
EasyChair Preprint
№ 4647

Procedural Generation of Roads with Conditional
Generative Adversarial Networks

Lin Ziwen Kelvin and Bhojan Anand

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 25, 2020



Procedural Generation of Roads with Conditional Generative Adversarial Networks

Lin Ziwen Kelvin
Computer Science Department

National University of Singapore
Singapore

e0014961@u.nus.edu

Bhojan Anand
Computer Science Department

National University of Singapore
Singapore

banand@comp.nus.edu.sg

Abstract—Procedural terrain generation refers to the gener-
ation of terrain features, such as landscaping, rivers or road
networks, through the use of algorithms, with minimal input
required from the user. In the process of game development,
generating terrain is often an important part of the game
development process. Traditional generation methods are often
too time consuming especially with larger terrain maps. On
the other hand, procedural methods that generate terrain
automatically often do not have much user control over
the output. We explore the usage of conditional generative
adversarial networks in the creation of road maps, as well
as the application of such road maps in the creation of game
levels in game development engines such as Unreal Engine 4.

Keywords-Computing methodologies; Machine learning ap-
proaches; Computing methodologies; Image processing;

I. INTRODUCTION

Procedural Terrain Generation (PTG) refers to the gen-
eration of terrain using algorithms, specifically with little
to no human input. This is in contrast to traditional terrain
creation, where the landscaping was sculpted by hand, and
the secondary features are added on manually. PTG allows
for terrain and levels to be generated dynamically without
needing humans to create the entire landscape by hand.

Road networks are frequently used in games in some form
or another. In city-based games such as Sims or Grand Theft
Auto, the game takes place within cities, thus road networks
directly influence player navigation. In other games such as
Player Unknown’s Battleground, road networks allow for
safer transport of players, and can potentially affect player
strategy through usage of chokepoints. Outside of games,
road generation may be of use in urban planning, such as for
predicting traffic movements and future urban development.
However, to the best of our knowledge, most road network
generation methods do not have much customizability, and
users are often unable to control the types of roads being
generated. We thus explore the usage of conditional Genera-
tive Adversarial Networks (cGAN) in creating a framework
that allows users to generate road networks that can be used
for game development.

We have implemented a framework with a graphical
user interface that allows users to provide an initial sketch
diagram of primary roads, and the interface outputs a road

network based on the initial sketch that additionally con-
tains secondary roads. These road networks can be further
exported for use in game engines such as Unreal Engine
4 to create landscapes that are pre-painted with textures
corresponding to such road networks.

II. RELATED WORK

Shortest-path algorithms were used by [1] and [2] to
generate one single road, while [3], and [4] made use of
recursive sub-division to partition an area into a complete
road map.

Growth-based algorithms were proposed by [5] and [6],
where an initial road network is provided, and a city com-
prising of the road networks is generated by considering
the surrounding terrain. Patch-based algorithms where road
patches are selected from an initial list, warped, and added
to the generated road network were proposed by [7] and [8].
Generative Adversarial Networks (GANs) were used by [9]
in the generation of landscape heightmaps, by using satellite
images as the training dataset. In addition, the predicted
texturing of the generated terrain for the given heightmap is
also generated, which can be imported into the Unity Engine
to create landscapes.

[10] proposed using GANs in the generation of road
networks. The resulting GAN from [10] however makes use
of random noise in generating new tiles, as the training
is carried out on a standard GAN. This means that users
would either need to provide their own noise input, or rerun
the generation several times due to the lack of control,
making them similar to traditional PTG algorithms in output
controllability.

Conditional GANs were used by [11] in the generation
of landscapes. Unlike [9], [11] uses heightmap data from
the United State Geological Survey Earth explorer. [11] also
features a real-time user sketching tool, that allows users to
generate terrain in real time. This framework can be used in
the generation of game terrain as it allows for a high degree
of customizability.

III. OUTLINE OF APPROACH

Figure 1 describes the overall pipeline used to generate
a full road network, given an initial sketching of primary



Figure 1: Overall Roadmap Generation Framework

roads. It consists of a data pre-processor, a conditional
Generative Adversarial Network, a simple graphical user
interface to input the initial network, and a post-processor
that formats the generated network for use in game engines
such as Unreal Engine 4.

A. Dataset Pre-processor

OpenStreetMap tiles were selected as the dataset for
training the cGAN. OSM map tiles take the format of a 256
x 256 PNG image file, where each pixel is coloured to match
the corresponding features present. OSM map tile generation
is governed by user-defined rulesets, which dictate which
and how features are generated.

The reasons for choosing OSM street tiles as the training
dataset are as follows:

1) Tile data is based on real-life street directories. Terrain
that is generated using such data is likely to be realistic
and accurate with respect to the data provided.

2) Tile data is available easily online, making it easy to
train the cGAN using tile data from different regions,
such as America, Asia, or Europe.

