
EasyChair Preprint

№ 775

FVT: A Fragmented Video Tutor for ”Dubbing”

Software Development Tutorials

Chunyin Nong, Qiao Zhang, Liguo Huang, Di Cui, Qinghua Zheng
and Ting Liu

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

February 8, 2019



FVT: A Fragmented Video Tutor for “Dubbing”
Software Development Tutorials

Chunyin Nong∗, Qiao Zhang†, Liguo Huang†, Di Cui∗, Qinghua Zheng∗, Ting Liu∗
∗MOEKLINNS Lab, Department of Computer Science and Technology, Xi’an Jiaotong University, 710049, China

†Department of Computer Science and Engineering, Southern Methodist University, Dallas, TX

Abstract—Rapid growth of online resources provides massive
supports for developers to fulfill their learning tasks. Text tutorial
and video tutorial, as the two most common forms of online
resources, may not be sufficient to meet developers’ specific
learning needs if used individually. Text tutorials are well-
structured and easy to be navigated, however, digesting the
text description may not be always pleasant. Video tutorials are
intuitive and easy to follow, however, the pre-determined teaching
flow can be very distracting if a specific piece of knowledge is
targeted. In this study, we proposed a novel method and its
supporting tool — Fragmented Video Tutor (FVT), to facilitate
the learning tasks with specific objectives, aiming at augmenting
the strengths of both forms of tutorials while offsetting the
weaknesses inherent to use each form of tutorials by itself.
Specifically, FVT leverages the code snippets extracted from
video tutorials as the bridge to link the video fragments in
a video tutorial to the relevant sections in text tutorials. The
preliminary evaluation results demonstrate that the FVT is a
feasible approach to link two forms of tutorials and improve the
learning effectiveness and efficiency for developers.

Index Terms—Software Education, Video Tutorial, Text Tuto-
rial, Fragmented Video Tutor

I. INTRODUCTION

Software developers are always required to quickly master
new techniques and skills in a rapidly changing technology
world [1]. In most cases, the learning objective can be very
specific to a certain development task or problem resolution,
such as how to use a specific API or deal with a certain
type of exception, named as targeted learning. The learned
techniques/skills might be put into practice immediately. How-
ever, the human learning is not only the mastery of knowl-
edge points, but also the understanding of knowledge system.
Hence, the goal of targeted learning is to learn a specific piece
of new concept or technique in a short period of time and
understand the big picture of its context.

Many efforts have been taken to enhance software devel-
opment tutorials [2, 3, 4, 5], which could be classified into
two categories: text tutorials and video tutorials. However,
they may not be sufficient to meet the targeted learning needs
if used individually. Text tutorials such as JavaDoc can be
well-structured, comprehensive and logically organized into
detailed and in-depth explanations. Although developers can
easily search and locate the relevant materials in the text
tutorial with the help of automated or semi-automated search
tools, developers still need to go back and forth to read through
the context, which can be verbose, and sometimes even a bit

boring especially when the content is overwhelming or difficult
to follow.

Video tutorials are usually pre-planned with step-by-step
demonstration to quickly deliver a piece of coherent knowl-
edge with visual cognition, which is usually appreciated by
software developers who prefer visual and auditory cognition.
For example, the YouTube video Object-oriented Program-
ming in 7 minutes1 gives learners the basic concepts of
Object-oriented Programming in the shortest possible time
and the easiest way. However, the lengthy videos also con-
tain irrelevant contents which may distract developers from
concentrating on the most relevant part. The way that video
tutorials are created makes it difficult and time-consuming to
navigate in order to search or review the relevant content in a
set of videos if developers have specific and in-depth learning
needs.

It would be an ideal for developers to achieve targeted
learning if we can bridge the two forms of tutorials (text and
video tutorials) to make them complementary to each other
since the effectiveness and efficiency are keys to the success
of targeted learning. In this paper, we propose a novel method
for targeted learning and its supporting tool — Fragmented
Video Tutor (FVT), by augmenting the strengths of both
forms of tutorials while offsetting their inherent weaknesses.
Leveraging the code snippets extracted from video tutorials
as the bridge between text tutorial and video tutorial, FVT
is able to quickly locate the relevant fragment in a set of
video tutorials, which are linked to the corresponding sections
in the text tutorials. An evaluation of the links generated by
FVT is conducted with 177 video fragments extracted from
two video tutorials with different language (50 in English
and 127 in Chinese) and 400 sections of 38 chapters in a
classic Java learning textbook. The performance of FVT shows
the feasibility of using code snippets to link two forms of
tutorials even with different spoken language in video tutorials.
A usability study is also conducted with 10 students by asking
them to answer a questionnaire once the assigned targeted
learning tasks completed along with the FVT or text or video
tutorial respectively. The main contributions of this paper
include:

