belief sets (i.e., belief in ℓ is justified only by $K \ell$); and
- *not satisfying the property of knowledge minimization with epistemic negation*.

The property of knowledge minimization with epistemic negation is based on a maximality requirement on a *guess* (i.e., a set of epistemic negations—equivalent to subjective literals of the forms $\neg K \ell$ and $M \ell$—considered *true* within the program under consideration) for
its associated collection of belief sets to be a world view, all other conditions being satisfied. In [24], the authors provided a revision of ES2014 semantics by adding this maximality requirement (referred to hereafter as ES2016).

Following suit, Zhizheng Zhang [46] updated his semantics for answer set programming with graded modality (ASPGM) by adding a maximality condition in line with Shen and Eiter. With some syntactic liberty, Epistemic Specifications can be viewed as a proper subset of ASPGM allowing for expressing a lower and upper bound on the number of belief sets containing a specified literal within a world view. (We will revisit ASPGM in Section 7.)

Recently, Yan Zhang and Yuanlin Zhang [45] offered a different semantics for ELPs, with a stricter view on circular justification. To illustrate, they argue that the program

\[p \leftarrow \text{M} \ p. \]

should have the world view \{\} rather than \{p\} as they do not consider circular justification of \(p \) as sufficient reason to accept the latter. To them, justification for \(\text{M} \ p \) being true requires that belief in \(p \) is forced in some belief set of the rational agent.\(^1\) Others argue that \(\text{M} \ p \) is equivalent to not K not \(p \) and that the rationality principle (which states that a rational agent should believe only what it is forced to believe) favors not knowing (not K) over knowing (K), so \{p\} is the preferred world view. In contrast, Zhang & Zhang use this same principle to argue against \{p\} since the possibility of \(p \) is not viewed as enough by itself to force belief in \(p \).

Regardless of differing views, it appears there remains room for improvement. As one example, in [36] the problem of unintended world views due to recursion through \(\text{M} \) is defined as a semantics for which “its world views do not satisfy the property of knowledge minimization with epistemic negation.” Use of this definition avoids the question of whether, based on intuition, a program has unintended world views. Consider again the program

\[
\begin{align*}
 p & \leftarrow \text{M} \ q, \ \text{not} \ q. \\
 q & \leftarrow \text{M} \ p, \ \text{not} \ p.
\end{align*}
\]

for which \{p, q\} is the only world view per this knowledge minimization property. Adding

\[r \leftarrow \text{M} \ p, \ \text{M} \ q. \]

results in the world view \{p, q, r\}, as one might expect. But now if we add the rule

\[s \leftarrow \text{K} \ r. \]

we get two world views: \{p, r, s\}, \{q, r, s\} and \{\}. In lieu of the other results, this seems unintuitive in spite of following the property of knowledge minimization with epistemic negation. We believe this demonstrates the difficulty in defining an intuitive semantics.

In conjunction with development of the language, there has been concomitant development of tools for finding world views. Attempts at developing a solver or inference engine include ELMo by Watson [43], sismodels by Balduccini [3], Wviews by Kelly [25, 26, 41] using Yan Zhang’s algorithm [44], ESmodels by Zhizheng Zhang et al. [35, 47], ELPS by Balai [1, 2], ELPsolve by the authors [24], EP-ASP by Son et al. [27, 37], EHEX by Strasser [38], and selp by Bichler et al. [7, 8]. A thorough discussion of these tools is left for another paper [28]. It deserves note, however, that all extant solvers use an ASP solver for backend processing, and as ASP solver development has matured, ELP solver development has slowly followed.

3 Motivation for World View Constraints

It is well known (see, for example, Proposition 2 in [31]) that constraints (headless rules) in an ASP program have the net effect of, at most, ruling out certain answer sets from the

\(^1\) See the notion of an externally-supported M-cycle in [23].
program (modulo its constraints). To illustrate, consider the following ASP program:

\[
p \text{ or } q.
\]

\[
p \leftarrow q.
\]

which has one answer set \{p\}. If we add the constraint

\[
\leftarrow p, \text{not } q.
\]

the resulting program has no answer set since \{p\} violates this constraint.