3) Tile data is highly customizable. Using stylesheets and
user-defined rulesets, the user can pick and choose
the type of features to be rendered on each tile. This
allows for the cGAN to learn how to generate different
types of tiles, by using different rulesets.

The dataset pre-processing first involves removing irrel-
evant details, such as text and landmark icons by using
a ruleset. Using this ruleset, only water bodies, forests,
primary roads, secondary roads and buildings are generated,
and the background is coloured as white. The primary
roads are coloured as red, secondary roads as blue, and
all buildings coloured as black, in contrast to the default
colouring style used by OSM. This colouring was used, as in
the default colouring scheme, several features shared similar
colours, and the resulting cGAN was unable to distinguish
between them clearly, thus generating incohesive results.

The tiles are next generated using Maperitive, a free
software that allows all the tiles to be generated in a mbtiles
format file. While it is possible to extract PNG files directly
using self-made scripts, such scripts involve querying the
OSM database directly, which is both time-consuming and

cannot be customized using rulesets. The resulting mbtiles
file is subsequently broken down into PNG files using the
mbutil library.

The process is then repeated with a ruleset that does not
generate any secondary roads or buildings. Thus, for every
tile in the map, two tiles are generated, one that contains
only the primary roads, hence referred to as the base tile,
and one that contains primary roads, secondary roads, and
buildings, hence referred to as the target tile.

B. cGAN Architecture and Training

The architecture for the cGAN comprises of a discrimi-
nator network d, and a generator network g. The cGAN is
implemented using the Keras and TensorFlow libraries, and
is largely adopted from the Pix2Pix network proposed by
[12].

The discriminator network d takes in a
< generatedtile, targettile > pair and assigns it an
accuracy score from 0 to 1. This score is based on how
similar the target tile is to the training dataset in general.
It is implemented as a standard Convolutional Neural
Network, where a 4 x 4 sized window is used as a filter.
MaxPooling and BatchNormalization is carried out on each
layer. To prevent overfitting, a dropout rate of 0.4 is applied
in the first Conv2D layer, and the binary cross-entropy is
used for the loss function.

The generator network takes in a base tile i, and outputs
a generated tile g(i). The generator is implemented as an
encoder-decoder network with skip connections, with a 4
x 4 sized window as a filter. Each encoder block consists
of a Convolutional layer with BatchNormalization, and each
decoder block consists of a transposed Convolutional layer.
Dropout is applied in the decoder blocks to prevent overfit-
ting.

for training cycles do
x = select random batch;
y = target output(x);
out = generator(x);
realScore = trainDiscriminator(x, y, targetScore =
1);

fakeScore = trainDiscriminator(x, out, targetScore =
0);

updateModel(concat(realScore, fakeScore));
end

In each training cycle, a batch of data is randomly selected
from the training dataset, and first passed to the generator
network. The resulting output tiles are concatenated with the
base tiles, and passed to the discriminator. As these images
are generated, the target score for these images would be
0. After this, the base image along with its target image
are sent to the discriminator for grading, with a score of 1
as the target score. The resulting scores are then fed to the

2



generator network as its loss function, as the generator aims
to maximise s from the discriminator.

This is carried out for 5000 training cycles. At every 100
cycles, the model is evaluated by testing it against a fixed
test set, and the model set is saved. Saving the model set in
intervals allows us to backtrack to an earlier model, in case
overfitting occurs.

C. Graphical Interface and Post-Processing

Figure 2: GUI for user-defined roads

To allow for game developers to create their own road
networks, we also provide a simple graphical user interface,
implemented using the tkinter library. The GUI comprises of
a drawing canvas, where the user uses their mouse to draw
the initial primary road network. The user can then select
the ’Generate’ option to see what kind of road network the
cGAN produces, and if they are satisfied with the outcome,
save the generated tile for further use, be it to use as a
reference image, or for use in Unreal Engine 4.

The user may choose to convert a generated tile from the
GUI for use in Unreal Engine 4. Landscapes in Unreal En-
gine 4 can comprise of different weight layers for different
material types. For example, one landscape can consist of
a grass texture layer, a primary road texture layer (asphalt),
a secondary road texture (dirt) layer, and building location
layers (gravel). The engine allows for user-imported PNG
files to populate the weight layers. The post-processor thus
takes in the generated tile from the cGAN, and splits it into
3 different subtiles, each encompassing different aspects,
namely the primary road, secondary road, and building
locations from the tile. These subtiles are created by isolating
the respective colours of each feature from the tile. Finally,
the subtiles are converted into grayscale and saved.

Figure 3 shows the generated subtiles for a given base
image. The user can then use these subtiles as the weight
layer in UE4 landscape creation.

IV. RESULTS

Our results show that a cGAN can be used to effectively
generate full road networks from an initial sketch.

(a) Base Image (b) Primary subtile
(c) Secondary sub-
tile

Figure 3: Subtiles created from post-processor

To evaluate the performance of the cGAN, testing data
was provided in the form of input tiles that were drawn from
the same region as the dataset, but not used for training, as
seen in Figure 4. The base tiles for the testing data were fed
into the generator network, and the resulting generated tile
was compared to the ground truth, which is the target tile.

