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Abstract. Lung cancer is a serious threat to human health, accounting
for 26% of the total number of cancer deaths. In order to develop treat-
ment plans for patients with small cell lung cancer, doctors are required
to evaluate their pathological materials, which requires a high level of ex-
perience and knowledge and is time-consuming and labor. In this paper,
we propose an automatic segmentation model of small cell lung can-
cer tumor from pathological section images. A multi-scale convolutional
network is trained on pathological images using ground truth ROIs that
were manually delineated by pathologists for 31 patients. We use high-
resolution to low-resolution parallel convolution to extract multi-scale
features in the first three down-sampling stages of the network’s encod-
ing path. Use mIOU(mean intersection over union) as the evaluation
index to compare the training results of this network with U-Net, and
the results showed that the segmentation results of this network were sig-
nificantly improved compared with U-Net. Code and models are available
at https://github.com/QinchengZhang/PathologySegmentation.

Keywords: Medical image segmentation· Convolutional neural networks·
Multiscale.
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1 Introduction

Lung cancer is a serious threat to human health, accounting for 26% of the total
number of cancer deaths[1], and ranks first in the incidence and mortality of
malignant tumors in China. Small cell lung cancer (SCLC) accounts for about
13% of lung cancer, with high aggressiveness, high mortality and 5-year overall
survival (OS) of only 6.3% [2,3]. Two-thirds of patients with SCLC have distant
metastases, and the most common targets are liver, bone, brain, and lung[4].
For all patients with malignant metastases, brain-metastases (BM) are frequent
in SCLC patients with a high fatality rate.

In recent years, with the increase of detection methods such as CT, PET/CT
and MR and the increase of treatment methods for lung cancer[5,6,7], the sur-
vival rate of lung cancer is increasing year by year. They have facilitated the
development of automated analytical algorithms to reduce the burden and im-
prove the performance of pathologists. Therefore, automatic medical image seg-
mentation has been widely studied in the field of image analysis.

In recent years, a large number of deep learning (DL) methods have been
proposed for automatic image analysis from the cell level to the image level[8].

With the advent of convolutional neural networks (CNNs), near-radiologist-
level performance can be achieved in automated medical image analysis tasks[9,10],
including pulmonary pathology section image segmentation[11]. High expression
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ability, fast reasoning and filter sharing make CNN a practical standard for im-
age segmentation. Fully convolutional networks (FCNs) [12] and the U-Net [13]
are two commonly used architectures.

High-resolution representation learning plays an essential role in semantic
segmentation, especially with high-resolution medical images. Therefore, how to
retain high resolution features in feature extraction has become a problem we
need to solve. Ke Sun et al proposed HRNet [14]. The HRNet maintains high-
resolution representations by connecting high-to-low resolution convolutions in
parallel and strengthens high-resolution representations by repeatedly perform-
ing multi-scale fusion across parallel convolutions.

In this paper, we introduce a novel network based on Encoder-Decoder to
perform the segmentation of the tumor area in pulmonary pathology section
images. This network uses a multi-scale encoder like HRNet to extract high
resolution features. The article is structured as follows. In the first part, we will
introduce the related work. Then we will introduce the method we proposed,
including the dataset we used, the network structure, the evaluation and so on.

2 Related Work

2.1 U-Net

In 2015, Ronneberger et al.[13] proposed a U-shaped fully convolutional network
for medical image segmentation called U-Net, which has a typical symmetrical
codec network structure. U-Net has an obvious advantage that it can make good
use of GPU memory. This advantage is mainly related to extraction of image
features on multiple image scales. U-Net transfers the feature maps obtained in
the encoding stage to the corresponding decoding stage, and merges the feature
maps of different stages through “skip connection” to merge coarse and fine-level
dense predictions. Since then, U-Net has become the baseline for most medical
image segmentation tasks, and has inspired more researchers to think about the
U-shaped structure.

2.2 HRNet

In 2019, Ke Sun et al. published a paper named Deep High-Resolution Rep-
resentation Learning for Human Pose Estimation[14], which proposed a high-
resolution network HRNet. The high-resolution representation is maintained by
parallelizing high-resolution to low-resolution convolution, and the high-resolution
representation is enhanced by performing multi-scale fusion repeatedly across
parallel convolution. The effectiveness of the method is proved in many image
tasks.