With Epistemic Specifications, constraints can have an additive or subtractive effect on belief sets or entire world views. Consider, for example, the following ELP:

\[
p \text{ or } q.
\]

\[
r \leftarrow M q.
\]

with world view \{\{p, r\}, \{q, r\}\}. If we add the constraint

\[
\leftarrow q.
\]

the resulting program has world view \{\{p\}\}. Let’s look at another example:

\[
p \text{ or } q.
\]

\[
r \leftarrow M p.
\]

\[
s \text{ or } t \leftarrow K p.
\]

This program has a single world view, \{\{p, r\}, \{q, r\}\}. If we add the constraint

\[
\leftarrow M p, M q.
\]

the resulting program has two world views per ES2016: \{\{p, r, s\}, \{p, r, t\}\} and \{\{q\}\}.

The previous examples illustrate potential differences in the effect of constraints on an ELP compared to an ASP program. The last may also show how constraints can be a possible source of confusion with respect to world views. Consider another example:

\[
p \text{ or } q.
\]

\[
\leftarrow \text{not } K p.
\]

Under ES2016 semantics, its world view is \{\{p\}\}; however, under the original semantics [16], the program has no world view. This raises the question:

Which result is intended?

If the intent of the constraint is to rule out world views that do not contain p in every belief set, then the latter (from the original semantics) would seem correct. Under the later semantics, the net effect of the constraint is to eliminate belief sets that would otherwise result in a world view that violates the constraint.

For ES2014 semantics, it was shown in [22] that, in general, to eliminate world views that do not contain p in every belief set (and not simply eliminate belief sets from a world view that would otherwise not meet this requirement), two constraints are required instead of the one given above, resulting here in the following program:

\[
p \text{ or } q.
\]

\[
\leftarrow p, \text{not } K p.
\]

\[
\leftarrow \text{not } M p.
\]

So with ES2014 semantics we now have a program with no world view. The same is true in this case with the later ES2016 semantics; however, the new maximality requirement in ES2016 means such “tricks” won’t work for all programs. Consider the following:

\[
p \leftarrow M q, \text{not } q.
\]

\[
q \leftarrow M p, \text{not } p.
\]

\[
r \leftarrow M p, M q.
\]

Under ES2014 semantics, \{\{}\} and \{\{p, r\}, \{q, r\}\} are the world views. Per ES2016, only the latter is a world view. If we now add the constraint

\[
\leftarrow q.
\]

2 Should the program even have a world view? Under the earlier ES1994 semantics, it does not!
the resulting program has world view \{\}\{\}, which is not an ES2016 world view without this constraint. We observe that there does not appear to be a general way to simply rule out world views under ES2016 semantics. This observation leads to our thesis.

As the semantics of Epistemic Specifications has evolved to address unintended world views and support intuition with respect to certain programs, we believe the added complexity has had a negative side effect with respect to intuitive understanding of certain other programs—particularly those involving constraints with subjective literals. Thus, in an attempt to facilitate correct problem encoding/program development in line with intuition, we propose a new language construct called a world view constraint (WVC) and introduce symbol \(\mathcal{W} \) read as “it is not a world view (if...)” for use in forming a WVC. For example,

\[\mathcal{W} \leftarrow K \ p. \]

is read “it is not a world view if \(p \) is known” and means (informally) that any world view satisfying \(K \ p. \) is ruled out from the set of world views of the program under consideration. This is analogous to how constraints affect answer sets in ASP, though at the world view level for Epistemic Specifications.

4 Syntax and Semantics

For the purpose of demonstrating the use of WVCs, we first define the syntax and semantics for two versions of the language: ES2014 and ES2016. We direct the reader to the papers referenced earlier for information on other versions of Epistemic Specifications. We present our proposal for extending the language in Section 4.3, and follow by suggesting a means of expressing the bounds for the grounding of variables within the context of the new constructs.

In general, the syntax and semantics of the language of Epistemic Specifications follow that of ASP with the notable addition of modal operators \(K \) and \(M \), plus the new notion of a world view which is a collection of belief sets analogous to answer sets. We assume familiarity with ASP \([5, 9, 15, 19, 30]\). We use \(\text{AS}(\mathcal{P}) \) to denote the set of answer sets of ASP program \(\mathcal{P} \). We use symbol \(\models \) for satisfies and \(\not\models \) for does not satisfy.

