
EasyChair Preprint

№ 377

Formal Verification of Synchronisation, Gossip and

Environmental Effects for Critical IoT Systems

Matt Webster, Michael Breza, Clare Dixon, Michael Fisher and
Julie McCann

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 24, 2018

Formal Veri�cation of Synchronisation,

Gossip and Environmental E�ects for

Critical IoT Systems

Matt Webster1, Michael Breza2,
Clare Dixon1, Michael Fisher1, and Julie McCann2

1 Department of Computer Science, University of Liverpool, Liverpool, L69 3BX, UK
{matt,cldixon,mfisher}@liverpool.ac.uk

https://www.liverpool.ac.uk/computer-science/
2 Department of Computing, Imperial College London, London, SW7 2AZ, UK

{mjb04,j.mccann}@doc.ic.ac.uk

https://www.imperial.ac.uk/computing

Abstract. The Internet of Things (IoT) promises a revolution in the
monitoring and control of a wide range of applications, from urban wa-
ter supply networks and precision agriculture food production, to vehicle
connectivity and healthcare monitoring. For applications in such critical
areas, control software and protocols for IoT systems must be veri�ed
to be both robust and reliable. Two of the largest obstacles to robust-
ness and reliability in IoT systems are e�ects on the hardware caused
by environmental conditions, and the choice of parameters used by the
protocol. In this paper we use probabilistic model checking to verify that
a synchronisation and dissemination protocol for Wireless Sensor Net-
works (WSNs) is correct with respect to its requirements, and is not
adversely a�ected by the environment. We show how the protocol can be
converted into a logical model and then analysed using the probabilis-
tic model-checker, Prism. Using this approach we prove under which
circumstances the protocol is guaranteed to synchronise all nodes and
disseminate new information to all nodes. We also examine the bounds
on synchronisation as the environment changes the performance of the
hardware clock, and investigate the scalability constraints of this ap-
proach.

Keywords: Internet of Things · Critical Systems · Formal Veri�cation.

1 Introduction

In this paper we use formal veri�cation, via the logical method of probabilis-

tic model-checking [15], to analyse and verify critical communication protocols
used for the Internet of Things (IoT) [43]. IoT systems often involve networks
of small, resource-constrained, computer devices embedded in an environment.
These devices have low-power sensors, radios for communication, and can po-
tentially control motors and other devices to perform actuation to change their

https://www.liverpool.ac.uk/computer-science/
https://www.imperial.ac.uk/computing

2 M. Webster et al.

environment. A common class of IoT systems, called Wireless Sensor Networks
(WSN), enable the monitoring and control of critical infrastructures made up of
large, complex systems such as precision agriculture or smart water networks.
Such systems require control software that can synchronise the events of the
nodes in the system, and disseminate parameters and code updates. WSN and
IoT deployments are increasingly mobile, allowing for wider applications and
new challenges in their design and deployment [34,33].

A key problem with the development of critical IoT systems is ensuring that
they will function correctly, or at least, fail in a way that is non-destructive
to the systems that they monitor and control. The use of probabilistic models
is crucial because it allows us to quantitatively analyse the system with the
dynamical e�ects caused by the environment � one of the largest causes of
failure for WSNs [27]. WSNs deployed on critical infrastructure su�er from the
e�ects of cyber-physical interactions in a way not seen with o�ce or domestic
computing. Environmental conditions such as rain or changes in temperature will
a�ect the performance of the sensor nodes, and can degrade the WSN potentially
causing node failure. The control software that provides event synchronisation
and controls message dissemination needs to be programmed to be reliable in
the light of these potential problems. Errors here can make the infrastructure
itself ine�cient at best, or even unstable and failing in the worst case.

1.1 Formal Veri�cation and Probabilistic Model Checking in Prism

Formal methods are a family of techniques used to verify software and hard-
ware, typically using mathematical, proof-based approaches [15]. These include
techniques such as automated theorem proving [16], in which full mathematical
proof is carried out, and model checking [2], in which every state of a model (also
known as the model's state space) can be examined exhaustively. Formal meth-
ods allow for formal veri�cation, where models of software and hardware systems
can be proved to satisfy certain requirements. These requirements are typically
provided using a precise formal logical language such as temporal logic [15].
In this paper we use probabilistic model-checking [26], a variant of traditional
model-checking that allows for probabilities to be incorporated into a model,
and for quantitative analyses to be carried out on such models.

The probabilistic model checker, Prism [26,36], consists of two parts: a mod-
eling language, and a model checker. The Prism modeling language can be used
to specify the behaviour of a probabilistic �nite state automaton (P-FSA), which
can then be formally veri�ed via the model checker. For example, we can model
a simple sensor node in the Prism version 4.4 modelling language as follows:

module sensorNode
state: [0..1] init 0;
[] state=0 -> 0.99: (state'=0) + 0.01: (state'=1);
[] state=1 -> 0.99: (state'=1) + 0.01: (state'=0);

endmodule

This sensor node is modelled as a module in Prism. We have one variable, `state',
which can be set to 0 or 1 (which we de�ne as representing `transmit' and `idle'

Critical IoT Systems and Formal Veri�cation 3

respectively). Note that we de�ne an initial state of 0 for this variable. There are
two lines denoting commands. The �rst command says that if the state is 0, then
remain in state 0 with probability 0.99 or transition to state 1 with probability
0.01. The second command is similar, but with 0 and 1 reversed. In general,
commands take the form

[s] guard -> p1 : u1 + . . .+ pn : un;

where pi are probabilities and ui are lists of variable updates. In the case where
only one list of updates is made with probability 1.0, a simpler form is used (e.g.,
[s] guard -> u;). The letter s denotes an optional synchronisation. Synchronised
commands execute simultaneously with synchronisation commands from other
modules that share the same label, and can be used for inter-module communi-
cation. Another way for modules to communicate is via the use of local variables,
which can be read by all modules, as well as global variables which can be read
by, and written to, all modules.

Multiple modules can be speci�ed within a Prism model. Models are exe-
cuted by selecting non-deterministically a command (from any module) whose
guard evaluates to true. If there are no commands whose guards are true, then
the model has reached a �xed point and will stop executing.

