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Abstract 

 

The standard planar Othello game has 8 (rows) * 8 (columns) = 64 (squares). Although this  

planar Othello game has been solved, this paper still proposes a new problem based on this  

foundation: Has the originally evenly matched situation between the first move and second move  

sides changed in the game of Othello played on a cubic board? 

Certainly, we can start constructing a cubic Othello board from 8 (rows) * 8 (columns) * 6  

(faces) = 384 (squares), but a board with 384 (squares) is not suitable for people to play against  

each other. Even if it is changed to the smallest cubic Othello board with 4 (squares) * 6 (faces)  

= 24 (squares), it is not very suitable for people to play against each other, because playing cubic  

Othello in a real-world environment is very difficult. Playing cubic Othello is very challenging  

because it requires understanding the characteristics of cubic Othello and making clear definitions  

of the ways of moving. Only in this way can we attempt to apply machine learning techniques to  

cubic Othello and develop an expert system that can play chess on a cubic Othello board. 

Then we found that the first player (black) of cubic Othello has a winning rate of about  

20% with blind moves, while the second player (white) has a probability of about 80% with blind  

moves. It is evident that in cubic Othello, the second player has an advantage, which is far from  

the conclusion pointed out in the paper related to planar Othello, that a perfect game of two players  

in planar Othello will eventually lead to a draw. 

Furthermore, the expert system proposed in this paper that is trained using the GPU  

memory on a personal computer can be executed on any contemporary browser. The training that  

originally took tens of days to complete using CPU memory on a personal computer can now be  

completed in tens of minutes in the GPU memory of a personal computer. This clearly shows that  

the significant benefits that can be achieved by effectively utilizing the GPU memory on a personal  

computer have surpassed the use of a large CPU memory computer. 

 

Index Terms:  Othello Game, Cubic Chessboard, Artificial Intelligence, Machine Learning,  

K-Nearest Neighbors Algorithm, GPU Memory 

 



1. Introduction 

The earliest self-play in planar Othello began with Logistello[1]. In August 1997,  

Logistello defeated the 1996 Othello world champion Takeshi Murakami. Subsequently, various  

classical board games have been conquered by computer AI. It is evident that in virtual battles,  

whether there is computer assistance has become the key to the outcome of the battle. 

The rules for placing pieces in cubic Othello and planar Othello are the same. After placing  

a piece, if any of your own pieces on the board are on the same line (horizontal, vertical, or  

diagonal) and there are opponent's pieces in between, you can flip these sandwiched opponent's  

pieces to your own (just flip them over). When neither side can place a piece according to the  

above conditions, the game ends and the player with more pieces of their color wins. Therefore, to  

determine whether an empty space on the cubic Othello board can be placed, the cube must be  

spread out into a plane. 

The difference in difficulty between cubic (4 * 6) Othello and planar (8 * 8) Othello can be  

shown in Figure 1. Excluding the first move, cubic (4 * 6) Othello has approximately 3.53 * 1012  

routes, while planar (8 * 8) Othello has approximately 5.77 * 1052 routes. 

 
Figure 1. Comparison of the average number of positions that can be chosen at each step between cubic Othello and  

planar Othello. 

 

However, real battles do not exist in purely planar battlefields, but more often in cube space  

battlefields. Therefore, there is a necessity for system simulation of cubic Othello chessboards. In  

the early days, when GPU memory was not widely applied, executing machine learning models  



could take more than a week. Thus, this paper also takes the opportunity to demonstrate how to  

utilize GPU memory on personal computers or smartphones to quickly perform machine learning  

computations in the development of this cubic and planar Othello expert system. 

 

2. The Characteristics of the Cubic Othello Chessboard 

In a cubic chessboard, each square has 7 adjacent squares (including diagonally), unlike a  

planar chessboard where there are corners with only 3 adjacent squares, and edges with 5 adjacent  

squares. This leads to a strategy in a planar chessboard where players or machines tend to take  

corners and avoid losing corners. Moreover, although each square on a cubic chessboard only has 7  

adjacent squares (a regular square on a planar has 8 adjacent squares), the squares on a cubic  

chessboard have five attack loops (a loop is a line that passes through the square when the cube is  

flattened in a way that each face is connected). This is one more than the lines that a regular square  

on a planar chessboard can attack (as shown in Figure 2). 

 

   
Figure 2. Display the directional lines that the white piece can attack on the cubic chessboard and the planar  

chessboard. 

 

In addition, taking the position of the white pieces on the cubic chessboard in Figure 2,  

marked as 30, as an example, the various colored loop lines are spread out on the plane after the  

cube is unfolded, as shown in Figures 3 to 7. 

 

    
Figure 3. The loop line surrounding the left face of the cube. 



 

    
Figure 4. The loop line surrounding the top face of the cube. 

