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Kshitij Goel, Micah Corah, Curtis Boirum, and Nathan Michael

Abstract This work presents a system and approach for rapid exploration of un-
known environments using aerial robots. High-speed flight with multirotor air vehi-
cles is challenging due to limited sensing range, use of on-board computation, and
constrained dynamics. For robots operating in unknown environments, the control
system must guarantee collision-free operation, and for exploration tasks, the sys-
tem should also select sensing actions to maximize information gain with respect
to environment. To this end, we present a motion primitive-based, receding-horizon
planning approach that maximizes information gain, accounts for platform dynam-
ics, and ensures safe operation. Analysis of motions parallel and perpendicular to
frontiers given constraints on sensing and dynamics leads to bounds on safe veloci-
ties for exploration. This analysis and the bounds obtained, inform the design of the
motion primitive approach. Simulation experiments in a complex 3D environment
demonstrate the utility of the motion primitive actions for rapid exploration and
provide a comparison to a reduced motion primitive library that is appropriate for
online planning. Experimental results on a hexarotor robot with the reduced library
demonstrate rapid exploration at speeds above 2.25 m/s under a varying clutter in
an outdoor environment which is comparable to and exceeding the existing state-of-
the-art results.

1 Introduction

Fast and safe exploration of unknown environments is an important aspect of
robotics applications such as urban search-and-rescue and disaster response. In such
scenarios, it is essential for a robot or a team of robots to find survivors or objects in
an unstructured and unknown environment quickly while maintaining collision-free
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operation. Aerial robots are particularly suitable for this task and have been used
for mapping hazardous environments [16] and in prior work on exploration scenar-
ios [1, 3, 6, 7]. Despite this interest, relatively little is known about the relationship
between the dynamics of aerial robots and performance in exploration such as what
limits performance in these systems or what can be done to improve performance
in aerial exploration. This work investigates these limitations and to design planners
suitable for exploration that satisfy these constraints.

Most works on robotic exploration study ground robots with largely trivial dy-
namics [11, 19, 20] and have been unconcerned with the role of speed in exploration.
However, given the increasing application of aerial robots as sensing platforms, re-
cent works have begun to consider the effects of system dynamics on high-speed
exploration and navigation in unknown environments. Cieslewski et al. [6] propose
a strategy based on maintaining rapid forward motion by driving the system toward
frontier cells (cells on boundary of free and unknown space [20]) within the camera
field-of-view. While the authors note that reaction time for obstacles avoidance can
limit speeds in exploration, they provide little discussion of why this happens or
how it can be avoided. This work considers a broader variety of sensing actions that
can avoid these limitations and also incorporates sensing and planning time into ac-
tion design. Also, Liu et al. [12] provide similar discussion as we do regarding how
time delay in processing sensor data together with constrained dynamics can limit
velocities when navigating unknown environments.

This work applies an information-based planning approach which reasons ex-
plicitly about information gain from future sensor observations [3, 4, 11]. As in
previous works on robotic exploration [7, 8, 11], we use a randomized planning
strategy based on Monte-Carlo tree search [2, 5]. Here, we focus on design of a
library of motion primitives suitable for exploration at high speeds given the rela-
tionship between sensing constraints and maximum safe velocities. We evaluate this
approach in simulation experiments demonstrating exploration of a large warehouse
environment and via outdoor field tests with a hexarotor robot.

2 Steady-State Velocity Analysis

This section presents analysis of exploration performance for an aerial robot oper-
ating for steady-state conditions such as continuous motion toward a frontier. This
analysis produces bounds on velocity and rates of entropy reduction, given con-
straints on dynamics and sensing. We leverage these insights in Sect. 3 to design
motion primitive actions for rapid exploration.

2.1 System Model and Safety Constraints

This work applies a simplified double-integrator quadrotor model with acceleration
and velocity constraints for analysis of limits on exploration performance, which
can be thought of as a relaxation of dynamics models that are commonly used for
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position and attitude control of multirotor vehicles [13, 15]. Let r = [x,y,z]T be the
position of the vehicle in an inertial world frame W = {xW ,yW ,zW}, and let the
body frame be B = {xB,yB,zB}. Assuming small roll and pitch angles, and given
the yaw angle ψ , the system state is ξξξ = [rT,ψ, ṙT, ψ̇]T. The derivatives of position
and yaw satisfy bounds on velocity and acceleration

||ṙ||2 ≤Vmax ||r̈||2 ≤ Amax |ψ̇| ≤Ωmax (1)

where || · ||2 is the L2-norm.
Further, the robot is equipped with a forward-facing depth sensor with range of

rdepth for use in mapping. However, while navigating the environment, the robot
must also be able to avoid collisions with obstacles.