Once a formal model has been developed in the Prism language, it can be for-
mally veri�ed, with respect to some requirement, using the Prismmodel checker.
Prism requirements can be formalised as properties using logical languages such
as probabilistic computation tree logic (PCTL∗) and probabilistic linear tempo-
ral logic (P�LTL) [2]. Di�erent logics allow di�erent kinds of properties to be
speci�ed. In this paper we will use PCTL∗ to specify properties.

PCTL∗ is based on a discrete formulation of time as a tree-like structure,
starting from a particular point and extending into the future. The following are
well-formed PCTL∗ formulae: `p', meaning that p is true; `¬p', meaning that p
is false; `p =⇒ q', meaning if p is true then q is true; p∧ q', meaning that both p
and q are true; `F p', meaning p is true now or at some point in the future; and
`G p', meaning p is true now and at every point in the future. Prism also allows
the use of standard numerical operators such as =, ≥ and ≤.

Formal veri�cation works by analysing the entire state space of a model in
order to determine whether a particular property holds. For example, for the
sensor node model above, we can use PCTL∗ to specify the probability that
sensor node is eventually in the `idle' state:

P=?[F (state = 1)]

We can then use Prism model checker to determine that this probability is 1.0:

P=?[F (state = 1)] = 1.0

More complex properties can be formed. For example, the following property
gives the probability that the model will always be in the `idle' state eventually:

P=?[G F (state = 1)] = 1.0

4 M. Webster et al.

This kind of property is said to specify the probability that the model is in the
`idle' state in�ntely often.

2 Related Work

Formal methods have been used previously for design and analysis of WSN and
IoT. For example, Chen et al. [10] provide a survey of a number of approaches to
formal veri�cation of routing protocols for WSNs. Kim et al. [24] conduct a for-
mal security analysis of an authorization toolkit for the Internet of Things using
the Alloy veri�cation tool. Mouradian & Augé�Blum [32] describe the formal
veri�cation of real-time WSN protocols using the UPPAAL model checker. To-
barra et al. [40] use the Avispa model checking tool to formally verify a security
protocol for WSNs. Usman et al. [41] demonstrate formal veri�cation of mobile
agent-based anomaly detection for WSNs using the Symbolic Analysis Labora-
tory model checking tool. Dong et al. [13] use a formal speci�cation language
for sensor networks and perform formal veri�cation using SAT-solvers. However,
none of these approaches uses a probabilistic model checker, as is the case in
this paper, to determine the probability of success or failure for a particular
requirement. Fruth [17] used Prism to analyse contention resolution and slot
allocation protocols for WSNs, but not synchronisation or dissemination proto-
cols. Synchronization [19,18,37] and gossip protocols [3,14,25,20,23,12] have been
formally veri�ed but not together, and not accounting for environmental e�ects.

Mohsin et al. [31] used Prism to formally assess security risks in IoT systems,
but not risks due to the environment. Modelling of embedded systems and the
environment have been explored by Baresi et al. [4], who used a UML-based
MADES approach to model a system. The approach can �nd when constraints
are not met, but does not perform an exhaustive search of the entire state space,
as is the case here. Boano et al. explored the e�ects of temperature on CPU
processing time and transceiver performance though TempLab, a WSN test-bed
which allows for the manipulation of the temperature of each individual sensor
node [5]. Lenzen et al. [28] studied the e�ect of temperature on the hardware
clocks chips used as timers on many common WSN sensor node platforms.

3 Modelling a WSN Protocol in Prism

It is possible to model various WSN protocols in Prism. In order to illustrate
the approach, we create a model of a non-trivial decentralised WSN management
protocol known as FiGo (an abbreviation of Fire�y�Gossip) [9]. FiGo enables
synchronisation of di�erent sensors' clocks in order to unify the measurement of
time across the network based on �re�y-like synchronisation. FiGo also enables
consensus on key information between nodes via gossiping, in which nodes pass
on new information to their neighbors. FiGo was chosen because it is a simple
protocol that contains elements, such as epidemic propagation [21], found in
more commonly used protocols like Trickle [29] and RPL [6].

Critical IoT Systems and Formal Veri�cation 5

3.1 The Fire�y-Gossip (FiGo) Protocol

Current techniques for large-scale computer management are not suitable for
WSNs due to the unreliable nature of the nodes and their networks. A poten-
tial solution is to use management protocols, such as FiGo, that scale well and
are robust to the failure of individual nodes. In applications such as precision
agriculture [38,35], wireless nodes need to be synchronised to be able to deliver
time-correlated samples of data such as moisture levels and temperature, and to
analyse the data. If the analysis shows a problem, control messages need to be
sent to nodes with actuators, e.g., to increase irrigation in a drought, or decrease
it if a particular disease is discovered.

Synchronisation of WSNs is essential in many applications, for example in
adaptive sensing for smart water networks [22]. WSNs allow urban water providers
to monitor the water �ow to match customer demand. Synchronisation enables
the sensor nodes to measure, communicate and aggregate the �ow rates and wa-
ter pressure data. A control algorithm on the actuator nodes can open or close
valves to stabilise water �ow for the network, or re-route water in the case of a
major leak. Importantly, the control software can also disseminate new control
algorithms or critical security updates to all the sensing and actuation nodes via
gossiping.

FiGo is typical of a class of algorithms that combine �re�y synchronisa-
tion [42] and gossip protocols [21] into a single epidemic process [9]. This mix-
ture of synchronisation and dissemination processes is used to bring the internal
states of WSN nodes to a stable, global equilibrium where all nodes are synchro-
nised with respect to both time and metadata. Experiments have shown such
protocols to be both scalable and resilient to individual node failure [9,7,8]. A
typical FiGo algorithm is shown in Figure 1.