4.1 Syntax [ES2014 and ES2016]

An epistemic logic program is a set of rules of the form

\[\ell_1 \lor \ldots \lor \ell_k \leftarrow e_1, \ldots, e_n. \]

where \(k \geq 0 \), \(n \geq 0 \), each \(\ell_i \) is a literal (an atom or a classically-/strongly-negated atom; called an objective literal when needed to avoid ambiguity), and each \(e_i \) is a literal or a subjective literal (a literal immediately preceded by \(K \) or \(M \)) possibly preceded by not (default negation). As in ASP, a rule having an objective/subjective literal with a variable term is a shorthand for all ground instantiations of the rule. By \(\text{body}(R) \) we denote the set \(\{e_1, \ldots, e_n\} \) from the body of rule \(R \).

4.2 Semantics

Definition 1. [When a Subjective Literal Is Satisfied]

Let \(W \) be a non-empty set of consistent sets of ground literals, and \(\ell \) be a ground literal.

\[W \models K \ell \text{ if } \forall A \in W: \ell \in A. \]

\[W \models \neg K \ell \text{ if } \exists A \in W: \ell \notin A. \]

\[W \models M \ell \text{ if } \exists A \in W: \ell \in A. \]

\[W \models \neg M \ell \text{ if } \forall A \in W: \ell \notin A. \]
Definition 2. [Modal Reduct]
Let Π be a ground epistemic logic program, W be a non-empty set of consistent sets of ground literals, and ℓ be a ground literal. We denote by Π^W the modal reduct of Π with respect to W defined as the ASP program obtained from Π by replacing/removing subjective literals in rule bodies or deleting associated rules per the following table:

<table>
<thead>
<tr>
<th>subjective literal φ</th>
<th>if $W \models \varphi$ then...</th>
<th>if $W \not\models \varphi$ then...</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\neg K \ell$</td>
<td>replace $K \ell$ with ℓ</td>
<td>delete rule containing $K \ell$</td>
</tr>
<tr>
<td>$\neg M \ell$</td>
<td>remove $M \ell$</td>
<td>replace $M \ell$ with $\neg \ell$</td>
</tr>
</tbody>
</table>

Definition 3. [World View under ES2014 Semantics]
Let Π be a ground epistemic logic program and W be a non-empty set of consistent sets of literals. W is a world view of Π under ES2014 semantics if $W = \text{AS}(\Pi^W)$.

Definition 4. [Epistemic Negations]
Let Π be a ground epistemic logic program, W be a non-empty set of consistent sets of literals, and ℓ be a ground literal. We denote by $E^\varphi(\Pi)$ the set of distinct subjective literals appearing (regardless of being negated) in Π, each taking the form of $\neg K \ell$ or $M \ell$ (referred to as epistemic negations) as follows:

$$E^\varphi(\Pi) = \{ \neg K \ell : K \ell \text{ appears in } \Pi \} \cup \{ M \ell : M \ell \text{ appears in } \Pi \}.$$ In context with Π, we use Φ to denote a subset of $E^\varphi(\Pi)$, and denote by Φ_W the subset of epistemic negations in $E^\varphi(\Pi)$ that are satisfied by W; i.e., $\Phi_W = \{ \varphi : \varphi \in E^\varphi(\Pi) \wedge W \models \varphi \}$.

Definition 5. [World View under ES2016 Semantics]
Let Π be a ground epistemic logic program and W be a non-empty set of consistent sets of literals. W is a world view of Π under ES2016 semantics if:

1. $W = \text{AS}(\Pi^W)$; and
2. There is no W' such that $W' = \text{AS}(\Pi^{W'})$ and $\Phi_W \supset \Phi_W$.5

4.3 World View Constraints and World View Rules
We extend the language of Epistemic Specifications by introducing a world view constraint as a construct for restricting the world views of an ELP, and a world view rule as a syntactic device for specifying a world view constraint in an effort to facilitate problem encoding/program development. The syntax and semantics of ES2016 are assumed here for the core ELP, though the definitions should work with other language versions.

4.3.1 World View Constraints
A world view constraint (WVC) is an epistemic logic program rule of the form

$$\forall s_1, \ldots, s_n.$$

where each s_i is a (possibly negated) subjective literal.6

5 A negated subjective literal is of the form $\neg K \ell$ or the form $\neg M \ell$ in ES2016 syntax.

6 The maximality requirement on Φ_W comes from the general epistemic semantics of Shen and Eiter [36].
Definition 6. [When a World View Constraint Is Violated]
Let W be a non-empty set of consistent sets of ground literals, and C be a ground WVC of the form $\forall s_i \in \text{body}(C) : W \models s_i$.\footnote{Likewise, we say that W satisfies C (i.e., $W \models C$) if $\exists s_i \in \text{body}(C) : W \not\models s_i$.}