The requirement for collision-free operation restricts the set of actions that a mul-
tirotor can safely execute while navigating in an unknown environment. A planning
policy can ensure collision-free operation by guaranteeing that the robot is able to
stop entirely within unoccupied space Xfree, given an appropriate collision radius
rcoll, such as in the work of Janson et al. [9]. In the worst case, any voxel in the
unknown space Xunk may be revealed to be occupied and so possibly force the robot
to stop within Xfree.

The robot plans once every ∆ tp seconds, and there is also latency ∆ tm for acquir-
ing depth information and integrating it into the occupancy map. The sensor data
is ∆ tm seconds old at the beginning of planning, and once the planner is done, the
robot executes the selected action for another ∆ tp so that the total effective latency is
no more than ∆ tl = ∆ tm+2∆ tp. Note that, although latency may be unpredictable in
practice, the robot will not depend on consistent latency to maintain safe operation.

2.2 Steady-State Exploration Scenarios

Figure 1 illustrates two possible scenarios for steady-state motion with respect to
a frontier. For the perpendicular case (Fig. 1a) the robot moves continuously to-
ward a frontier and may have to avoid obstacles at the edge of the sensor range. As
discussed in Sect. 2.1, the robot must be able to avoid collisions with obstacles in
the unknown environment even if there are not any there. This means that the the
robot must always be prepared to stop before reaching the frontier. For the paral-
lel case (Fig. 1b) the robot moves along the frontier through space that has already
been mapped. When known space is free of obstacles, the robot may continue to do
so at the maximum allowable velocity. This scenario can also be thought of as the
limit for a spiral motion—which will arise later in the experimental results—as the
curvature becomes very small.

2.3 Bounds on Velocity

Given the system model and constraints for exploration scenarios, we now proceed
with calculation of the velocity bounds for motion perpendicular and parallel to the
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(a) Perpendicular scenario (b) Parallel scenario (c) Sensor cone

Fig. 1: Steady-state exploration scenarios. Analysis in Sect. 2 presents upper bounds on velocities
are for a double integrator system (a) for motion perpendicular to a frontier (V⊥,max) and (b) for
motion parallel to it (V‖,max). To ensure safety in the perpendicular case, the robot has to stop within
a user-specified collision radius from the frontier (Xfrt), i.e. within rdepth− rcoll from the current
state. For the parallel case, no such restrictions exist since the robot is moving in the explored space
which, ideally, is free (Xfree). (c) Combining the area of the projection of the sensor cone in the
direction of motion with the bounds on velocity leads to upper bounds on rates of novel voxels
observed during exploration.
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Fig. 2: Maximum achievable velocity moving toward a frontier (V⊥,max) according to (2) based
on parameters used in Tab. 1 and varying (a) sensor range and (b) total latency (which consists of
latency for the mapping system and time for planning). The circle marks the maximum velocity
at which the robot can move toward unknown space for the parameters used in this paper (see
Tab. 1) which is less than half the overall velocity bound. Approaching this velocity limit requires
either sensor range exceeding 10 m, both decreased planning time and mapping latency, or some
combination of the two.

frontier, V⊥,max and V‖,max respectively. Maximum velocity toward the frontier is
computed based on motion at a constant velocity followed by stopping at maximum
deceleration to satisfy the safety constraint. The expression for V⊥,max is a function
of acceleration (Amax), maximum sensing range (rdepth), the collision radius (rcoll),
and the latency in planning ∆ tl (see Fig. 1a) and is given by

V⊥,max = min(Vmax,V ′⊥,max)

V ′⊥,max = Amax ·
(√

∆ t2
l +2

rdepth− rcoll

Amax
−∆ tl

)
.