FiGo algorithms have been deployed for the synchronisation and management
of several WSN deployments run by the Adaptive Emergent Systems Engineering
group at Imperial College3. For example, they were used to organise pollution
sensors for an experiment with mobile data mules as part of an Imperial College
Grand Challenge project, and to synchronise and control the sampling rate for
a rainfall monitoring sensor network as part of a �oodplain monitoring project
done in collaboration with the Imperial College Department of Civil Engineering.
They are currently undergoing evaluation for deployment across the Liverpool
Sensor City IoT-X/LoRaWAN network4.

3.2 A Prism Model of FiGo

A Prism model of FiGo was developed precisely capturing the control �ow
of the algorithm in Figure 1. The algorithm begins with a number of variable
assignments which are directly translated into variable assignments in Prism.
Some of the variables are not updated at all in the model, so these are set as
global constants in Prism, e.g.:

3 http://wp.doc.ic.ac.uk/aese/
4 http://www.sensorcity.co.uk/

6 M. Webster et al.

transmit

clockCheck

sync1

sync2

sync3

sync4

updateClock

listen

Fig. 1. Phases of the FiGo Gossip�Synchronisation Algorithm.

const int cycleLength = 100;
const int refractoryPeriod = �oor(cycleLength/2);

The main loop of the algorithm is then divided into a number of phases. For
example, the transmit phase corresponds to the if-statement in lines 9 to 14. The
next if-statement consists of a number of nested if-statements called clockCheck,
listen, sync1, sync2, and so on. The �nal phase corresponds to the �nal if-
statement in the main loop and is called updateClock. These phases are de�ned
as global constants and are used as the values of a local variable s1Phase which
contains the currently-executing phase:

s1Phase : [0..7] init transmit;

Note that s1Phase refers to the phase of the �rst sensor node module, which is
called s1. Other sensor node phases are called s2Phase, s3Phase, etc.

When one phase has �nished executing the next phase is chosen according to
the control �ow of the algorithm in Figure 1. For example, during the sync1 phase

Critical IoT Systems and Formal Veri�cation 7

in lines 17 to 19 the algorithm checks whether the clock is outside a �refractory
period� set to half of the cycle length. If it is, then the sensor updates its clock
to the average of its own clock and the clock of the other sensor. The �circular
average� is used, in which the average of 90 and 10 are 0 (with respect to the
clock cycle of length 100), rather than 50. The circular average ensures that the
update to the clock variable moves it closer to the clock of the other sensor.

In the Prism model, this behaviour is shown in the following three com-
mands:

[] s1Phase=sync1 & s1LocalClock>=refractoryPeriod & di�<=�oor(cycleLength/2) ->
(s1LocalClock'=s1avg1) & (s1Phase'=sync2);

[] s1Phase=sync1 & s1LocalClock>=refractoryPeriod & di�>�oor(cycleLength/2) ->
(s1LocalClock'=s1avg2) & (s1Phase'=sync2);

[] s1Phase=sync1 & !(s1LocalClock>=refractoryPeriod) -> (s1Phase'=sync2);

The �rst two commands say that if the sensor is in the sync1 phase and the clock
is greater than or equal to refractoryPeriod, then set s1's clock to the circular
average of the s1's clock and s2's clock. The third command says that if these
conditions aren't set, then proceed to the next phase of the algorithm, sync2.

The sensor which we have modelled here is called s1. To model communication
between sensor nodes we need at least one more sensor in the model, s2. The
sensor s2 is exactly the same as s1, except all references to �s1� in the code
are modi�ed to �s2.� Communication in the model is achieved asynchronously
through the use of inboxes: when a sensor sends a message to another sensor
it does so by leaving the message in an inbox, which can then be read by the
receiving sensor when it is ready to do so.

The resulting combined model is around 140 lines of code long including
variable declarations, and can be found in the online repository5. This Prism
model is an almost direct translation from the pseudocode to Prism and has
not been optimised for formal veri�cation.

4 Formal Veri�cation of FiGo Using Prism

We build a formal model in Prism, in a manner analogous to compiling a pro-
gram: the source code, in this case the Prism model, is automatically converted
into a mathematical model, essentially a �nite state structure. During this con-
struction, Prism calculates the set of states reachable from the initial state and
the transition matrix which represents a probabilistic �nite state automaton.
Building revealed that the full model consisted of 4,680,914 reachable states,
with 9,361,828 transitions between those states. and took 21 minutes on an In-
tel Core i7-3720QM CPU @ 2.60GHz laptop, with 16 GB of memory, running
Ubuntu Linux 16.04. As we shall see in Section 4.1, it was possible to reduce the
size of this model signi�cantly.

One of the key features of Prism is that it can �nd the probability of a
particular property holding through some path through a computation tree. For

5 https://cgi.csc.liv.ac.uk/∼matt/2018-1/

8 M. Webster et al.

example, we can create a property to determine the probability that eventually
the two sensors are synchronised:

P=?[F (s1Clock = s2Clock)] [23.8s] (1)

In this case the probability is 1.0, meaning that on all paths through the model
the clocks will eventually synchronise. (The time taken for model checking was
23.8 seconds.) That is not to say that they remain synchronised, or that they
become synchronised again once they are no longer synchronised. If we wish to
test the latter, that synchronisation happens repeatedly, the we can create a
probability based on the second formula above:

P=?[G F s1Clock = s2Clock] [100s] (2)

This probability, in which synchronisation occurs in�nitely often, is 1.0. We
can strengthen the property further: we can verify that, once the clocks are
synchronised, that they remain synchronised:

P=?[F G s1Clock = s2Clock] [75.6s] (3)

In this case the probability of this property being true is 0.0, meaning that it
is never the case that the two clocks synchronise and then remain synchronised
forever. The reason this is so can be seen by examining a simulation, or trace,
of the model. (A simulation is a sample path or execution of the model [36].)
Below is a simulation of the model showing how de-synchronisation occurs after
synchronisation:

action s1Phase s1Clock s2Phase s2Clock

s1 updateClock 4 updateClock 4
s2 updateClock 4 transmit 5
s2 transmit 5 transmit 5

The table shows the values of certain state variables during an execution of the
model. The leftmost column, `action�, shows which module, s1 or s2, is currently
executing. In the �rst state, both clocks have the value �4� and are synchro-
nised. However, a transition occurs in which one of the sensors, in this case,
s2, increments its clock value resulting in de-synchronisation. However, in the
next state we can see that the sensor s1 updates its clock as well, resulting in
synchronisation.