• a novel method and tool to facilitate rapid targeted
learning tasks in software development;

1https://www.youtube.com/watch?v=pTB0EiLXUC8

https://www.youtube.com/watch?v=pTB0EiLXUC8


Video Tutorials

Video Frames
Extractor

FFMPEG

Video Tutorials
Frames

Frame Content
Extractor

Tesseract OCR
OCR Info

Code Snippets
Extractor
Heuristics

Code Snippet

Video and Text Tutorial Linker

Text Retrieval

java

Arrays

Data
Types Floating

Variables

…

…

Text TutorialsExtracting Code
Snippets from Video

Tutorials1 2

Linking Fragmented Video
Tutorials to Text Tutorial

Sections

Code Feature
Generator
Heuristics

Code
Feature
Vector

Integers

English

Chinese

…Booleans

Text
Feature
Vector

Text Feature
Generator
Bag-of-words

Fig. 1. The overview of FVT

• demonstration of the feasibility to link text and video
tutorial with code snippets.

The methodology is explained in Section II and followed by
a case study in Section III. Section IV presents the evaluation
setup and results. Section V summarizes the related work.
Section VI concludes and envisages the future work.

II. METHODOLOGY

Fig. 1 shows an overview of the Fragmented Video Tutor
(FVT) system. FVT facilitates targeted learning tasks in two
steps: (1) extracting code snippets from the video tutorials and
(2) linking the video tutorials to the sections in text tutorials
with extracted code snippets. A well-organized and intuitive
roadmap will be generated by FVT to guide learners from text
tutorial to relevant video fragments or vice versa.

A. Extracting Code Snippets from Video Tutorials

As shown in the left box of Fig. 1, code snippets are
extracted from video tutorials by 3 components: Video Frames
Extractor, Frame Content Extractor, and Code Snippet Extrac-
tor. First, the Video Frames Extractor decomposes the video
tutorials into a set of video frames with FFmpeg2. Second,
the Frame Content Extractor captures the content of each
frame with an optical character recognition (OCR) tool —
TESSERACT-OCR3, which returns the content of each video
frame with a mixture of textual information and source code.
Code Snippets Extractor with the island grammar [6] then
extracts and parses the code snippets by differentiate source
codes from natural language descriptions. Finally, the most
representative code snippet is selected with the MCIDIFF
[7], a state-of-the-art approach to compute differences across
multiple instances of code clones.

B. Linking Fragmented Video Tutorials to Text Tutorial Sec-
tions

As shown in the upper right box of Fig. 1, in this step,
the extracted code snippets in the last step will be used to
link the video tutorial fragments to the relevant text tutorial

2https://www.ffmpeg.org
3https://github.com/tesseract-ocr

sections. Firstly, the Code Feature Generator extracts a set
of code features from code snippets including API sequence,
API description, method name, and tokens [8] with 5 text
retrieval (TR) techniques including TF-IDF [9], LSI [10], and
LDA [11], as well as their combinations TF-IDF+LSI and TF-
IDF+LDA on gensim4. Meanwhile, the Text Feature Generator
extracts the word vectors from text tutorial sections, using the
same TR techniques. Next, the Video and Text Tutorial Linker
computes the cosine similarity for each pair of the code feature
vector representing a video code snippet and the word vector
representing a text tutorial section. We select no more than
two text tutorial sections to link with each video fragment,
whose similarity score are highest and also higher than the
minimum limit. Finally, FVT can “dubbing” the text tutorials
with the video, as shown in the bottom right box of Fig. 1.

III. CASE STUDY

This section provides a case study to illustrate how FVT
facilitates the targeted learning task. Suppose an Android de-
veloper who has the experience with Java would like to quickly
learn a new language Kotlin for her career development. To
make use of her breaks during work, she plans to prioritize
the learning objectives and learn Kotlin incrementally. The
first targeted learning task is to learn Null Safety in Kotlin
first since the NullPointerException problem in Java has been
notorious to all developers (a.k.a, the Billion Dollar Mistake5)
while Kotlin’s variable type system is aimed at eliminating the
danger of null references from code.