(2)
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Table 1: Steady-state upper bounds on velocity and rate of entropy reduction for the scenarios
described in Sect. 2.2. All values are computed for a planning time of 1 Hz, mapping latency 0.4 s,
sensor point cloud of size 9.93m×5.68m based on the RealSense D435 depth sensor with image
size 424px×240px and a maximum depth rdepth of 5 m. Occupancy grid resolution is 20 cm with
an overall bound on top speed Vmax at 4 m/s, and collision radius rcoll set at 0.6 m.

Value/Cases Area (m2) Velocity (m/s) Volume rate (m3/s) Entropy rate (bits/s)

Perpendicular (⊥) 56.4 1.77 99.83 1.25×104

Parallel (‖) 57.19 4.00 228.8 2.86×104

⊥, rapid yaw 56.8 1.77 100.5 1.26×104

‖, rapid yaw 78.05 4.00 312.2 3.90×104

Figure 2 shows the variation of this bound with rdepth and ∆ tl for the parameters used
in this work. For motion parallel to a frontier (see Sect. 2.2 and Fig. 1b), there are
no obstacles in the direction of motion. Therefore, the steady-state upper bound on
the velocity moving parallel to the frontier is identical to the maximum achievable
by the system, i.e. V‖,max =Vmax.

The entropy reduction then can also be bounded for each scenario terms of the
sensor geometry (see Fig. 1c) and steady-state velocities by projecting the sensing
volume in the direction of motion. Here, we also introduce the possibility of rapid
yaw motion during either motion. Results are shown in Tab. 1. Note that moving
parallel to the frontier can provide significantly improved performance.

3 Action Representation

This section details the design of available actions for the proposed motion plan-
ning framework. We define a trajectory generation scheme, related parameters and
conventions, and action design specifics leveraging insights gained in Sect. 2.

3.1 Motion Primitive Library Generation

Safe and accurate high-speed flight requires large and smooth linear acceleration
and angular velocity references. Smoothness for such references depends on higher
derivatives of position, jerk and snap [14]. For this work, the actions that are avial-
able to the robot are snap-continuous, forward arc [21] motion primitives, which
have previously been applied to high-speed teleoperation of multirotors [18]. Given
the differentially-flat state of the multirotor at time t, ξξξ t = [x,y,z,ψ]T, denote an
available action parameterization as a = [vx,vz,ω] where vx and vz are velocities in
the body frame xB and zB directions, and ω is the body yaw rate. Actions are dis-
cretized using user-specified maximum velocity bounds in xB− yB plane (ω vari-
ation, Nω primitives) and in zB direction (vz variation, Nz primitives) to obtain a
motion primitive library (MPL) Γξξξ t

given by (Fig. 3):
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(a) Variation in ω (b) Variation in vz

Fig. 3: Actions in xB − yB plane at the multirotor state ξξξ t , γ
jk

ξξξ t
(blue), are generated using dis-

cretized velocity bounds obtained from the analysis in Sect. 2. The set of such primitives at each
state is termed a motion primitive library (MPL) Γξξξ t

. MPLs are sampled in directions perpendic-
ular (xB) and parallel (yB,−yB) to the sensor scans with speeds bounded by V⊥,max and V‖,max
respectively, see (a). Variation in zB direction using a user-specified bound on vertical velocity,
Vz, yields the final action space shown in (b). Dynamically feasible stopping trajectories γ

stop
ξξξ t

are
available for each primitive (green) for safety (only one shown for brevity).

Γξξξ t
= {γ jk

ξξξ t
| j ∈ [1,Nω ],k ∈ [1,Nz],‖[vx,vy]‖ ≤Vmax,‖vz‖ ≤Vz,‖ω‖ ≤Ωmax} (3)

where, ‖ · ‖ denotes L2-norm of a vector, Vmax and Vz are the bounds on speed in
xB−yB plane and z direction respectively, and Ωmax is the bound on body yaw rate.
For a given action discretization, the motion primitive γ

jk
ξξξ t

is an 8th order polynomial
in time with fixed start and end point velocities and unconstrained position at the
end. The velocity at the end point, at time τ , follows by forward propagating unicy-
cle kinematics using the current state and the action parameterization while higher
order derivatives up to snap, endpoints are kept zero:

ξ̇ξξ τ = [vx cosψ,vx sinψ,vz,ω]T, ψ = ωτ, ξξξ
( j)
τ = 0, for j ∈ {2,3,4} (4)

where ξξξ
( j) denotes the jth time derivative of ξξξ . The stopping trajectories at any ξξξ t

(γstop
ξξξ t

, Fig. 3) can be sampled by keeping ξ̇ξξ t = 0.
In contrast to the fixed duration (τ) primitives presented in [18], the duration for

the primitive is kept minimum via a line search from the minimum possible duration
(∆ tp) to the user-specified maximum duration (τmax). The search terminates when
the first dynamically feasible motion primitive is obtained. This dynamic feasibility
check is based on pre-specified empirically observed bounds on linear acceleration
and linear jerk L2-norms. This search achieves having the trajectory in the desired
end point velocity ξ̇ξξ t in the minimum time possible from the current state.

3.2 Action Space for Fast Exploration

The action space for the proposed planner is a collection of MPLs, defined by (3),
generated using linear velocities based on bounds obtained in Sect. 2, V⊥,max and
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V‖,max. The planner uses 6 MPLs to represent the action space, Aact = {Γ i
ξξξ t
| i ∈

[1,6]}, and sets of upper bounds on linear velocities (Tab. 2) define each of these
different MPLs. These MPLs include both high-speed actions for navigating the en-
vironment and actions that mimic steady-state conditions described Sect. 2.2. Later,
in Sect. 5, we highlight effects on exploration performance due to these components,
especially the high speed parallel and low speed perpendicular MPLs.

4 Action Selection

We formulate the action selection problem as a finite-horizon optimization seeking
to maximize cumulative information gain [4], and build upon previous work [7, 8,
11] on robotic exploration using Monte Carlo tree search (MCTS).

Most MCTS-based planners follow four steps: selection, expansion, simulation
playout, and backpropagation of statistics [2, 5]. Such planners usually construct
a search tree iteratively by random rollout from a previously unexpanded node se-
lected based on upper-confidence bounds for trees (UCT) [2]. Prior works [7, 8]
have applied MCTS in planning for exploration using multirotors using a UCT-
based selection policy, information gain rewards, and random simulation playout
over a finite horizon. We extend this approach by adding considerations for model
constraints into the node expansion phase of MCTS.

4.1 Information-Theoretic Exploration Objectives

Following a similar approach as our prior work [8], the planner optimizes an ob-
jective with two components: a local information reward based on Cauchy-Schwarz
quadratic mutual information (CSQMI) [4], and a global reward for decrease the
shortest path distance to points in the state space that are expected to provide sig-
nificant information gain [8]. For any candidate action, γξξξ t

, we compute the local
information gain Iγ over user-specified time intervals and treat the joint informa-
tion gain as a reward for the MCTS planner. The distance reward serves to direct
the robot toward unexplored and possibly distant regions of the environment once
the local environment is exhausted of information causing the local information re-
ward to decrease. Alternatively, designers might substitute competing routing and
scheduling approaches [10] for the distance cost subject to with tradeoffs in compu-
tational cost and system design.

4.2 Safety at High Speeds

Given the action representation described in Sect. 3, we require the planner to ensure
safety while expanding nodes. Specifically, the trajectory tracked by the controller
should both respect constraints on the dynamics and remain in known free space
for all time. To satisfy this condition, before sending any trajectory to the robot, we
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require knowledge of a trajectory that will bring the robot to a stop—and potentially
keep it there—afterward. As such, the robot will avoid collision, even if the planner
fails to provide any output. If ever planning fails, the known stopping trajectory is
sent to the robot, and the robot will continue to replan from a future reference point.

5 Results

This section describes hardware and simulation results for the proposed exploration
approach. The simulation results evaluate performance in a warehouse-like environ-
ment which serves as a representative example of a large-scale exploration task. The
hardware results demonstrate exploration at high speeds using a hexarotor platform
under various degrees of clutter. Unless otherwise noted, the configuration of the
robot for simulation matches the hardware.