We might postulate that once synchronisation occurs, then de-synchronisation
will occur at some point. This can be encoded as the following property, which
evaluates to 1.0:

P=?

[
G

(
s1Clock = s2Clock =⇒
F ¬(s1Clock = s2Clock)

)]
[123s] (4)

We can also verify whether once de-synchronisation has happened, that synchro-
nisation will eventually happen:

P=?

[
G

(
¬(s1Clock = s2Clock) =⇒

F s1Clock = s2Clock

)]
[175s] (5)

Critical IoT Systems and Formal Veri�cation 9

Property 1 tells us that synchronisation will occur at some point during the
execution of the model and Property 2 tells us that synchronisation will occur
in�nitely often. Properties 4 and 5 tell us even more: that periods of synchroni-
sation are separated by periods of de-synchronisation, and vice versa.

4.1 Increasing the Model's Accuracy

Examining simulations using Prism reveals that clocks will rapidly de-synchron-
ise after synchronisation, as we saw in the previous section. This is a result of
the way clocks were handled in this model: we allowed for clocks to tick at any
rate. Therefore it is possible for clocks to tick unevenly, as in this case. In fact, it
is possible for one clock to tick inde�nitely without the other clock ticking. This
assumption of the model can be seen to correlate with a real-world sensor system
in which clocks are unreliable and may vary widely in comparative speeds.

The FiGo sensor network we are modelling is based on the `MICAz' sensor
mote developed by Memsic Inc. [30] The network is homogeneous across nodes,
meaning that the same hardware and software is present on each node. This
includes the microcontroller, in this case the `ATmega128L' developed by Atmel
Corporation [1]. This microcontroller has a clock speed of 16 MHz and operates
at up to 16 million instructions per second. As the network is homogeneous we
can model the clock speed as constant across di�erent nodes. In practice, and
as we shall see in Section 5, clock speeds are never exactly the same. However,
treating the clocks speeds as constant is much closer to reality than one clock
being able to tick inde�nitely without the other ticking.

Clock speeds were made constant by introducing synchronisations in the
updateClock phase:

[tick] s1Phase=updateClock & s1Clock<cycleLength ->
(s1Clock'=s1Clock+1) & (s1Phase'=transmit);

[tick] s1Phase=updateClock & s1Clock=cycleLength ->
(s1Clock'=0) & (s1SameCount'=0) & (s1Phase'=transmit);

The �rst command says that if the clock is less than the cycle length (equal to
99 in this model), then increment the clock, but if the clock is equal to 99, then
reset the clock to zero.

These commands both use a synchronisation label, tick, and correspond to
a similar set of commands in the s2 sensor module, which use the same label.
The label means that one of these commands must execute at the same time
as one of the corresponding commands in the s2 module. Since these commands
handle clock updates, this ensures that the clocks will update synchronously,
and therefore it is impossible for one clock to tick faster than the other. This
models more closely the homogeneous network on which the FiGo algorithm is
implemented.

One advantage of constant clock speeds is that it reduces the total number
of states of the probabilistic model. In this case the model reduced in size from
4,680,914 states with 9,361,828 transitions to 8,870 states and 13,855 transitions.
The time taken for model building also decreased, from 21minutes to 17minutes.

10 M. Webster et al.

Property 1 was formally veri�ed for this revised model:

P=?[F s1Clock = s2Clock] = 1.0 [5.4s] (6)

In the de�nition of the FiGo algorithm, the variable nextBroadcast is assigned a
random value between 0 and 99. During model translation, however, this random
value was modi�ed to a constant integer value. We used Prism variables to auto-
matically check every possible value of nextBroadcast. This is done by removing
the values of the global constants that represent the next broadcast value. Then,
Prism can be used to perform automatic, and exhaustive, model-checking of a
property across a range of values for these constants, by automatically building
and verifying a model for each value. However, the Prism model has a large ver-
i�cation time of 17 minutes. Prism needs to build a model for each value of the
two variables above, meaning that 10,000 models would need to be constructed,
each taking 17 minutes. To reduce the size of the model the duty cycle length
was reduced from 100 to 20. This reduces the size of the model to 1,947 states
and 3,040 transitions, and takes 16.8 seconds to build. The duty cycle length
can be reduced from 100 to 20 without signi�cantly a�ecting the accuracy of the
model, as there is still a large enough range of possible values to allow for an
accurate depiction of clock synchronisation via circular averaging.

Property 2 was veri�ed with a range of [0, 20] for both variables, representing
every possible combination of the two nextBroadcast values. The results showed
that the probability that synchronisation will happen in�nitely often is always
1.0.

4.2 Gossip and Synchronisation

The properties examined thus far have concerned clock synchronisation. The
other main function of the FiGo algorithm is to spread information across a
network using a gossip protocol in which sensors tell their neighbours about
new information. In the case of the FiGo algorithm, this is represented by an
integer variable whose initial value is zero, but which may increase when a node
is updated with a new piece of information. This captures a common function
of WSNs that must share new information, roll-out software updates, etc.

In order to analyse metadata synchronisation the model was modi�ed to
allow new metadata values. This was done by creating a branching point during
the updateClock phase of the algorithm:

[tick] s1Phase=updateClock & s1Clock=cycleLength & s1Metadata<3 ->
(1-pUpdateMetadata): (s1Clock'=0) & (s1SameCount'=0) & (s1Phase'=transmit)
+ pUpdateMetadata: (s1Clock'=0) & (s1SameCount'=0) &
(s1Metadata'=s1Metadata+1) & (s1Phase'=transmit);

The metadata can take any value from 0 to 3, representing a sequence of three
possible updates. This updated command allows the metadata to be incremented
at the point the duty cycle ends. This happens with probability pUpdateMetadata
which is equal to 0.5, a value chosen to represent that new metadata will happen,