(a) Base Image
(b) Generated Im-
age (c) Ground Truth

Figure 4: Generation of tiles

Using the graphical interface, user-drawn sketches were
input to simulate the user drawing, and the subsequent
weight layers were input into a fresh Unreal Engine 4 level
asset. Using this landscape, foliage was planted into the map,
and cuboid polygons were placed into spots designated as
building locations, represented by the orange textures, to
simulate the placement of buildings.

From this and other free assets provided in Unreal Engine
4, a simple driving simulator was created using the generated
landscape as a basis. A sample screenshot from the driving
simulator is shown in Figure 5.

We also compare the results from the tile generator
framework to existing work, namely those proposed by [10]
and [6]. We compare our results with the results by [10] as
they use a similar approach by using GANs on the same
dataset of OSM tiles. While the work proposed by [6] does
not make use of GANs in any way, the algorithm proposed
by [6] takes in a pre-existing primary road network and
generates secondary roads on this initial road network. This
makes it similar to the objective of this report, which is
to allow for greater user control over the output from tile
generation. As seen from Figure 6, One noticeable difference
is that [6] takes in account of nearby water bodies and
is able to generate bridges minimally to work around the
terrain, which cannot be done by tiles generated from our

3



Figure 5: Driving Simulator created in Unreal Engine 4 using
the generated tiles

(a) StreetGAN tiles (b) Generated city (c) Generated Tiles

Figure 6: Comparison of generated tiles between different
algorithms. (a) from [10], (b) from [6]

framework, as the cGAN was not trained on tiles with water
bodies. [10] made use of road styles from multiple regions
in their work, while our framework is specific to one region.
Thus, [10]’s work is able to generate tiles on a more general
need, while we believe that our framework can generate
tiles on a more specific need, such as if the tiles are to
be generated with a style from a specific region.

V. CONCLUSION AND FUTURE WORK

By using a Conditional Generative Adversarial Netowrk,
we were able to create entire road networks from a simple
initial input of primary roads. Users can also make use of
a GUI to provide their own input sketches to generate their
own tiles. These generated tiles were able to be adapted for
use in Unreal Engine 4 in the creation of game landscapes.

For future work, the cGAN can be further trained on
datasets with elevation data, as well as datasets with water
bodies present. The presence of water bodies would affect
how roads are generated in real life, and as such, would
allow for even more realistic generation. Water bodies such
as lakes and rivers are also often featured in games as a
natural obstacle, and as such, allowing the user to define
their own water bodies would allow for a wider range of
tiles to be generated.

REFERENCES

[1] E. Galin, A. Peytavie, N. Marchal, and E. Gurin, “Procedural
generation of roads,” Computer Graphics Forum, vol. 29,
no. 2, p. 429438, 2010.

[2] C. Martek, “Procedural generation of road networks for large
virtual environments,” Master’s thesis, Rochester Institute of
Technology, 2012.

[3] R. Sharma, “Procedural city generator,” 2016 International
Conference System Modeling & Advancement in Research
Trends (SMART), 2016.

[4] D. Gonzlez-Medina, L. Rodrguez-Ruiz, and I. Garca-Varea,
“Procedural city generation for robotic simulation,” Advances
in Intelligent Systems and Computing Robot 2015: Second
Iberian Robotics Conference, p. 707719, 2015.

[5] Q. Yu and A. Steed, “Example-based road network synthe-
sis.,” in Eurographics (Short Papers), pp. 53–56, 2012.

[6] J. Beneš, A. Wilkie, and J. Křivánek, “Procedural modelling
of urban road networks,” in Computer Graphics Forum,
vol. 33, pp. 132–142, Wiley Online Library, 2014.

[7] E. Teng and R. Bidarra, “A semantic approach to patch-
based procedural generation of urban road networks,” in
Proceedings of the 12th International Conference on the
Foundations of Digital Games, pp. 1–10, 2017.

[8] G. Nishida, I. Garcia-Dorado, and D. G. Aliaga, “Example-
driven procedural urban roads,” in Computer Graphics Forum,
vol. 35, pp. 5–17, Wiley Online Library, 2016.

[9] C. Beckham and C. Pal, “A step towards procedural ter-
rain generation with gans,” arXiv preprint arXiv:1707.03383,
2017.

[10] S. Hartmann, M. Weinmann, R. Wessel, and R. Klein,
“Streetgan: Towards road network synthesis with generative
adversarial networks,” 2017.

[11] É. Guérin, J. Digne, E. Galin, A. Peytavie, C. Wolf, B. Benes,
and B. Martinez, “Interactive example-based terrain authoring
with conditional generative adversarial networks,” Acm Trans-
actions on Graphics (TOG), vol. 36, no. 6, p. 228, 2017.

[12] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-
image translation with conditional adversarial networks,” in
Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 1125–1134, 2017.

4