Definition 7. [Semantics of an ELP with WVCs]
Let Π be a ground ELP with WVCs such that $\Pi = \Pi_0 \cup \Pi_{wvc}$ where Π_{wvc} is the set of all WVCs in Π and $\Pi_0 = \Pi \setminus \Pi_{wvc}$ (i.e., the part of the program without WVCs). Let W be a non-empty set of consistent sets of ground literals. W is a world view of Π if:

1. W is a world view of Π_0;
2. W does not violate any rule in Π_{wvc}.

Returning to our example, let Π be the following program, partitioned as shown:

\[
\begin{align*}
p &\leftarrow M q, \neg q. \\
q &\leftarrow M p, \neg p. \\
r &\leftarrow M p, M q. \\
\exists^\forall K r. \\
\end{align*}
\]

Π_{wvc} has one world view $W = \{\{p, r\}, \{q, r\}\}$, but by our definition W violates the WVC in Π_{wvc} since $W \not\models K r$; hence, Π has no world view.

4.3.2 World View Rules and World View Facts
A world view rule (WVR) is an epistemic logic program rule of the form

\[
s_1 \text{ or } ... \text{ or } s_k \leftarrow s_{k+1}, ..., s_n.
\]

where each s_i is a (possibly negated) subjective literal. We define a WVR as follows:

\[
s_1 \text{ or } ... \text{ or } s_k \leftarrow s_{k+1}, ..., s_n. \overset{\text{def}}{=} \neg \neg s_1, ..., \neg s_k, s_{k+1}, ..., s_n.
\]

where $\neg \neg \varphi \equiv \varphi$ for a subjective literal φ. A WVR is thus syntactic sugar for a WVC.

Similar to a fact in ASP, the \exists^\forall symbol can be omitted from a WVR with no body. We refer to such rules as world view facts, or WV facts,\footnote{In addition to being a notational convenience, solver developers can avoid introducing a new token for the \exists^\forall symbol since any WVC can be expressed as a (possibly disjunctive) WV fact.} and use below in our example:

\[
p \leftarrow M q, \neg q. \\
q \leftarrow M p, \neg p. \\
r \leftarrow M p, M q. \\
\neg K r. \quad \% \text{ equivalent to } \exists^\forall K r.
\]

Note that with these definitions, any WVC can be written as a WVR, or equivalently as a WV fact. To demonstrate, the following three rules are all strongly equivalent:

\[
\begin{align*}
\exists^\forall K p, \neg K q, M r, \neg M s. &\quad \% \text{ expressed here as a WVC} \\
\neg K p \text{ or } K q \leftarrow M r, \neg M s. &\quad \% \text{ expressed here as a WVR} \\
\neg K p \text{ or } K q \text{ or } \neg M r \text{ or } M s. &\quad \% \text{ expressed here as a WV fact}
\end{align*}
\]

4.4 Grounding Concerns
The issue of grounding an ELP received attention by both Kelly [25] and Cui et al. [12]. In [23], Kahl proposed an ELP solver algorithm that first creates a corresponding ASP program from the ungrounded ELP, and then uses an ASP grounder to determine the associated ground terms. This requires the rules in the ELP to be safe in the sense that any variable...
term appearing in a rule has a corresponding positive literal (either an objective literal or a subjective literal of the form $K\ell$) in the body with the same variable term.

Having only subjective literals of the form $K\ell$ available for rule safety is too restrictive for WVCs. One could argue that the use of a sorted signature, such as in an epistemic logic program with sorts [2], would suffice if rule safety were the only issue; however, being able to limit the grounding of variable terms to less than the full range of their acceptable domains is key to abstraction. Without such capability, flexibility and elaboration tolerance suffer.

To address the practical need of having a reasonable way to express limits on the domain of a variable term in a WVC, we propose an extended syntax for a WV fact as follows:

$$s_1 \text{ or } ... \text{ or } s_m \leftarrow d_1, ..., d_n.$$

where each s_i is a (possibly negated) subjective literal, and each d_i is a domain atom9—also referred to as a domain predicate [39]—or a comparison atom (typically expressed using an infix “built-in” predicate; e.g., $X \neq a$). The body is used here only to determine the appropriate grounding of variable terms in the head of the rule. The use of the \leftarrow symbol is intentional as the body is not (after grounding and translation) part of any WVC.10 The program rules below demonstrate the use of this extended syntax:

- **% domain atoms**

 $d_{_x}(a)$. $d_{_x}(b)$. $d_{_y}(0)$. $d_{_y}(1)$. $d_{_y}(2)$. $d_{_y}(3)$.