As the most relevant text tutorial returned from Google
search, the official document of Kotlin6 provides a thorough
explanation of null safety. However, the developer has to read
through 16 code snippets to understand how to write the
null safety code. Instead, an online video tutorial that claims
the Kotlin can be learned after watching the one and half
hour video would make this learning task more pleasant and
efficient. To expedite the learning, she decides to first learn
from the Kotlin video tutorial7. Nevertheless, the challenge
is to search and locate the specific video fragment teaching
null safety in the lengthy video tutorial. FVT recommends the
relevant video fragment in the Kotlin video tutorial7 that can
be linked to the document of null safety of Kotlin6 and save
her effort to manually navigate and search through the video.

First, a set of code snippets is extracted by FVT from the
video tutorial while each code snippet is associated with a
location label which records the starting and ending time of
the video fragment containing the code. As shown in the first
transition on the left of Fig. 2, a code snippet can be extracted
based on the video frame (as the screenshot) at 5,157s in
the video7. Since the code at 4,945s of the video tutorial is
completely different from the code after 4,947s and the Null
Safety is the last topic covered in the video, the extracted

4https://radimrehurek.com/gensim/index.html
5https://qconlondon.com/london-2009/qconlondon.com/london-2009/

speaker/Tony+Hoare.html
6https://kotlinlang.org/docs/reference/null-safety.html
7https://www.youtube.com/watch?v=H oGi8uuDpA&t=4947s

https://www.ffmpeg.org
https://github.com/tesseract-ocr
https://radimrehurek.com/gensim/index.html
https://qconlondon.com/london-2009/qconlondon.com/london-2009/speaker/Tony+Hoare.html
https://qconlondon.com/london-2009/qconlondon.com/london-2009/speaker/Tony+Hoare.html
https://kotlinlang.org/docs/reference/null-safety.html
https://www.youtube.com/watch?v=H_oGi8uuDpA&t=4947s


Fig. 2. A case study of using FVT to augment the learning of Null Safety in Kotlin

code snippet will be labeled with starting time of 4,947s and
ending time of 5,183s. Then, the code features are extracted
from the code snippets while the location label is inherited. In
this case, a set of code features can be extracted including the
method name (“returnNull”), API Sequence (“var!!.length”),
API description (“return the length of the string if it is not null
value and throws an exception if the value is null”), and Token
(“array string null length”)(shown in the second transition on
the left of Fig. 2).

Next, FVT applies the 5 TR techniques to generate the code
feature vector as mentioned in Section II-B. At the same time,
the 5 TR techniques are applied to the Null Safety section in
the text document to generate the word vector. Since the cosine
similarity computed between the video code feature vector
and the word vector generated from the section Null Safety
in Kotlin6 in the text tutorial is top ranked, FVT recommends
that there is a link between the video fragment starting from
4947s in the original video tutorial7 and the section in the
text tutorial as shown in Fig. 2. From now on, she can use
the linked video fragment to accomplish the learning of Null
Safety in Kotlin while a cup of coffee is brewed instead of
reading through the entire section on Null Safety in the text
tutorial.

IV. EVALUATION

Since the output of FVT is a set of links (roadmap) between
video fragments extracted from a video tutorial and sections
listed in a text tutorial, a preliminary evaluation is conducted
to measure the relevance of generated links.

A. Datasets

In total, 177 video fragments (50 in English and 127 in
Chinese) of Java programming language (JavaSE) tutorials are
extracted respectively from YoutTube and atguigu8, a Chinese
software education institution. The length of video fragments
ranges from 3 to 34 minutes with average 7 minutes in English
videos and 9 minutes in Chinese videos. Since 10 out of
177 video fragments does not contain any code snippet, the
remaining 167 video fragments are used as the input of FVT.

8http://www.atguigu.com/

We adopt “Java The Complete Reference Tenth Edition”, a
classical textbook for Java beginners, as the text tutorial. It is
the official recommended textbook for Java by Oracle9. There
are 400 sections of 38 chapters in the textbook to be linked
with the relevant video fragments.

B. Manual Annotation

Two senior students manually and independently annotate
the correctness of the links generated by FVT. Cohen-Kappa
coefficient [12] is used to assess the level of agreement while
0.75 indicates a substantial level of agreement. Two students
have to discuss and resolve the disagreement if the agreement
is not substantial until the consensus is reached.

C. Metrics

The objective of FVT is to improve the effectiveness and
efficiency of targeted learning in software development by
providing learners the relevant video fragments if a specific
topic described in a section of a text tutorial is identified as the
learning objective. The relevant video fragments addressing
the topic in the section can ease and expedite the learning. If
no relevant video fragment is found to be linked to the text
section, learners can still read the section in the text tutorial
without the help from video tutorials. If an irrelevant video
fragment is linked and recommended, learners will probably
waste their time to watch it and eventually have to go back
to square one. Hence, FVT shall focus on improving the
relevance of the generated links. In other words, precision,
which is the percentage of correct links returned by FVT, is
more important for system users to measure the relevance of
links generated by FVT.