5.1 Aerial Platform

Platform used for experiments is a hexarotor aerial robot (Fig. 7a) with a forward-
facing depth camera for mapping (Realsense D435) with a 89.57° by 59.24° field of
view and a range of rdepth = 5.0m. The robot itself weighs 55.37 N, has a thrust to
weight ratio of 3.5, and has a diameter of 0.89m from motor to motor. Limits on ac-
celeration and jerk are set to Amax = 10m/s2 and Jmax = 35m/s3 respectively, based
on empirical data available for the platform. Unless otherwise stated, the planning
horizon is kept at 4 seconds for all experiments. For both simulation and hardware
experiments, mapping and planning run on a computationally constrained quad-core
embedded CPU Gigabyte Brix 6500U. The robot obtains odometry estimates via
a downward-facing camera and IMU using a monocular Visual-Inertial Navigation
System (VINS-Mono [17]), previously used for high-speed teleoperation of a multi-
rotor [18]. This state estimation component, only present for hardware experiments,
is executed on a quad-core NVIDIA Tegra TX2 on-board the vehicle. Contrary to
perfect state estimation in simulation experiments, for the hardware experiments the
robot only has access to odometry for navigation and is susceptible to drift. For the
purpose of this work, we will continue to emphasize the role of planning and speed
in the exploration experiments and will comment briefly on ramifications of drift on
outcomes. Future iterations of this platform will seek to combine a local mapping
strategy [8] with a complete SLAM system.

5.2 Simulated Exploration of a Warehouse Environment

The simulations demonstrate exploration of a large warehouse environment (pic-
tured in Fig. 4). These trials are repeated for three system configurations which vary
the motion primitive library and the computational setting:
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Table 2: Motion primitive libraries used to construct action space using Eq. 3 from Sect. 3 and the
bounds obtained after applying analysis presented in Sect. 2. The vertical velocity bound (Vz) and
the speed bound in xB − yB plane (Vmax) are kept at 0.3 m/s and 4.0 m/s respectively. The total
number of primitives for a MPL is Nprim = Nω ·Nz.

(a) Large Library

ID Type Max.
Speed Dir. Nω Nz Nprim

1 Yaw 0 ψ 1 1 1
2 ⊥ V⊥,max xB 9 5 45
3 ⊥ Vmax xB 9 5 45
4 ‖ Vmax yB 9 5 45
5 ‖ Vmax −yB 9 5 45
6 Z Vz z 1 5 5

(b) Minimal Library

ID Type Max.
Speed Dir. Nω Nz Nprim

1 Yaw 0 ψ 1 1 1
2 ⊥ V⊥,max xB 3 3 9
3 ⊥ Vmax xB 3 3 9
4 ‖ Vmax yB 3 3 9
5 ‖ Vmax −yB 3 3 9
6 Z Vz z 1 3 3

(a) t = 100s (b) t = 500s (c) t = 1000s (d) t = 1500s

Fig. 4: Occupied map at different stages of exploration of a simulated three-dimensional 60m×
30m×11m warehouse environment used for experiments. The map is colored based on Z height.

• High branching factor (BF), Sim-Time: The planner uses the large motion
primitive library (Tab. 2a) for exploration. The simulation and clock pause at
the end of each planning round until the MCTS planner completes a user-defined
number (3000) of iterations. The simulation time then does not include this ad-
ditional time spent in planning.

• High BF, Real-Time: The planner uses the large motion primitive library for
exploration, but the simulation of the multirotor runs in real time. The planner
runs in an anytime fashion on a computer comparable to the on-board computer
used for flight experiments presented in Sect. 5.3 while simulators for the camera
and dynamics run on a separate computer.

• Low BF, Real-Time: The planner uses the minimal motion library (Tab. 2b) for
exploration and the computational configuration is the same as the above.

These experiments first establish baseline performance (High BF, Sim-Time) given
access to a variety of motion primitives and a relatively large amount of planning
time. The latter two configurations demonstrate online planning in a configuration
that closely matches the hexarotor platform used in this paper. These experiments
seek to demonstrate the role of computational constraints in design of the motion
primitive library. For each configuration, we provide several trials, one for each of
5 given starting locations.
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trials (1.766×106 bits). While the High BF, Sim-Time case dominates in terms of entropy reduc-
tion, the Low BF, Real-Time case is able to provide similar performance. Note that the different
configuration are described at the beginning of Sect. 5.2 and that BF denotes branching factor.