- **% WV fact using the extended syntax**

 $\text{not} \ K(p(X, Y)) \text{ or } M(q(X) \leftarrow d_{_x}(X), d_{_y}(Y), Y < 2$.

Grounding11 the last rule results in four WV facts:

- $\text{not} \ K(p(a, 0)) \text{ or } M(q(a))$.
- $\text{not} \ K(p(b, 0)) \text{ or } M(q(b))$.
- $\text{not} \ K(p(a, 1)) \text{ or } M(q(a))$.
- $\text{not} \ K(p(b, 1)) \text{ or } M(q(b))$.

5 Examples and Simplifications

Henceforth, ES2016 extended with WVCs is assumed unless stated otherwise.

5.1 Epistemic Conformant Planning Module

The epistemic conformant planning module12 for ES2014 with a sorted signature is as follows:

- $\text{occurs}(A, S) \leftarrow M\text{ occurs}(A, S), S < n$.
- $\text{not occurs}(A_2, S) \leftarrow \text{occurs}(A_1, S), A_1 \neq A_2$.
- $\text{success} \leftarrow \text{goal}(n)$.
- $\leftarrow \text{success}, \text{not} \ K\text{ success}$.
- $\leftarrow \text{not} \ M\text{ success}$.

where constant $n \in \mathbb{N}$ represents the plan horizon, variables A, A_1, and A_2 range over actions, and variable S ranges over integral time steps where $0 \leq S \leq n$. The last two rules are constraints that together (as discussed in Section 3) rule out world views that do not satisfy $K\text{ success}$. With the proposed extension, we can replace these two constraints with one WVC that is succinct, intuitive, and easier to understand than the original pair of constraints:

9 The associated ground domain atoms are understood to be the same in every belief set.
10 It also fits well with the idea that the solver developer need not introduce a new token for the \leftarrow symbol.
11 to include forward propagation with removal of body literals that are always true and removal of any rule where a body literal is always false (so-called “smart” grounding).
12 See [22] for details on the use of ELPs to solve conformant planning problems using this module.
not K success.

This is also relevant in that the proof of correctness for solving conformant planning problems encoded using the original epistemic conformant planning module (with the other elements of this methodology) depends in part on the two constraints ruling out world views that do not satisfy K success; however, that part of the proof is not valid for ES2016 semantics. Using the proposed WVC instead of the two original constraints elucidates this for both semantics.

5.2 Autonomous Control

Consider an exploratory robot operating on Mars with a round-trip communication delay of 30 minutes with Earth. Although an Earth operator may receive a continuous stream of data from the robot, the data is already 15 minutes old when received, and any instruction sent will not be received by the robot for another 15 minutes. As Thomas Ormston [32] of the European Space Agency put it, “there’s a lot that can happen in half an hour on Mars.” It is important, for example, that the robot does not fall off a cliff. Though intermittent goals may be provided from Earth, some autonomous control is needed for the robot to move at a reasonable pace. We envision as part of the on-board control system of the robot an epistemic planning component that uses information about the terrain and observable surroundings to help form and select a plan to get to a specified goal. Included in rules used to plan could be WVCs as follows:

- $wv \leftarrow M$ likelihood_of_falling_off_a_cliff(high).
- $wv \leftarrow M$ likelihood_of_falling_off_a_cliff(moderate).

These would prevent selecting a plan where the possibility of falling off a cliff is high/moderate.

5.3 Subsumption and Simplification

In the table below are subjective literal forms that can subsume others in a rule body.14

<table>
<thead>
<tr>
<th>subsumer</th>
<th>subsumed</th>
</tr>
</thead>
<tbody>
<tr>
<td>K ℓ</td>
<td>$M \bar{\ell}$</td>
</tr>
<tr>
<td></td>
<td>not $M \bar{\ell}$</td>
</tr>
<tr>
<td></td>
<td>not K $\bar{\ell}$</td>
</tr>
<tr>
<td>not M ℓ</td>
<td>not K ℓ</td>
</tr>
</tbody>
</table>

For example:

- $wv \leftarrow K p, M p, not \ M \bar{p}, not \ K \bar{p}$. $\equiv wv \leftarrow K p.$
- $wv \leftarrow M p, not \ K \bar{p}$. $\equiv wv \leftarrow M p.$
- $wv \leftarrow not \ M p, not \ K p$. $\equiv wv \leftarrow not \ M p.$

With world view constraints, subsumption can also occur across multiple rules, perhaps most easily seen using the WV fact form. Consider the following pair of WV facts:

K p.
M p.