D. Results

We have compared 5 TR techniques (TF-IDF, LSI, LDA,
TF-IDF+LSI, and TF-IDF+LDA) to generate links between
video fragments and text tutorial section. Table I shows the
precision of generated links by FVT employing the 5 linking
strategies. The results demonstrate the feasibility of employing

9https://www.oracle.com/technetwork/topics/newtojava/documentation/
index.html

http://www.atguigu.com/
https://www.oracle.com/technetwork/topics/newtojava/documentation/index.html
https://www.oracle.com/technetwork/topics/newtojava/documentation/index.html


TABLE I
PRECISION OF LINKS GENERATED WITH DIFFERENT TR TECHNIQUES

TR Technique
TF-IDF LSI LDA TF-IDF+LSI TF-IDF+LDA

English 0.583 0.542 0.458 0.625 0.604
Chinese 0.542 0.58 0.475 0.609 0.634

TR techniques in linking video fragments and text tutorial
section.

Among the 5 techniques, TF-IDF+LDA achieves the highest
precision of 0.634 in the dataset with Chinese videos and
0.604 in the dataset with English videos, with an increase
of up to 33.5% (0.634 vs. 0.475) as compared with any of
its component techniques (LDA or TF-IDF). It shows that
the combined TR techniques can significantly improve the
relevance of the generated links as compared with the TR
techniques applied individually. In other words, it is promising
to improve the performance of FVT if one or more TR
techniques can be combined to complement one another.

E. Error Analysis

An error analysis of incorrect links generated by FVT is also
conducted to identify root causes. We found that most incorrect
links occur when advanced Java programming techniques are
focused, such as Java reflection or Java annotation. A possible
reason is that the code snippets used in video tutorials for
these topics are commonly designed along with a specific
application scenario for better understanding (e.g., a class with
application-specific method and interface names). It would be
difficult to derive code features that can represent the learning
subject when there are too many “noises”. As the solution,
we can consider extracting features from the custom class and
method. For video tutorials that are aimed at teaching trivial
and fundamental knowledge, such as the usage of different
variable types or how to write a loop, FVT is very likely to
link such video fragments to text sections incorrectly since
the extracted code features are very general and common
to a variety of topics throughout the entire text tutorial. It
is possible to solve such problem by adding the language
specified keywords or operators as the code feature. At last,
if the video tutorial is about a specific type of algorithm
(e.g., Bubble Sort, Dynamic Programming, etc.), the syntax
features of code (e.g., nested loops, recursive call, etc.) are
not considered in FVT at the current stage.

F. Usability Study

We also conducted a usability study to evaluate the proposed
methodology with 10 junior undergraduate students. Among
10 students, 3 of them have 1 year Java programming expe-
rience and the rest 7 students have 3 years experience. We
prepared both text and video tutorials that contain relevant
contents of 5 different concepts to be the candidate targeted
learning tasks. For each student, he/she was required to
randomly select 3 out of 5 concepts to be learned with text
tutorial only, video tutorial only, and both forms with FVT
respectively. A questionnaire will be answered by each student

to describe and rate his/her learning experience (advantage and
disadvantage). As a result, 7 out of 10 students preferred FVT
as a supportive tool to facilitate the targeted learning while
2 students choose text tutorial and 1 student choose video
tutorial. The average rating (range between 1 to 5) are 3.2
for text tutorial, 3.3 for video tutorial, and 4.1 for both forms
with FVT. We think FVT can help developers to better achieve
targeted learning than using text or video tutorial individually.

V. RELATED WORK

Software video tutorials have been studied as a multimedia
source to support developers [4, 13]. A recent study by
MacLeod et al. [13] on programming videos on YouTube
shows that video tutorials are effective in providing an in-
troduction to a technology and demonstrating how a piece of
software can be developed within an IDE. Yadid et al. [3]
present ACE, a tool that combines language models and image
processing techniques to extract source code from software
development videos. Ott et al. [2] further improved the iden-
tification of code fragments using deep learning algorithm.
Ponzanelli et al. [4, 14] employed the extracted code as
features to segment development videos, which can efficiently
assist developers to focus on the key point in video. Escobar
et al. [1, 5] employed the transcripts in combination with other
metadata (i.e., title and description) as features to automati-
cally tag development videos. Comparing to abovementioned
works, our methodology aims at linking video tutorials and
text tutorials with the extracted code snippets from video. The
link between two forms of tutorials is able to augment the
learning experience for software developers.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a novel method and its supporting
tool, Fragmented Video Tutor (FVT), to expedite the targeted
learning for software developers. It augments the advantages of
both text and video tutorials while offsetting the disadvantages
of each form if used by itself. Specifically, FVT links the video
fragments in video tutorial with the relevant content in text
tutorials with 5 TR techniques and the code snippets extracted
from video. The evaluation results show the feasibility of
FVT to recommend links between two forms of tutorials
with the precision up to 0.634. To further improve the
precision of generated links, we will conduct experiments on
additional code and text features as well as other TR and code
search techniques. We will also conduct experiments on actual
utility in supporting learning or programming effectiveness.
Moreover, FVT will incorporate more application scenarios to
adopt additional learning needs in industrial practices.