3 Methods

U-Net realized multi-scale feature fusion by skipping connection of decoding
path, but its encoding path did not well in multi-scale feature fusion, while
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HRNet realized multi-scale feature extraction. Therefore, we tried to combine
the advantages of the two to achieve an improved method. In this section, we
describe the dataset and our proposed model for segmentation of pulmonary
pathological sections.

3.1 Dataset

In this study, we performed H&E staining of lung tissue sections from 31 patients
using a digital slide scanner(Hamamatsu Nano Zoomer Digital Pathology) with
an objective magnification of 20 times. The SCLC was morphologically diagnosed
according to the criteria of World Health Organization(WHO) classification of
Tumors of the Lung, Pleura, Thymus and Heart (the fourth Edition)[15]. The
area containing tumor cells was circled by one thoracic pathologist.

3.2 Preprocessing

Due to the influence of staining ratio, staining platform, imaging platform and
even different operators, different pathological sections have great differences in
color, which are not suitable for direct training. Therefore, we first use an im-
proved color normalization method based on Vahadane method[16,17] to process
the data. The close look of different tissues in the slides can be seen in Figure 1.

Since the original data annotation is saved in XML format files, we then
generated a binary mask according to the annotation, and we used ASAP to read
the images and annotations in NDPI format. Since the image is too huge, it is
impossible to input the original image into the network during segmentation, so
it must be cut into patches one by one. We intercepted each annotation according
to the annotation information and resized it to 1024 × 1024 size. Then I got 134
patches. The segmented image with the corresponding mask is shown in the
Figure 2.

Next, we use data enhancement methods such as mirroring, flipping, rotating
and offsetting to expand the dataset. We finally got 670 patches.

3.3 Network architecture

Our proposed network structure is shown in the Figure 3.

Network description Our proposed network is based on U-Net, and we use
high-resolution to low-resolution parallel convolution in the first three down-
sampling stages of the encoding path, high-resolution to low-resolution parallel
convolution is like a fully connected structure, in which the high-order features
are connected to the low-order features of the next stage through up-sampling,
and the low-order features are connected to the high-order features of the next
stage through stride convolution, and features of the same order are connected
through convolution with a kernel size of 3 and stride length of 1. so as to ensure
the fusion of multi-scale features and the preservation of high-resolution features.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. Example of original images and color normalized images, where (a), (b), (c)
and (d) are original images, and (e), (f), (g) and (h) are color normalized images

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. (e), (f), (g) and (h) are the binary masks of (a), (b), (c) and (d) respectively
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In order to reduce the number of parameters, we do not use high-resolution to
low-resolution parallel convolution in the fourth down-sampling stage. Instead,
the highest order features of the previous stage are down-sampled to get the
highest order features of this stage, and the rest features are convolved to get
the features of each order of this stage. No changes have been made to the
decoding path. In our experiments, the input and output sizes are 256× 256× 3
and 256× 256× 1 respectively.

Fig. 3. The network we proposed, where StrideConv is two convolution operations with
a stride size of 2 and a convolution kernel of 3. Convblocks is several convolution +
BatchNorm + ReLU operations with stride size of 1 and convolution kernel of 3.

3.4 Training scheme

The loss used for computing the gradients is a combination of binary Dice Sim-
ilarity Coefficient(DSC) and Cross-Entropy (CE) losses defined by Isensee et
al.[18] and computed as LDSC + LCE . This dual loss benefits from the smooth
and bounded cross-entropy loss gradients and the explicitly optimized dice scores
used for evaluation and their robustness against class imbalances. The Dice loss
is computed as

LDSC = 1− 2

∑
i ŷiyi∑

i ŷi +
∑

i yi
(1)

where ŷ ∈ [0, 1] is the softmax output,y ∈ {0, 1} is the ground truth mask and
the sum is computed over all voxels. The cross-entropy loss is computed as

LCE =
∑
i

yi log ŷi + (1− yi) log(1− ŷi) (2)
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We train the networks with a SGD optimizer with a batch size of 12 and use
Poly Learning Rate Policy to adjust the learning rate, the learning rate decline
formula is shown as

lr = lrinitial ∗ (
1− iter

itermax
)power (3)

3.5 Evaluation

To assess the impact of the attention module, our model is compared with other
methods. To enable a fair comparison, data pre-processing, validation and hyper-
parameter search were performed the same way as for our model. We divided the
dataset into 30:1 training set and validation set. The training set and validation
set contain 649 and 21 images respectively.