Each trial lasts 2500 seconds which provides ample time to explore the entire
environment. For all trials, the perpendicular velocity V⊥,max is further limited to
1.25m/s, below the value of 1.77m/s obtained in Sect. 2 which we find admits
forward motion at a constant speed given the trajectory generation approach used
for motion primitive design. The maximum speed is set to more than three times
greater at Vmax = 4.0m/s.

Figure 5 summarizes exploration performance for each experiment. The high
branching factory Sim-Time case which has access to extra planning time performs
at least as well or better than the other configurations in terms of entropy reduc-
tion. However, the configuration with same motion primitive library and real time
is significantly impaired and requires between approximately 1.3 to 1.8 times as
long to reach reported levels of entropy reduction. The lower branching factor case
matches the first configuration much more closely. As such, this latter configuration
is appropriate for deployment on the compute-constrained hexarotor platform.
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Fig. 6: Exploration performance by action. Plots provide estimates of probability densities (via
kernel density estimation) for speed, yaw rate, and entropy rate conditional on the type of action
(Tab. 2) being executed by the robot. All densities are also conditional on a significant entropy
reduction rate (greater than 600 bits/s) in order to emphasize performance characteristics for ac-
tions that directly contribute to the map rather than traversal of known space or time periods after
exploration is effectively complete. Note that, even though the option can has access to high-speed
motions perpendicular to frontiers, entropy reduction for perpendicular actions occurs primarily at
lower speeds (1.25m/s) in accordance with the analysis in Sect. 2.
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Table 3: Performance statistics for the high branching factor, Sim-Time simulation study. Unless
otherwise stated, rates refer to average performance over time-periods when tracking a given action
type. All statistics include any time the robot is tracking a given action, except for the entropy
reduction rate in the last row, which is conditional on a significant entropy reduction rate (greater
than 600 bits/s). Best (or nearly equivalent) values are bolded.

Actions: ⊥ ‖ Z Yaw Stop

Selection frequency 0.343 0.479 0.089 0.088 0.001
Total entropy red, norm. 0.40 0.41 0.06 0.12 0.01
Average speed (m/s) 2.163 2.778 0.959 1.114 1.611
Average yaw rate (rad/s) 0.286 0.234 0.170 0.381 0.080
Entropy red. rate (bits/s): 2425 2389 2020 2414 1283

In addition to being able to explore an environment rapidly and completely, we
characterize the roles of the motion primitive actions in the exploration task. Fig-
ure 6 shows density estimates plots for speeds, yaw rates, and entropy rate labelled
by the type of action selected by the MCTS planner for execution for periods when
the entropy reduction rate is significant (greater than 600 bits/s) so as to separate
exploration actions from traversal of the environment and time periods after ex-
ploration is effectively complete. This threshold corresponds to a knee point in the
overall distribution of entropy reduction rates: 94.4% of all entropy reduction occurs
above this threshold but during only 27.9% of time during the trials. Interestingly,
the time rate of entropy reduction is largely consistent across action types. However,
as expected, motions perpendicular to the frontier primarily contribute to entropy
reduction at reduced speed despite both low-speed and high-speed primitives being
available. Table 3 shows provides further statistics for the different kinds of actions.
Even though entropy reduction rates are similar across actions when the entropy
reduction rate is significant, the planner selects motions parallel and perpendicular
to frontiers most frequently, and those actions account for more than 80% of all
entropy reduction.

5.3 Hardware Experiments under Varied Conditions

Real-world autonomous exploration experiments are conducted using the aerial plat-
form described in Sect. 5.1 (Fig. 7a) in two outdoor scenarios: (1) Open space
(Fig. 7b), and (2) Scattered obstacles (Fig. 7c). Total exploration duration is lim-
ited to 90 seconds to minimize the effects of state estimation drift on the resulting
map. During each scenario, the robots explores while confined to 12m×24m×2m
bounding box. The robot starts at the same position in the bounding box for each
trial in both scenarios. The bounds on the speed for perpendicular (V⊥,max) and par-
allel (V‖,max) motions, are set at 1.25 m/s and 2.25 m/s respectively. The explored
maps and robot trajectory for two experiments, one from each scenario, are shown
in Figs. 7d,e. Speeds achieved by the vehicle during the experiments are shown in
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(a) Multirotor with depth sensor (b) Open space scenario (c) Obstacles scenario