The subsumer-subsumed list above applies to pairs of non-disjunctive WV facts. Any world view satisfying the first rule must satisfy the second; thus, the second rule can be removed.

Identifying tautologies can also help in program simplification. For example, WV fact

K p or not K p.

is worthless and can be removed. For a more complex example, consider the following rules:

M q or K p.
M q or not K p.

With respect to any world view of a program containing this pair, either Kp or not Kp will be satisfied (but not both), so these two rules can be reduced to the one rule: M q.

13 Details of such a control system are beyond the scope of this paper and left to the reader’s imagination.

14 The symbol $\bar{\ell}$ in the table indicates the logical complement of (ground) objective literal ℓ, e.g., if $\ell = \neg p$ then $\bar{\ell} = p$. Logical subsumption follows from Definition 1 and the definition of a world view.
6 Algorithm for Computing World Views of an ELP with WVCs

The following is a generic algorithm for finding the world views of an ELP with WVCs:

\[
\begin{align*}
\text{Generic Algorithm} \\
\text{INPUT: } & \Pi (\text{a ground ELP with WVCs}) \\
1. & \text{partition } \Pi \text{ into } \Pi_{\text{wvc}} (\text{the WVCs of } \Pi) \text{ and } \Pi_0 = \Pi \setminus \Pi_{\text{wvc}} \\
2. & \text{use your favorite ELP solver to find the world views of } \Pi_0 \\
3. & \text{eliminate any world view of } \Pi_0 \text{ that violates a WVC of } \Pi_{\text{wvc}} \\
\text{OUTPUT: } & \text{remaining world views of } \Pi_0 \text{ not eliminated in Step 3}
\end{align*}
\]

For those interested in implementing a solver, we now provide a more detailed algorithm. Details of an algorithm to compute the world views of an ELP under ES2016 semantics are given in [24]. We use a simplified version, modified to handle WVCs. Although we provided a grounding strategy for WVCs in Section 4.4, for brevity, the input is assumed ground.

Notation: From a ground ELP with WVCs \(\Pi = \Pi_0 \cup \Pi_{\text{wvc}}\), ASP program \(\Pi'_0\) is created as a modal reduct framework to aid in computing the world views of \(\Pi_0\). For each literal \(\ell\) appearing in an epistemic negation of the form \(\neg K \ell \in E_p(\Pi_0)\), fresh atoms \(k_\ell, k0_\ell, k1_\ell\) are created by prefixing \(\ell\) with \(k\), \(0\), and \(1\) (respectively), and substituting 2 for \(\neg \ell\) if \(\ell\) is a classically- or strongly-negated atom. Likewise, for \(\ell\) appearing in an epistemic negation of the form \(M \ell \in E_p(\Pi_0)\), fresh atoms \(m_\ell, m0_\ell, m1_\ell\) are created. These fresh atoms are referred to as \(k/m\)-atoms, or, for allowed negated forms, \(k/m\)-literals. For example, given an epistemic negation of the form \(\neg K \ell\), if \(\ell = p(a)\) then \(k_\ell\) denotes \(k_2p(a)\), but if \(\ell = \neg p(a)\) then \(k_\ell\) denotes \(k_2p(a)\). Fresh atoms \(k_\ell\) (in negated form) and \(m_\ell\) are used as substitutes for \(K \ell\) and \(M \ell\), respectively, in the ASP representation of the modal reduct of \(\Pi\) with respect to a potential world view. The intended meaning of \(k1_\ell\) is “\(K \ell\) is true”; \(k0_\ell\) means “\(K \ell\) is false”; \(m1_\ell\) means “\(M \ell\) is true”; and \(m0_\ell\) means “\(M \ell\) is false”. Additionally, given a set \(W\) of sets of literals (including \(k/m\)-literals), we use \(W_{\text{km}}\) to denote \(W\) modulo \(k/m\)-literals (i.e., the result of removing all \(k/m\)-literals from sets in \(W\)).