 

    
Figure 5. The axis around which the loop line is wrapped is composed of the point formed by the three faces of 04, 14,  

44 and the point formed by the three faces of 53, 23, 33. 

 

      
Figure 6. The loop lines surround ths point formed by the three faces of 32, 52, 02. 

 



     
Figure 7. The loop lines surround ths point formed by the three faces of 21, 41, 31. 

 

At this point, a new question arises: for any position on the cubic chessboard, besides the  

aforementioned 5 types of attack lines, are there any other attack lines? The answer is yes, after  

flattening the cubic board, there are other straight lines that can be considered as attack lines.  

However, only these 5 types of attack lines are not only loop lines, but also the faces of the cube  

are connected by lines instead of only a point after the cube is flattened. In addition, after placing a  

piece, how to obtain the attack lines that can flip the opponent's pieces, as shown in Algorithm 1. 

 

Algorithm 1. CL(p, h, c): Find the attack lines that can flip the chess pieces into mine. 

Require: p: The position object p of the square to place the piece, this position object must contain an array of attack  

lines, and each line in the array of attack lines must record the coordinates of the positions passed by the attack line. 

Require: h: The current situation array h of the chessboard, the array will record the current situation of each  

position coordinate. 

Require: c: The situation c of the current placing piece. 

Ensure: h only recorded the following three situations: black piece, white piece, and no piece. The three situations  

are mutually exclusive and do not overlap. 

  1: o ← {} 

  2: for l ∈ p.lines do 
  3:     f ← 0 

  4:     t ← h[l[f + 1].coordinate] 
  5:     while t is not c and t is not no piece do 

  6:         f ← f + 1                                            ▷ f is not bigger then l.length 

  7:         t ← h[l[f + 1].coordinate] 
  8:         if t is c then 
  9:             o ← o + l,f 
 10:             break while 

 11:         end if 

 12:     end while 

 13: end for 

 14: return o 

 

 From Algorithm 1, assuming n is the number of attack lines at a certain position, and m is  

the number of squares that this attack line passes through, then the time complexity of the attack  

line increasing is O(n), and the space complexity is O(n × m), so the increase of the chessboard size  

cause insufficient memory, the increase of the attack line at each position will also cause  



insufficient memory. Therefore, choosing meaningful loop lines as attack lines can reduce the  

difficulty of implementing the expert systems of the cubic Othello. 

In addition, playing 100 rounds of random games of Othello on a plane and a cube, it can  

be observed that on the cubic Othello, the player with the second move (white pieces) has an  

advantage, as shown in Table 1.[2] 

 

Table 1. Compare whether the first move has an advantage or the second move has an advantage in the plane and the  

cube. 

Playing 100 rounds of random games Black Win 

(first move) 

White Win 

(second move) 

Tie 

Planar Othello 46 48 6 

Cubic Othello 16 82 2 

 

3. Method 

 

3.1 Backtracking[3] 

After trying Q-learning[4] (Q table) and multithreading, it was found that the fastest way to  

obtain battle records is still to execute single-threaded backtracking. However, the method of  

recording wins and losses adopts a reward method similar to reinforcement learning[5]. The goal  

is to find if there is a path for the black piece (first move) to win, and adopt a black-winner-takes- 

all strategy. Let each square on the path to victory for the black piece have a reward value of -24  

(if there is only one black piece on the board, it is -1, up to 24, so it is -24). On the contrary, if this  

game has ended and the white piece still wins, then the squares on this path will maintain their  

original reward value (the original reward value refers to the reward value at the position after a  

piece is placed, which is the number of white pieces on the board minus the number of black  

pieces, and all possible next steps The reward value is set to -25, indicating that any reward value  

generated in the next step can replace it). 

 

3.2 K-nearest neighbor algorithm[6] 

 After obtaining the battle record, the next step is to train the computer to establish a model.  

After comparing neural networks (NN) and K-nearest neighbor algorithm (KNN), it was found  

that neural networks have difficulty obtaining feature values between square reward values and  

winning paths. The reason is that after each move in Othello, the change in reward value is too  

large, causing training errors to be difficult to converge. Therefore, we adopt the K-nearest  

neighbor algorithm that requires a large amount of calculation. Fortunately, now is the era of GPU  

memory. Since Google opened TensorFlow.js[7], we have entered an era where large-scale  

calculations can be performed on the front end of web pages. In addition, ml5.js[8] makes  

TensorFlow.js more friendly to programmers. After that, machine learning technology has become  

easier to apply in various fields. 



 

3.3 Prediction 

The predictive data of KNN is based on the data obtained from the backtracking method.  

The backtracking data used in this paper for cubic Othello is a path where there are no empty  

squares on the board when the game ends. Then, all path data within 9 steps of backtracking from  

this path is collected. For the 8 * 8 planar chessboard of our paper (used as a control group),  

applying the above logic can only backtrack the path data within 7 steps. This is done to ensure  

that the usage of GPU memory does not exceed 8GB. 