(d) Open space scenario exploration after 90s (e) Obstacles scenario exploration after 90s

0 20 40 60 80

0

1

1.77
2.25

Time (s)

Sp
ee

d
(m

/s
)

Open Space: O1

0 20 40 60 80
Time (s)

Open Space: O2

0 20 40 60 80
Time (s)

Open Space: O3

0 20 40 60 80
Time (s)

Scattered Obstacles: S1

0 20 40 60
Time (s)

Scattered Obstacles: S2
⊥
‖
Z
Yaw
Stop
V‖,max
V⊥,max

(f) Speeds attained during outdoor exploration experiments

Fig. 7: (a) Multirotor used for hardware experiments in two real world scenarios: (b) open space
and (c) space with scattered obstacles. (d), (e), and (f) show the explored maps (color gradient
based on Z height), overall paths, and speeds attained by the robot after 90 s of 3D exploration
using the proposed exploration approach.1

1Video: https://youtu.be/YXt4yiTpOAc

Fig. 7f Figure 8 provides plots of reduction of map entropy as well as summary
statistics. Even though the trials were relatively short, the odometry often drifted
significantly by the end This drift likely contributed to the robot getting stuck be-
hind an obstacle during the trial S2. For this reason, we only use the first for the first
40 seconds of each trial when computing summary statistics unless otherwise noted.

As shown in Fig. 7f, the odometry system reports that the robot reaches and
slightly exceeds the maximum desired reference speed2 in each trial, primarily while
executing motions parallel to the frontier. Figure 7d shows a particularly notable
example of this behavior where the robot executed an outward spiraling motion
soon after the start of the trial.

2 The robot may exceed reference speeds due to error in tracking the position reference because of
environment disturbances and inaccuracies in the system model.



Fast Exploration using Multirotors: Analysis, Planning, and Experimentation 13

0 20 40 60 80

0

1

2

·105

Time (s)

E
nt

ro
py

re
du

ct
io

n
(b

its
)

O-1
O-2
O-3
S-1
S-2

Trials: O1 O2 O3 S1 S2

Entropy red. at 40s (bits×105) 1.53 1.61 1.46 1.2 1.04
Entropy red. final (bits×105) 2.32 2.27 2.25 1.82 1.16
Average speed (m/s) 1.50 1.56 1.56 1.42 0.98
Average yaw rate (rad/s) 0.39 0.39 0.33 0.33 0.31
Max. speed (m/s) 2.39 2.38 2.38 2.40 2.29
Max. yaw rate (rad/s) 0.66 0.59 0.55 0.60 0.63

Fig. 8: Entropy reduction for hardware trials and summary statistics. Except for the final entropy
reduction, all statistics are computed over the first 40 second of each trial (shown by the black bar
in the entropy reduction plot).

6 Conclusion and Future Work

We have investigated how the dynamics of aerial platforms and the geometry of
common sensors impact selection of control actions in robotic exploration. We have
obtained bounds on the velocity for different kinds of motions and applied this anal-
ysis to the design of a motion primitive library and information-based planner suit-
able for rapid exploration with aerial robots. We have demonstrated this approach
both in simulated exploration of a large warehouse environment and in outdoor ex-
periments with only on-board computation. This system produces interesting and
intuitive motions in practice such as outward spirals for rapid coverage of open
space. Further, the experimental results demonstrate speeds exceeding 2.25 m/s for
both open and cluttered environments, which matches and slightly exceeds prior
state-of-the-art results [6].

The analysis illuminates competing directions for improvements to speed and
entropy reduction performance. Decreasing planning time and latency, such as by
improved efficiency or reactive planning [6] or simply increasing sensor range, can
improve speeds moving perpendicular to frontiers which may be especially impor-
tant in highly cluttered environments where motion parallel to frontiers is not viable.
At the same time, the ability to safely and rapidly navigate known environments is
also tightly coupled to exploration performance both for motions parallel to frontiers
and when traversing known space to new unexplored regions. Thus, improvements
to state-estimation, mapping, and planning under uncertainty are also critical to in-
crasing speed and entropy reduction rates in exploration.

Acknowledgements The authors would like to thank Xuning Yang for help in discussion and
implementation of forward arc motion primitives used in this work.
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