VII. ACKNOWLEDGMENT

This work was supported by National Key R&D Program
of China (2016YFB1000903), National Natural Science Foun-
dation of China (61632015, 61772408, U1766215, 61721002,
61532015, 61833015), Ministry of Education Innovation Re-
search Team (IRT 17R86).



REFERENCES

[1] E. Parra, J. Escobar-Avila, and S. Haiduc, “Automatic tag
recommendation for software development video tutori-
als,” in Proceedings of the 26th Conference on Program
Comprehension. ACM, 2018, pp. 222–232.

[2] J. Ott, A. Atchison, P. Harnack, A. Bergh, and E. Lin-
stead, “A deep learning approach to identifying source
code in images and video,” 2018.

[3] S. Yadid and E. Yahav, “Extracting code from program-
ming tutorial videos,” in Proceedings of the 2016 ACM
International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software. ACM,
2016, pp. 98–111.

[4] L. Ponzanelli, G. Bavota, A. Mocci, M. Di Penta,
R. Oliveto, M. Hasan, B. Russo, S. Haiduc, and
M. Lanza, “Too long; didn’t watch!: extracting relevant
fragments from software development video tutorials,”
in Proceedings of the 38th International Conference on
Software Engineering. ACM, 2016, pp. 261–272.

[5] J. Escobar-Avila, E. Parra, and S. Haiduc, “Text retrieval-
based tagging of software engineering video tutorials,”
in Software Engineering Companion (ICSE-C), 2017
IEEE/ACM 39th International Conference on. IEEE,
2017, pp. 341–343.

[6] A. Bacchelli, A. Cleve, M. Lanza, and A. Mocci, “Ex-
tracting structured data from natural language documents
with island parsing,” automated software engineering, pp.
476–479, 2011.

[7] Y. Lin, Z. Xing, Y. Xue, Y. Liu, X. Peng, J. Sun, and
W. Zhao, Detecting differences across multiple instances
of code clones. ACM, 2014.

[8] X. Gu, H. Zhang, and S. Kim, “Deep code search,”
in Proceedings of the 40th International Conference on
Software Engineering. ACM, 2018, pp. 933–944.

[9] K. Sparck Jones, “A statistical interpretation of term
specificity and its application in retrieval,” Journal of
documentation, vol. 28, no. 1, pp. 11–21, 1972.

[10] T. K. Landauer, P. W. Foltz, and D. Laham, “An intro-
duction to latent semantic analysis,” Discourse processes,
vol. 25, no. 2-3, pp. 259–284, 1998.

[11] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet
allocation,” Journal of machine Learning research, vol. 3,
no. Jan, pp. 993–1022, 2003.

[12] J. R. Landis and G. G. Koch, “The measurement of
observer agreement for categorical data,” biometrics, pp.
159–174, 1977.

[13] L. MacLeod, M.-A. Storey, and A. Bergen, “Code,
camera, action: how software developers document and
share program knowledge using youtube,” in Proceedings
of the 2015 IEEE 23rd International Conference on
Program Comprehension. IEEE Press, 2015, pp. 104–
114.

[14] L. Ponzanelli, G. Bavota, A. Mocci, M. Di Penta,
R. Oliveto, B. Russo, S. Haiduc, and M. Lanza, “Code-
tube: extracting relevant fragments from software de-

velopment video tutorials,” in Proceedings of the 38th
International Conference on Software Engineering Com-
panion. ACM, 2016, pp. 645–648.


	Introduction
	Methodology
	Extracting Code Snippets from Video Tutorials
	Linking Fragmented Video Tutorials to Text Tutorial Sections

	Case Study
	Evaluation
	Datasets
	Manual Annotation
	Metrics
	Results
	Error Analysis
	Usability Study

	Related work
	Conclusions and Future Work
	Acknowledgment