Critical IoT Systems and Formal Veri�cation 11

on average, every other duty cycle. Therefore the probability that the metadata
will not be updated at the end of the duty cycle is also 0.5. This functionality is
included in s1, but not in s2, to model a sensor node that receives updates �rst.
For example, this could be the sensor node located closest to an engineer who is
updating node software, which will therefore receive an update �rst. Adding this
branch point to the model introduces new states for the various values of the
local metadata variables. This increased the size of the model from 1,947 states
and 3,040 transitions to 4,776 states and 7,467 transitions for a model with a
duty cycle of 20. It is now possible to form properties that verify the gossip part
of the FiGo algorithm. For example:

P=?[F s1Metadata = s2Metadata] = 1.0 [0.041s] (7)

This formula says that the probability that the metadata is eventually syn-
chronised across nodes is 1.0. As is the case with software version numbers,
the metadata increases but never decreases, i.e., once it reaches 3 it stays at 3.
Therefore it can also be veri�ed that at some point the metadata is synchronised
(i.e., when it is equal to 3) and remains so:

P=?[F G s1Metadata = s2Metadata] = 1.0 [2.0s] (8)

Furthermore, we can verify that the Fire�y and Gossip parts of the algorithm
both work, and that eventually the two sensors will by synchronised on both
time and metadata, and will remain so:

P=?

[
F G

(
s1Metadata = s2Metadata
∧ s1Clock = s2Clock

)]
= 1.0 [1.6s] (9)

To examine the scalability of the model, the two-sensor network was extended to
three and four sensors. A complete graph topology was used, so that every node
can communicate with every other node. A range of clock duty cycle lengths was
examined for 2�, 3� and 4�sensor networks. The aim was to see how total time
to verify Property 2 (including build and veri�cation time) was a�ected. The
results are summarised in Figure 2.

Fig. 2. Total time for formal veri�cation of Property 2 for 2� and 3�sensor networks.

The 2� and 3�sensor networks could be veri�ed formally with a clock cycle
length of up to 100 for 2-sensor networks, and 28 for 3�sensor networks. However,

12 M. Webster et al.

-10 0 10 20 30

Temperature (°C)

921.809

921.810

921.811

921.812

921.813

921.814

921.815

F
re

qu
en

cy
 (

kH
z)

Node 1

Fig. 3. Hardware clock frequency for a Mica2 node for di�erent ambient tempera-
tures [28].

the 4�sensor network could not be analysed at all. The amount of time taken to
verify this property increases with cycle length, and increases signi�cantly with
the number of sensors (see Figure 2). This is due to a state space explosion [11]
occurring as a result of a larger number of large variables occurring in the model
(e.g., the duty cycle has a range of up to 100 for each sensor). The state space
also increases with cycle length due to increased non-determinism in the model:
the larger the duty cycles for the clocks of each sensor, the more combinations
of these clock values there are in the model.

All of the probabilities for Property 2 for the di�erent network and duty cycle
sizes were found to be 1.0, showing that synchronisation happens in�nitely often
in all the cases examined. It should be noted that these results only pertain to the
model examined in this paper, and other models and protocols may permit larger
sensor networks to be analysed. While state space explosion is a recurrent theme
in model checking, it can be mitigated through abstraction and re-modelling to
reduce the size of the state space.

5 Environmental E�ects on Hardware

Microcontrollers such as the ATmega128L [1] are often set to process instructions
at a particular speed, known as the clock speed. (Here, the clock speed refers
to the clock internal to the microcontroller, not the clock used in the FiGo
algorithm). These clock speeds can vary slightly due to environmental conditions
(principally temperature). Laboratory tests with synchronised MICAz [30] sensor
nodes, which use the ATmega128L controller, have revealed that the drift in clock
speed can be pronounced over a period of hours.

Lenzen et al. [28] studied the e�ect of varying ambient temperature on the
clock speed of a `Mica2' node, which uses the same processor as the MICAz node
used in this paper. It was found that drift was up to one microsecond per second
for a di�erence of �ve degrees Celsius (see Figure 3).

Using the raw data from [28] it was determined that at 0.0 degrees Celsius the
operating frequency was 921, 814 Hz, and at 30.0 degrees Celsius the frequency
was 921, 810 Hz. Therefore, for each tick of the clock, the amount of time taken

Critical IoT Systems and Formal Veri�cation 13

per tick for a processor at 30.0 degrees Celsius will be 1.000004339 times longer
than for a clock at 0.0 Celsius. Eventually the warmer clock will lag the colder
clock by one whole tick, i.e., the colder clock will have ticked twice and the
warmer clock will have ticked once.

Suppose that clock c1 has ticked n1 times, with each tick having length l1.
Then, after a period of time, the total time elapsed is n1l1. Similarly for clock c2,
after n2 ticks the total time elapsed is n2l2. After a period of time, the clocks will
tick in unison, so that n1l1 = n2l2. Suppose that clock c2 has ticked exactly once
more than c1, so that n1 = n2 + 1. Therefore we know that (n2 + 1)l1 = n2l2. If
we let c1 be the colder clock, and c2 be the warmer clock, then we know that c2's
tick is 1.000004339 times longer that the tick of c1, so that l2 = 1.000004339l1.
Therefore (n2 + 1)l1 = 1.000004339l1n2. Therefore n2 = 230, 467, and we know
that after 230, 468 ticks of c2's clock it will be exactly one tick behind c1's clock.

Therefore, on average, every 230, 468 ticks, the warmer clock will lag behind
the colder one by one whole tick. We can convert this to a probability, 1 in
230, 468, or 0.000004339, which can be incorporated into the probabilistic Prism
model:

[tick] s1Phase=updateClock & s1Clock=1 ->
(1-pClockDrift): (s1Clock'=s1Clock+1) & (s1Phase'=start)
+ pClockDrift: (s1Clock'=s1Clock+2) & (s1Phase'=start);

This command says that if it is time to update the clock, then increase the clock
value by 1 with probability 1− pClockDrift, or by 2 with probability pClockDrift,
where pClockDrift = 0.0004339. Note that pClockDrift is 100×0.000004339. This
is because clock drift is modelled as happening once per duty cycle (speci�cally,
when s1Clock = 1), which is every hundred clock ticks. This helps reduce the
state space because this branching point can only happen once per duty cycle,
rather than on every tick. Note that the clock is increased by 2 when clock drift
occurs. This is to ensure that the clock drifts only once per duty cycle � if the
clock was increased by 0 (representing a slower clock rather than a faster one)
then the precondition of this command would be true on the next iteration of the
algorithm meaning that the clock could drift more than once in the duty cycle.
As clock drift can be modelled either by one clock slowing by one tick, or the
other clock speeding up by one tick, the accuracy of the model is not a�ected.