The principle of black pieces (first move) is to try not to let white pieces go to positions  

where the reward value is not -24. On the contrary, the principle of white pieces is to try to find  

positions where the reward value is not -24. As long as a white piece goes to a position where the  

reward value is not -24, it means that white pieces are almost certain to win, except for errors in  

KNN prediction, black pieces may win. 

Comparing with the paper we referred to, "Othello is Solved"[2], that first finds all the  

results of the first ten steps (where there are still 50 squares left to play) on an 8 * 8 planar  

chessboard, and then uses α-β search to remove unwanted paths from the situation presented by  

that game, until there are only 36 squares left to play. Finally, it calculates the game-theoretic value  

of all 36 squares that meaning all possible paths for the remaining 36 squares are run, and the  

optimal path leading to a tie. However, this referenced paper cannot explain the phenomenon  

caused by the prediction of the expert system in this paper. 

 

4. Implementation 

T h e  c u b i c  O t h e l l o  a n d  t h e  p l a n a r  O t h e l l o  i m p l e m e n t a t i o n  U R L  i s :  

https://www.cpapeijer.com/home/autolearn2. It is written in JavaScript and uses the public  

packages p5.js[9] and ml5.js. The model trained under the condition of not exceeding 8GB GPU  

memory can be smoothly executed on any computer or mobile phone that can run a browser for  

prediction. 

 

5. Results and Discussion 

Through GPU memory computation, the workload that originally required several days to  

complete with CPU memory can be completed in just a few minutes, and the time spent on  

predicting answers can also be completed in a few seconds. 

In the implementation of the expert system for cubic Othello, we not only compared battles  

in expert vs. random and expert vs. expert, but also implemented an expert system for planar  

Othello as a control group because the results on cubic Othello were too strange. The experimental  

results are shown in Table 2 and Table 3. 

 

 

https://www.cpapeijer.com/home/autolearn2


Table 2. Comparison of playing with and without the expert system. (cubic version) 

Playing 100 rounds of cubic Othello games Black Win 

(first move) 

White Win 

(second move) 

Tie 

Black Expert vs. White Expert 0 100 0 

Black Random vs. White Expert 15 82 3 

Black Expert vs. White Random 31 67 2 

 

Table 3. Comparison of playing with and without the expert system. (planar version) 

Playing 100 rounds of planar Othello games 

(control group, GPU memory out of 8GB) 

Black Win 

(first move) 

White Win 

(second move) 

Tie 

Black Expert vs. White Expert 38 62 0 

Black Random vs. White Expert 37 60 3 

Black Expert vs. White Random 57 42 1 

 

 Referring to the results in Table 1, it is evident that using the expert system implemented  

with KNN improves the winning rate by 10% (the opponent's win rate decreases by 10%) under the  

condition of using limited GPU memory, compared to the method of randomly placing pieces  

without using the expert system, resulting in an overall difference of almost 20%. However, when  

both sides use the expert system, the white pieces (second move) have an advantage, especially  

noticeable in the cubic Othello game. This may be attributed to using the backtracking method, the  

path data used to train KNN is set to an over-optimistic belief in victory after the black pieces win,  

but it allows the white pieces to find the winning opportunity that is like a light in the dark. 

 

6. Conclusion 

In this era where artificial intelligence triumphs over human chess masters, this paper  

advances the world of chess gaming into the cubic chessboard, and discovers some astonishing  

characteristics in it, such as the number and selection of attack lines, the advantages of going first  

or second, and the reaction of artificial intelligence to the situation of asymmetric advantages.  

These are new discoveries made in the process of implementation. Of course, in the future, more  

flat chess games may be cubed, because there are always some people who are not afraid to try  

that is too difficult. 

Certainly, we also recognize that some readers may be skeptical about the effectiveness of  

the expert system proposed in this paper. But in fact, the focus of this paper is on the application of  

GPU memory, not on the development of new artificial intelligence or machine learning  

technologies. At present, there are fewer papers discussing the use of front-end GPU memory on  

web pages. Although HTML 5 already included the WebGL[10] 3D drawing framework that uses  

GPU memory since 2006, it wasn't until the emergence of TensorFlow.js in 2018 that the threshold  

for using WebGL to build artificial intelligence in the browser was lowered. The ml5.js announced  

in the same year is a user-friendly version of TensorFlow.js. So far, the trilogy of machine learning  

(collection, training, and prediction) can be more easily executed on the front end of the  



browser. This paper is just a starting point, hoping that in the future there will be more artificial  

intelligence applications on the front end of the browser, so that the construction of artificial  

intelligence is not exclusive to certain professionals, but like cooking, as long as you want to do it  

for the people you love, everyone can become a master. 
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