To evaluate the agreement between the ground truth and the 2-classes pre-
diction, we used the mIOU and kappa coefficient. The mIOU is computed as

mIOU =
1

k + 1

k∑
i=0

pii∑k
j=0 pij +

∑k
j=0 pji − pii

(4)

Where pij represents the real value of i, the predicted number of j, and k+1
is the number of categories.pii is the actual quantity.pij and pji represent false
positive and false negative respectively.

The kappa coefficient is computed as

kappa =
po − pe
1− pe

(5)

Where po is the sum of the number of samples for each correct classification
divided by the total number of samples, which is the total classification accuracy.
pe is the sum of the products of the actual and predicted numbers for each
category, divided by the square of the total number of samples.

4 Experimental settings and results

4.1 Experimental settings

The 670 patches obtained were divided into a training set and a test set, in
which the training set contained 650 patches and the test set 20 patches. During
training, resize each patch to 256× 256.

We set the number of convolution blocks at each down-sampling stage as
2 and 4 respectively, conducted two training sessions and compared them with
other models.

The network was implemented in python with the PaddlePaddle library [19]
and is based on the PaddleSeg project [20,21]. Training and testing were con-
ducted using the mentioned setup and hyper-parameters from scratch on single
NVIDIA Titan RTX of 24GB. 100000 iterations were fixed as upper bound limit
for training each single network, but in all the conducted trials, the best model
always reached around 10000± 2000 iterations.
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4.2 Experimental results

With the above configurations we obtained the quantitative results expressed in
Table 1. This shows that the network we proposed has better robustness. The
segmentation accuracy of U-Net and Attention U-Net is 0.8952 and 0.9383 re-
spectively. And the segmentation accuracy of ours with 2 ConvBlocks and 4 Con-
vBlocks is 0.9403 and 0.9409 respectively. Mean intersection over union(mIOU) is
the main evaluation criterion, the mIOU of U-Net, Attention U-Net, our method
with 2 ConvBlocks and our method with 4 ConvBlocks is 0.8682, 0.8823, 0.8860,
0.8871 respectively. And the kappa of U-Net, Attention U-Net, our method with
2 ConvBlocks and our method with 4 ConvBlocks is 0.8588, 0.8749, 0.8790,
0.8803 respectively. The above three evaluation criterion of our method with 4
ConvBlocks is the best, but it also has a much larger number of parameters,
reaching 122.15M. While our method with 2 ConvBlocks reduces the number of
parameters by 41.7% at the expense of very little accuracy.

Number of Params mIOU Accuracy Kappa

U-Net 13.40M 0.8682 0.8952 0.8588
Attention U-Net 34.89M 0.8823 0.9383 0.8749
Ours(2 ConvBlocks) 71.21M 0.8860 0.9403 0.8790
Ours(4 ConvBlocks) 122.15M 0.8871 0.9409 0.8803

Table 1. Performance comparison of different networks.

4.3 Segmentation results

Figure 4 shows the segmentation result of the network we proposed. The top row
is the original image, the middle is ground truth, The proposed model(4 Con-
vBlocks) predictions are on the bottom row. The black areas represent normal
areas and the white areas represent lesion areas. According to the segmentation
result, we can observe intuitively that the generated image is very similar to
the mask image. In addition, in the unlabeled part, we found some small white
areas, which means that the unlabeled pathological cells have also been isolated.
Therefore, we think that the features learned by neural network through marker
information have good generalization, and can segment the scattered patholog-
ical cells in the unlabeled area. The results show that the proposed network is
better than expected in learning multi-scale feature information, which proves
the powerful application of neural network in the field of medical imaging.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 4. Segmentation examples from four patches. The top row is the original image,
the middle is ground truth, The proposed model(4 ConvBlocks) predictions are on the
bottom row.
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5 Conclusion

In this paper, we developed an automatic segmentation model of small cell
lung cancer tumor from pathological section images based on multi-scale fusion
network. This is an important problem because the development of U-shaped
networks is closely related to the development of medical image segmentation,
and the extraction of multi-scale features is conducive to the development of
high-resolution medical image segmentation algorithms. We propose a U-shaped
network based on multi-scale feature fusion and compare it with two kinds of
networks. The experimental data we get are even more convincing. We use mIOU
as the main evaluation criterion of segmentation effect. The results show that
the mIOU of our proposed network is 0.0189 higher than that of U-Net, and
0.0048 higher than that of Attention U-Net. We can conclude that our proposed
network is superior to the other two in the segmentation of small cell lung cancer
based on pathological section images of the lung.
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