It is possible to calculate the e�ect of clock drift on the stability of clock
synchronisation. One way to do this is use a steady-state probability in Prism,
denoted S=?[s], which is the probability that a model is in a particular state s
at any given time. For example it was found that:

S=?[s1Clock = s2Clock] = 0.996709321 [0.5s] (10)

i.e., the probability that the model is in a synchronised state is equal to 0.996709-
321. That is to say, 99.67% of the time the model is in a synchronised state.

It should be noted that the numerical methods normally used to determine
the steady state probabilities in Prism were not suitable in this case, as they
either did not converge or returned a value of 1.0 after a very short execution

14 M. Webster et al.

Fig. 4. Steady-state probability of FiGo synchronisation for varying temperatures of a
second node.

time, indicating a possible problem with the use of the numerical method. One
possible reason for this is the closeness of the probability of clock drift to zero.
Instead, `exact model checking' was used, a technique in which the model checker
builds the state space explicitly, and returns a probability based on the number
of states matching the speci�ed formula divided by the total number of states.
Exact model checking is not enabled by default as it requires a lot of time and
memory [36], but in this case the model was su�ciently small to allow its use.

Experiments with di�erent values for pClockDrift showed that the steady
state probability of synchronisation is dependent on the clock drift rate. If the
clock drifts more often, then the model will spend less time in a synchronised
state. The varying clock drift rates due to ambient temperature were examined
to determine the e�ect on synchronisation of operating at varying temperatures.
Various clock speeds were taken from the data in Lenzen et al.[28] corresponding
to di�erent temperatures. These were compared against a base clock speed of
921814.624 Hz. This value was chosen as it was the highest frequency observed,
and it occurred at approximately zero degrees Celsius. Therefore the drift rates in
our experiment were relative to a reference node operating at that temperature.

Figure 4 shows the e�ect on synchronisation between two nodes when one
node is at zero degrees Celsius, and a second node is at a varying ambient
temperature between −12.48 degrees Celsius and 30.48 degrees Celsius. It can
be seen that the steady-state probability never drops below 0.9959677566, and
decreases with increased di�erence in temperature between the two nodes. The
shape of the curve closely matches that in Figure 3, as expected.

6 Conclusion and Future Work

We have shown how formal methods, in particular probabilistic model check-
ing using Prism, can be used to model and verify protocols used in critical
IoT systems. Models were developed based on a straightforward translation
from a pseudocode-style language into the Prism modelling language. Key re-
quirements of a gossip�synchronisation algorithm were encoded using proba-
bilistic computation tree logic (PCTL∗) and then veri�ed formally using Prism.
These requirements included clock synchronisation, metadata synchronisation
and steady-state probability of synchronisation.

Critical IoT Systems and Formal Veri�cation 15

Environmental e�ects, such as temperature, can a�ect a WSN node's hard-
ware and cause clock drift. We have explored the use of formal veri�cation to
quantify the extent to which clock drift a�ects the synchronisation of WSN
nodes. Results such as these can be useful for system designers who may wish
to adjust the parameters of FiGo, or even develop new algorithms, to better
cope with sources of unreliability such as clock drift. These new synchronisation
algorithms can then be veri�ed formally in a similar way to that described in
this paper.

We have also demonstrated that state space explosion is a key challenge in
the formal veri�cation of WSNs. State space explosion issues are common when
using model checkers like Prism [11], and the results in Figure 2 are typical.
However, it is often possible to compensate for state space issues through the
use of abstraction and re-modelling. For example, rather than modelling the al-
gorithm completely for each sensor, we could model it in detail for a single sensor,
and model the rest of the network of n nodes with a second module in Prism.
In doing so the module size would be kept to a minimum, but would still allow
for veri�cation of the behaviour of the node in response to a network. A possible
application of this approach would be to verify how long a particular sensor node
takes to synchronise with an already-synchronised network. Another possibility
is to use a population model (e.g., [19,18]), in which sensors are not modelled
in detail, but rather the whole network, or several sub-networks, are modelled
in order to verify properties concerning overall sensor network behaviour. These
approaches, which could also be applied to investigate di�erent sensor network
topologies, are intended for future work.

Another way to compensate for state space explosion is to complement for-
mal veri�cation with other veri�cation methods, e.g., simulation. Simulation
can provide a greater level of detail. For example, sensor networks consisting of
thousands of nodes can be analysed by simulation software [7]. Of course, the
disadvantage of simulation is that it does not allow exhaustive examination of
the state space, and is therefore prone to missing highly improbable events that
can be detected using model checking: so-called `black swans' [39]. Naturally, we
advocate the use of a range of di�erent methods of veri�cation for critical IoT
systems, as their di�erent characteristics are often complementary.

Our intention is to extend this approach beyond speci�c synchronisation and
distribution algorithms, through the generation of a more general approach to
critical IoT systems design. This will incorporate simulation, algorithm anima-
tion, testing and a range of formal veri�cation elements, to provide a strong and
useful apparatus for the exploration and analysis of a range of design decisions.
While there is much work still to be done to facilitate this, the research reported
in this paper shows how certain design choices can be explored in a more precise,
formal way.

Acknowledgment. The authors would like to thank Philipp Sommer for the
experimental data from [28].