The algorithm uses a “guess and check” method to compute the world views of \(\Pi_0\). Each guess corresponds to a set of truth value assignments for the elements of \(E_p(\Pi_0)\). A systematic approach is used, starting with the guess corresponding to the elements of \(E_p(\Pi_0)\) being all \(true\), working down by increasing the number of \(false\) elements by 1 at each successive level. Each computed world view of \(\Pi_0\) is checked to ensure no WVC in \(\Pi_{\text{wvc}}\) is violated before it is considered a world view of \(\Pi\). Any guess for which the epistemic negations assigned as \(true\) are a subset of those for a guess associated with a previously computed \(\Pi_0\) world view will be filtered out. The order of computation and subsequent filtering enforces the maximality requirement of ES2016 semantics. (For ES2014, remove this filtering; also, computation order w.r.t. guesses is irrelevant.)

The algorithm iterates through all relevant guesses, one-guess-at-a-time, requiring (in general) computing answer sets of up to \(2^n\) ASP programs where \(n = |E_p(\Pi_0)|\). This is inefficient but relatively easy to understand. A more complex algorithm may involve including multiple guesses in each ASP program (at the expense of the need for aggregating computed answer sets) and parallelization. See [24] for a solver that uses this approach. Steps that handle WVCs can be applied there, as well as to other approaches, such as the one in [37].

Since we start with a proven algorithm for computing world views of \(\Pi_0\), correctness of the algorithm is clear from the definitions and semantics of an ELP with WVCs given herein. We note that filtering out guesses that would violate WVCs during the computation of world views (rather than filtering out world views as a post-processing step as proposed here) could prune the search if \(E_p(\Pi_0) \cap E_p(\Pi_{\text{wvc}}) \neq \emptyset\), but would (in general) not be correct
per ES2016 semantics. (That approach may be useful for an ES2014 solver.) If, however, there are epistemic negations in \(\Pi_{wvc} \) that are not in \(\Pi_0 \), the search space of guesses is pruned significantly from what it might be without WVCs, assuming those from \(\Pi_{wvc} \) would otherwise be included in other rules.

Finally, as the algorithm simply checks if world views of \(\Pi_0 \) violate the WVCs in \(\Pi_{wvc} \), the effective complexity of solving \(\Pi \) is the same as for solving an equivalent\(^{15}\) ELP \(\Pi_2 \) (without WVCs), assuming \(\Pi_2 \) differs only in constraints, with \(|E_\Phi(\Pi)| \leq |E_\Phi(\Pi_2)| \).

\textbf{Algorithm 1.} [Computing the World Views of an ELP with WVCs]

\begin{center}
\begin{tabular}{ll}
\textbf{INPUT:} & a ground ELP with WVCs \(\Pi \) \\
\textbf{OUTPUT:} & the world views of \(\Pi \)
\end{tabular}
\end{center}

1. \textbf{Program Partition:} Partition \(\Pi \) into \(\Pi_{wvc} \) (the WVCs of \(\Pi \)) and \(\Pi_0 = \Pi \setminus \Pi_{wvc} \).

2. \textbf{Translation:} Create ASP program\(^{16}\) \(\Pi_0' \) from \(\Pi_0 \) by:
 - leaving rules without subjective literals unchanged;
 - otherwise, replacing subjective literals and adding new rules per the following table:

 \[
 \begin{array}{cccc}
 \text{subj. lit. } \varphi & \text{replace } \varphi \text{ with} & \text{add rules} \\
 \hline
 K \ell & \text{not} & -k_\ell, \ell & \neg k_\ell \leftarrow k0_\ell, \\
 \text{not } K \ell & \neg k_\ell & \neg k_\ell \leftarrow k1_\ell, \text{ not } \ell. \\
 M \ell & m_\ell & m_\ell \leftarrow m1_\ell. \\
 \text{not } M \ell & \text{not } m_\ell & m_\ell \leftarrow m0_\ell, \text{ not } \ell.
 \end{array}
 \]