16 M. Webster et al.

References

1. Atmel Corporation: ATmega128L: 8-bit Atmel microcontroller with 128 kBytes in-
system programmable �ash. http://www.atmel.com/images/doc2467.pdf (2018),
last accessed 6th April 2018

2. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)

3. Bakhshi, R., Bonnet, F., Fokkink, W., Haverkort, B.: Formal analysis techniques
for gossiping protocols. SIGOPS Oper. Syst. Rev. 41(5), 28�36 (Oct 2007).
https://doi.org/10.1145/1317379.1317385

4. Baresi, L., Blohm, G., Kolovos, D., Matragkas, N., Motta, A., Paige, R., Rad-
jenovic, A., Rossi, M.: Formal veri�cation and validation of embedded systems:
the UML-based MADES approach. Software & Systems Modeling 14(1), 343�
363 (Feb 2015). https://doi.org/10.1007/s10270-013-0330-z, https://doi.org/10.
1007/s10270-013-0330-z

5. Boano, C., Zúñiga, M., Brown, J., Roedig, U., Keppitiyagama, C., Römer, K.:
Templab: A testbed infrastructure to study the impact of temperature on wireless
sensor networks. In: Proceedings of the 13th International Symposium on Infor-
mation Processing in Sensor Networks. pp. 95�106. IEEE Press (2014)

6. Brandt, A.e.a.: RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks.
RFC 6550 (2012). https://doi.org/10.17487/rfc6550, https://rfc-editor.org/

rfc/rfc6550.txt

7. Breza, M.: Bio-Inspired Tools for a Distributed Wireless Sensor Network Operating
System. Ph.D. thesis, Imperial College, London (2013)

8. Breza, M., McCann, J.: Polite broadcast gossip for iot con�guration management.
In: 3rd International Workshop on Sensors and Smart Cities. IEEE (2017)

9. Breza, M., McCann, J.: Lessons in implementing bio-inspired algorithms on wireless
sensor networks. pp. 271�276. IEEE COMPUTER SOC (2008)

10. Chen, Z., Zhang, D., Zhu, R., Ma, Y., Yin, P., Xie, F.: A review of automated
formal veri�cation of ad hoc routing protocols for wireless sensor networks. Sensor
Letters (5) (2013)

11. Clarke, E.M., Klieber, W., Nová£ek, M., Zuliani, P.: Model checking and the state
explosion problem. In: Tools for Practical Software Veri�cation, pp. 1�30. Springer
(2012)

12. Crouzen, P., van de Pol, J., Rensink, A.: Applying formal methods to gossiping
networks with mCRL and Groove. SIGMETRICS Perform. Eval. Rev. 36(3), 7�16
(Nov 2008). https://doi.org/10.1145/1481506.1481510, http://doi.acm.org/10.
1145/1481506.1481510

13. Dong, J.S., Sun, J., Sun, J., Taguchi, K., Zhang, X.: Specifying and Ver-
ifying Sensor Networks: An Experiment of Formal Methods, pp. 318�337.
Springer Berlin Heidelberg, Berlin, Heidelberg (2008), http://dx.doi.org/10.

1007/978-3-540-88194-0_20

14. Fehnker, A., Gao, P.: Formal Veri�cation and Simulation for Performance Analysis
for Probabilistic Broadcast Protocols, pp. 128�141. Springer Berlin Heidelberg,
Berlin, Heidelberg (2006), http://dx.doi.org/10.1007/11814764_12

15. Fisher, M.: An Introduction to Practical Formal Methods Using Temporal Logic.
Wiley (2011)

16. Fitting, M.: First-Order Logic and Automated Theorem Proving. Springer (1996)

17. Fruth, M.: Formal Methods for the Analysis of Wireless Network Protocols. Ph.D.
thesis, University of Oxford (2011)

http://www.atmel.com/images/doc2467.pdf
https://doi.org/10.1145/1317379.1317385
https://doi.org/10.1007/s10270-013-0330-z
https://doi.org/10.1007/s10270-013-0330-z
https://doi.org/10.1007/s10270-013-0330-z
https://doi.org/10.17487/rfc6550
https://rfc-editor.org/rfc/rfc6550.txt
https://rfc-editor.org/rfc/rfc6550.txt
https://doi.org/10.1145/1481506.1481510
http://doi.acm.org/10.1145/1481506.1481510
http://doi.acm.org/10.1145/1481506.1481510
http://dx.doi.org/10.1007/978-3-540-88194-0_20
http://dx.doi.org/10.1007/978-3-540-88194-0_20
http://dx.doi.org/10.1007/11814764_12

Critical IoT Systems and Formal Veri�cation 17

18. Gainer, P., Linker, S., Dixon, C., Hustadt, U., Fisher, M.: Investigating parametric
in�uence on discrete synchronisation protocols using quantitative model checking.
In: Proc. QEST 2017. Springer (2017), to appear.

19. Gainer, P., Linker, S., Dixon, C., Hustadt, U., Fisher, M.: The Power of Synchro-
nisation: Formal Analysis of Power Consumption in Networks of Pulse-Coupled
Oscillators. ArXiv e-prints (2017), https://arxiv.org/abs/1709.04385. Last ac-
cessed 11/10/2017.

20. Haverkort, B.R., Siegle, M., van Steen, M.: Quantitative analysis of gos-
siping protocols. SIGMETRICS Perform. Eval. Rev. 36(3), 2�2 (Nov
2008). https://doi.org/10.1145/1481506.1481508, http://doi.acm.org/10.1145/
1481506.1481508

21. Jelasity, M., Montresor, A., Babaoglu, O.: Gossip-based aggregation in large dy-
namic networks. ACM Transactions on Computer Systems (TOCS) 23(3), 219�252
(2005)

22. Kartakis, S., Yu, W., Akhavan, R., McCann, J.A.: Adaptive edge analytics for
distributed networked control of water systems. In: Internet-of-Things Design and
Implementation (IoTDI), 2016 IEEE First International Conference on. pp. 72�82.
IEEE (2016)

23. Katoen, J.P.: How to model and analyze gossiping protocols? SIGMETRICS Per-
form. Eval. Rev. 36(3), 3�6 (Nov 2008). https://doi.org/10.1145/1481506.1481509

24. Kim, H., Kang, E., Lee, E.A., Broman, D.: A toolkit for construction of autho-
rization service infrastructure for the Internet of Things. In: Proceedings of the
Second International Conference on Internet-of-Things Design and Implementa-
tion, IoTDI 2017, Pittsburgh, PA, USA, April 18-21, 2017. pp. 147�158 (2017).
https://doi.org/10.1145/3054977.3054980

25. Kwiatkowska, M., Norman, G., Parker, D.: Analysis of a gossip protocol
in PRISM. SIGMETRICS Perform. Eval. Rev. 36(3), 17�22 (Nov 2008).
https://doi.org/10.1145/1481506.1481511

26. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Veri�cation of probabilistic
real-time systems. In: Proc. 23rd International Conference on Computer Aided
Veri�cation (CAV'11). LNCS, vol. 6806. Springer (2011)

27. Langendoen, K., Baggio, A., Visser, O.: Murphy loves potatoes: Experiences from
a pilot sensor network deployment in precision agriculture. In: Parallel and Dis-
tributed Processing Symposium, 2006. IPDPS 2006. 20th International. pp. 8�pp.
IEEE (2006)

28. Lenzen, C., Sommer, P., Wattenhofer, R.: Optimal clock synchronization in net-
works. In: Proceedings of the 7th ACM Conference on Embedded Networked
Sensor Systems. pp. 225�238. SenSys '09, ACM, New York, NY, USA (2009).
https://doi.org/10.1145/1644038.1644061

29. Levis, P., Lee, N., Welsh, M., Culler, D.: TOSSIM: accurate and scalable simulation
of entire TinyOS applications. In: Proceedings of the 1st International Conference
on Embedded Networked Sensor Systems. pp. 126�137. ACM New York, NY, USA
(2003)

30. MEMSIC, Inc.: MICAz wireless measurement system. http://www.memsic.com/
userfiles/files/Datasheets/WSN/micaz_datasheet-t.pdf (2018), last accessed
6th Aprll 2018.

31. Mohsin, M., Sardar, M., Hasan, O., Anwar, Z.: IoTRiskAnalyzer: A probabilistic
model checking based framework for formal risk analytics of the Internet of Things.
IEEE Access 5, 5494�5505 (2017)

https://arxiv.org/abs/1709.04385
https://doi.org/10.1145/1481506.1481508
http://doi.acm.org/10.1145/1481506.1481508
http://doi.acm.org/10.1145/1481506.1481508
https://doi.org/10.1145/1481506.1481509
https://doi.org/10.1145/3054977.3054980
https://doi.org/10.1145/1481506.1481511
https://doi.org/10.1145/1644038.1644061
http://www.memsic.com/userfiles/files/Datasheets/WSN/micaz_datasheet-t.pdf
http://www.memsic.com/userfiles/files/Datasheets/WSN/micaz_datasheet-t.pdf

18 M. Webster et al.

32. Mouradian, A., Augé-Blum, I.: Formal veri�cation of real-time wireless sensor net-
works protocols with realistic radio links. In: Proceedings of RTNS 2013. pp. 213�
222 (2013)

33. Munir, S.A., Ren, B., Jiao, W., Wang, B., Xie, D., Ma, J.: Mobile wire-
less sensor network: Architecture and enabling technologies for ubiquitous com-
puting. In: Proceedings of the 21st International Conference on Advanced In-
formation Networking and Applications Workshops - Volume 02. pp. 113�
120. AINAW '07, IEEE Computer Society, Washington, DC, USA (2007).
https://doi.org/10.1109/AINAW.2007.257

34. Nahrstedt, K., Li, H., Nguyen, P., Chang, S., Vu, L.H.: Internet of mo-
bile things: Mobility-driven challenges, designs and implementations. In: First
IEEE International Conference on Internet-of-Things Design and Implemen-
tation, IoTDI 2016, Berlin, Germany, April 4-8, 2016. pp. 25�36 (2016).
https://doi.org/10.1109/IoTDI.2015.41

35. Ojha, T., Misra, S., Raghuwanshi, N.S.: Wireless sensor networks for agriculture:
The state-of-the-art in practice and future challenges. Computers and Electronics
in Agriculture 118, 66�84 (2015)

36. Parker, D.: PRISM 4.4 Manual. Department of Computer Science, Univer-
sity of Oxford (April 2018), http://www.prismmodelchecker.org/manual/Main/
Welcome. Last accessed 18th April 2018.

37. Pfeifer, H., Schwier, D., von Henke, F.W.: Formal veri�cation for time-triggered
clock synchronization. In: 7th IFIP International Working Conference on Depend-
able Computing for Critical Applications (DCCA-7) (1999)

38. ur Rehman, A., Abbasi, A.Z., Islam, N., Shaikh, Z.A.: A review of wireless sensors
and networks' applications in agriculture. Computer Standards & Interfaces 36(2),
263�270 (2014)

39. Taleb, N.N.: The Black Swan: The Impact of the Highly Improbable. Penguin
Books (2007)

40. Tobarra, L., Cazorla, D., Cuartero, F.: Security in wireless sensor networks: A
formal approach. In: From Problem Toward Solution: Wireless Sensor Networks
Security, chap. 8. Nova (2009)

41. Usman, M., Muthukkumarasamy, V., Wu, X.W.: Formal veri�cation of mobile
agent based anomaly detection in wireless sensor networks. In: 8th IEEE Workshop
on Network Security (2013)

42. Werner-Allen, G., Tewari, G., Patel, A., Welsh, M., Nagpal, R.: Fire�y-inspired
sensor network synchronicity with realistic radio e�ects. In: Proceedings of the
3rd international conference on Embedded networked sensor systems. pp. 142�153.
ACM New York, NY, USA (2005)

43. Yinbiao et al., S.: Internet of Things: Wireless sensor networks. International Elec-
trotechnical Commission White Paper (July 2014)

https://doi.org/10.1109/AINAW.2007.257
https://doi.org/10.1109/IoTDI.2015.41
http://www.prismmodelchecker.org/manual/Main/Welcome
http://www.prismmodelchecker.org/manual/Main/Welcome

	Formal Verification of Synchronisation,Gossip and Environmental Effects forCritical IoT Systems