3. \textbf{Guess & Check:} Repeat (a)-(c) until all relevant guesses are generated and checked.
 a. \textbf{Generate Guess:} For each iteration, generate a guess \(\Phi \), starting with \(\Phi = E_\Phi(\Pi_0) \) for the first iteration and moving on in \textit{popcount} order\(^{17}\) for further iterations, filtering out any guess that is a subset of a guess associated with a previously found world view of \(\Pi_0 \). Create \(\Pi_0'' \) by appending to \(\Pi_0' \) the ASP representation of \(\Phi \) (i.e., \(k-/m\)-atoms as facts corresponding to the epistemic negations in \(\Phi \)) as follows:
 \[
 \Pi_0'' = \Pi_0' \cup \{k0_\ell. | \text{not } K \ell \in \Phi \} \cup \{k1_\ell. | \text{not } K \ell \in E_\Phi(\Pi_0) \land \text{not } K \ell \notin \Phi \} \\
 \cup \{m1_\ell. | M \ell \in \Phi \} \cup \{m0_\ell. | M \ell \in E_\Phi(\Pi_0) \land M \ell \notin \Phi \}.
 \]
 b. \textbf{Check Answer Sets:} Use an ASP solver to compute the answer sets of \(\Pi_0'' \).
 c. \textbf{Check:} If \(\Pi_0'' \) is consistent, let \(W \) be the collection of answer sets computed in (b).
 Verify the following conditions:
 - if \(k1_\ell \) is in the sets of \(W \), then \(\ell \) is in every set of \(W \);
 - if \(k0_\ell \) is in the sets of \(W \), then \(\ell \) is missing from at least one set of \(W \);
 - if \(m1_\ell \) is in the sets of \(W \), then \(\ell \) is in at least one set of \(W \); and
 - if \(m0_\ell \) is in the sets of \(W \), then \(\ell \) is missing from every set of \(W \).

 \(W_{\ell/m} \) is a world view of \(\Pi_0 \) if the conditions are met. \(W_{\ell/m} \) is a \textit{world view of \(\Pi \)} if \(W_{\ell/m} \) is a \textit{world view of } \(\Pi_0 \text{ and } W_{\ell/m} \text{ doesn't violate any WVC in } \Pi_{wvc} \).

7 Conclusions and Future Work

World view constraints provide a straightforward device for encoding restrictions on the world views of an ELP, allowing the specification of high-level conditions that must not be violated. They do not fix all semantics issues, but WVCs retain consistent meaning in all.

\(^{15}\)We note there may not be a straightforward equivalent program without WVCs under ES2016 semantics.

\(^{16}\)with nested expressions of the form \textit{not not } \ell as defined in [31]

\(^{17}\)guess size (|\(\Phi \)|) will be reduced by one after exhausting all guesses of the current size
WVCs can also be a useful addition to languages extending Epistemic Specifications, such as ASP$^\text{GM}$ [46]. Subjective literals in ASP$^\text{GM}$ have the form $M_{[lb,ub]} \ell$ where $lb, ub \in \mathbb{N}$, $lb \leq ub$, and ℓ is a literal. For $M_{[lb,ub]} \ell$ to be satisfied by a world view, the number of belief sets containing ℓ must be in the closed range $[lb, ub]$. To indicate no upper bound, ub can be omitted. The definitions in Section 4.3.1 can be used to extend ASP$^\text{GM}$ with WVCs; however, support for negated subjective literals needs to be added for the later definitions to apply.

For future work, we would like to incorporate the notion of weak WVCs into Epistemic Specifications in a manner analogous to weak constraints [10] in ASP, but at the world view level. In principle, these would function like normal WVCs unless the program is inconsistent, where they would be systematically relaxed (perhaps in order by given weight/level) until consistency or exhaustion. Ergo, we introduce symbol \mathcal{E}° and suggest the following syntax:

$$\mathcal{E}^\circ s_1, ..., s_n. \ [w@l]$$

where $n > 0$, each s_i is a (possibly negated) subjective literal, and both w and l are non-negative integers representing weight and level values, respectively. Returning to the Martian robot example of Section 5.2, it may be more appropriate for planning to use the following:

$$\mathcal{E}^\circ M \ _\text{likelihood_of_falling_off_a_cliff}(\text{high}).$$
$$\mathcal{E}^\circ M \ _\text{likelihood_of_falling_off_a_cliff}(\text{moderate}). \ [1@0]$$

These rules express a preference for plans where likelihood of falling off a cliff is neither high nor moderate, but if none exist, moderate likelihood is accepted by relaxing the weak WVC.

References

32 Thomas Ormston. Time delay between Mars and Earth. In: ESA’s Mars Express blog. URL: http://blogs.esa.int/mex/2012/08/05/time-delay-between-mars-and-earth/.

